

The Boeing Math Group

Statistics in Aviation Celebrating 100 Years of Flight Fritz Scholz

fritz.scholz@boeing.com

Applied Statistics Group

Mathematics & Computing Technology

The Boeing Company

Structure of this Talk

Early Importance of Data (Wright Brothers/Lindbergh) Statisticians connected to aviation Statistics within Boeing, BSRL, Reliability as Field How safe is flying? Statistics about aviation. Into Space, the New Frontier Statistical challenges in aviation Odds and Ends

Wilbur and Orville Wright

Wright Flyer at 10:35am on Dec 17, 1903

On Dec 14 Wilbur won the coin toss, made the first attempt and stalled, but Orville made the first flight on Dec. 17, 12 seconds & 120 ft

Wind Tunnel Data Important from Start

Replica of the 1901 Wright Wind Tunnel (constructed with assistance from Orville Wright).

Aerodynamics of Uprights

Experimenting for Flight

During January, 1903 the Wrights began to investigate the shape of the uprights (the long posts which separated the upper and lower wings).

Initially, a rectangular shape was used.

However, from their experiments on wing shapes, the Wrights believed a shape with more curvature on the sides and without the sharp edges of the rectangle would be more aerodynamic. These charts from the Franklin Institute Science Museum are in Wilbur Wright's handwriting. You can see the different shapes the Wrights examined.

8 in 7,5

28-3

Charles Lindbergh, NY-Paris, May 20, 1927 after 33 ¹/₂ hours of flight

As the plane took off, the plane's landing gear missed a set of telephone wires by a mere 20 feet.

Take-Off Distance and Gross Weight

There were concerns over the take-off distance of a fully loaded plane.

They could not test it because the landing gear might not support a landing at that weight.

They did not want to fly it for hours to burn off fuel.

Thus they tested it at lower weights and extrapolated.

N.A.C.A. Technical Note No. 257

www .

TECHNICAL NOTES

General Dimensions and Specifications (Cont.)

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

No. 257

Take-Off Distances--

Tests made at Camp Kearney near San Diego, California, at 600 ft. altitude. 011 = 4 gallons.

Hal. Gas	Gross Wt. 1b.	Approx. Head Wind Velocity M.P.H.	Take-Off Distance ft.	
36	2600	7	229	
71	2800	9	287	
in	3050	9	389	
151	3300	8	483	
201	3600	4	615	
251	3900	2	800	
301	4200	0	1023	

"TECHNICAL PREPARATION OF THE AIRPLANE "SPIRIT OF ST. LOUIS"

· Written for the

Actional Advisory Committee for Aeronautics

By Donald A. Hall Chief Engineer, Ryan Airlines, Inc.

FILE COPY

To be tarmed to the faces of the Langley Memorial Aeronautical •

> Washington July, 1827

10

Take-off Distance = $a \times [Gross Weight]^{b}$

Take-off distance in feet

log(Take-off Distance) = log(a) + b × log([Gross Weight])

Plausible Curve Fit (part 1). Note the use of a German French Curve

(part 2)

Designer – Circa 1970

A Physical Spline

Atlantic Crossing Time

Statisticians in Aviation

Richard Martin Edler von Mises, 1883-1953

- One of the greatest applied mathematicians of 20th century.
- Gave 1st university course in powered flight (1913, Strasburg).
- At beginning of World War I he joined the Flying Corps of the Austro-Hungarian Army & acquired a pilot's license.
- Was recalled from field service to become technical instructor in flight theory to German & Austrian Officers.
- Founded: Zeitschrift für Angewandte Mathematik und Mechanik 1921

Some of von Mises' Legacy **Theory of Flight** (1959) Fluid Dynamics (1971) **Probability, Statistics and Truth** (1981) von Mises foundation of probability (Kollektiv) von Mises expansions, von Mises functional von Mises (directional) distribution, Cramer-von Mises test

Extreme value theory: von Mises form of distribution, von Mises conditions

Abraham Wald 1902-1950

Father of Decision Theory &

Sequential Analysis

During WWII and later in Korea and Vietnam, the U.S. Navy and Air Force studied bullet-hole patterns on returning aircraft to determine where to reinforce the aircraft against ground fire. Abraham Wald (a statistician at U.S. Center for Naval Analyses) worked on this problem from 1941. Wald dryly noted better information would have been obtained from the planes that hadn't returned. He nevertheless managed to construct statistical models which gave a useful insight into the vulnerability of different parts of the aircraft.

Wald died in an aircraft crash over India in 1950

An outline of a plane.

A depiction of a plane with shading indicating where returning planes had been shot.

Figure 6. A schematic representation of Abraham Wald's ingenious scheme to investigate where to armor aircraft.

Wainer, Palmer and Bradlow

Chance, 11, 2, 1998

United States Air Force Museum

Left side of the vertical tail section from from the B-17G 42-97683.

The aircraft was shot down on March 15, 1945, killing top turret gunner Technical Sergeant Sator "Sandy" Sanchez on his 66th combat mission. The tail section was discovered in 1993, being used as part of a farmer's shed near the crash site in Germany. The 52nd Equipment Maintenance Squadron recovered the artifact for the Air Force Museum in 1996. United States Air Force Museum

Boeing Scientific Research Laboratories (BSRL)

George S. Schairer, acting head of the newly created Boeing Scientific Research Laboratories in 1958:

"If you're considering manned spacecraft applications, you need basic answers to a lot of questions....We're talking about temperatures only science-fiction writers talked about a few years ago. Our new research organization will give us one of the spearheads for taking steps further into the future than we've been able to do before."

A Bell Labs of the West Coast (Ron Pyke)

Statisticians/Mathematicians associated with BSRL, 1958-1969

R.E. Barlow, R. Pyke V. Klee, Z.W. Birnbaum, S.C. Saunders (B), N.R. Mann, G. Marsaglia (B), T.A. Bray, R. Van Slyke, G.B. Crawford, A.W. Marshall (B), D.W. Walkup (B), J.M. Myhre, G. Dantzig, R. Wets I. Olkin, J.D. Esary (B), L.C. Hunter, F. Proschan (B)

(B) Boeing employee, others were visitors/consultants

The Birth of Reliability Theory

Barlow (MMR 2002, Trondheim):

"it was not until 1961 with the publication of the Birnbaum, Esary and Saunders paper on coherent structures that reliability theory began to be treated as a separate subject."

"The Boeing 707 was under development at the time the de Haviland Comets were crashing. It was partly for this reason that the Boeing Scientific Research Laboratories in Seattle began to emphasize reliability theory in their mathematics division."

→ Mathematical Theory of Reliability (1965),

by Barlow & Proschan (w. contributions by Hunter)
Mathematical Methods of Reliability Theory (1965)
by Gnedenko, Belyayev, and Solovyev

BOEINGRESEARCH

Multi-Component Systems and Structures and Their Reliability

Z. W. Birnbaum

J. D. Esary

S. C. Saunders

Mathematics Research

Technometrics, 1961, 55-77

Frank Proschan (1963), Theoretical Explanation of Observed Decreasing Failure Rate, *Technometrics*

- This paper presents the famous air conditioner failure data from a fleet of Boeing 720 planes.
- Pooled failure time data do not appear to be exponential, in fact they seem to indicate a *decreasing failure rate*.
- Failure data from individual planes appear to be exponential.
- Proschan used this to illustrate that a mixture of exponentials has a decreasing failure rate and suggested to be aware of this possibility for any DFR appearance.
- This data set has since been much reanalyzed.
- It is one of the few data sets that got away.

TABLE 1

Intervals between failures

7907	7908	7909	791 0	7911	7912	7913	7914	7915	7916	7917	8044	8045
194	413	90	74	55	23	97	5 0	350	50	13 0	487	102
15	14	10	57	320	261	51	44	9	254	493	18	209
41	58	60	48	56	87	11	102	12	5		100	14
29	37	186	29	104	7	4	72	27 0	283		7	57
33	100	61	502	22 0	120	141	22	603	35		98	54
181	65	40	12	230	14	18	39	3	12		5	32
	9	14	70	47	62	142	3	104	223		85	67
	169	24	21	246	47	68	15	2			91	59
	447	56	29	176	225	77	197	438			43	134
	184	20	385	182	71	80	188				230	152
	36	79	50	33	240	1	79				3	27
	201	84	27		21	16	88				130	14
	118	44		15	42	106	46					230
		50	153	104	20	206	5					66
	34	29	26	35	5	82	5					61
	81	118	326	1000	12	54	36					34
	18	25			120	31	22					
	18	156			11	216	139					
	67	810			3	46	210					
	57	76			14	111	97					
	62	26			71	39	30					
	7	44			11	63	23					
	22	23			14	18	13					
	34	62			11	191	14					
					16	18	22					
		130			90	163						
		208			1	24						
		70			16							
		101			52							
		208			95							

Boeing data set probably most analyzed in statistical community

(** major overhaul)

Ron Pyke (1965), Spacings, with Discussion, JRSS(B)

This landmark paper, partially supported by The Boeing Company through BSRL, was presented before the Royal Statistical Society

In the spirit of such presentations Ron felt he had to show a data analysis application to the theory, although he admits to not having much experience in data analysis.

He had observed that aircraft accidents seemed to come in clusters of 3, **speculating** that the first would lead to preventive maintenance actions, possibly leading to screw-ups and more accidents.

He put this to the test for data from US and British carriers and found by various metrics: Accidents happen randomly over time.

The discussion confirmed that, although some criticized rightly that calendar time was probably not appropriate. Number of flights would have been better.

aircraft, 1948–61.

FIG. 3. Histogram of the inter-accident times for the American data. The smooth curve is 115 exp $(-\lambda x)$ where $\lambda = 0.0230$. A χ^2 -test was performed using groupings: 0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-80, 81-100, 101-130, >130; for these data, $\chi^2 = 12.232$, which is approximately the 85-percentile.

FIG. 5. The empirical distribution function of the inter-accident times for American data. The smooth curve is $115\{1 - \exp(-\lambda x)\}$ with $\lambda = 0.0230$. The Kolmogorov-Smirnov distance equals 9.00, which is approximately the 52-percentile.

The Boeing Bust

Over 86,000 employees were laid off in 1969-71

Boeing employment reached a low of 56,300

BSRL was closed, some found refuge elsewhere in Boeing, some went into academia

The economic downturn (Boeing was the major employer, no Microsoft, etc) inspired the billboard below.

It also led to the demise of the planned UW Statistics Department

According to Ron Pyke it led to my arrival at the UW Math Department in 1972.

Dean Beckman made sure that the next open position would go to a statistician.

The Applied Statistics Group of the Boeing Math Group has 17 members

Roberto Altschul, Shobbo Basu, Andrew Booker, Bill Fortney, Roman Fresnedo, Stephen Jones, I-Li Lu, Martin Meckesheimer, Ranjan Paul, Julio Peixoto, Fritz Scholz, Shuguang Song, Winson Taam, Valeria Thompson, Rod Tjoelker, Tom Tosch, Virginia Wheway

It is part of the Math & Computing Technology which is the closest successor organization to BSRL within Boeing

We do some research but mostly consult within Boeing, with occasional outside contract work

There are many more statisticians and mathematicians clustered throughout the company

How safe is flying?

Since accidents do happen the answer is given statistically

For more definitive information see

http://www.boeing.com/news/ techissues/pdf/statsum.pdf

Departures, Flight Hours, and Jet Airplanes in Service*

Worldwide Operations 1966 to 2001

- 395.8 million cumulative departures (330.0 million on Boeing airplanes)
- 644.5 million cumulative flight-hours (546.5 million on Boeing airplanes)
- 7 Manufacturers 33 significant types (13 Boeing) in service as of 12/31/2001

*Certified jet airplanes greater than 60,000 pounds maximum gross weight, including those in temporary non-flying status and those in use by non-airline operators. Excluded are military airplanes and CIS manufactured airplanes.

DEEING

2001 STATISTICAL SUMMARY, JUNE 2002

Accident Summary by Damage and Injury

All Accidents - Worldwide Commercial Jet Fleet - 1959 through 2001

BDEING

Accident Rates and Fatalities by Year

All Accidents - Worldwide Commercial Jet Fleet - 1959 through 2001

Accident Rates by Years Following Introduction

Hull Loss and/or Fatal accidents - Worldwide Commercial Jet Fleet - 1959 through 2001

Accident Rates by Airplane Type

Hull Loss Accidents - Worldwide Commercial Jet Fleet - 1959 through 2001

Accident Categories by Airplane Generation

All accidents - Worldwide Commercial Jet Operations - 1992 through 2001

Generation	_	Ared	100 100 100 100 100 100 100 100 100 100	Creat and	Call and Call	S. S	1 and and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and a state	L	and	ling all	anaper	Ser and	and creek	and a series	aller aller	and an and an	all	and and	AN A	S States	and a state	E CONTRACTOR	recei		sine serve	100	7
First	5	7		1		6	3	3	4	8		1		1	1			2	3					1	1		2		49	
Second	15	8	1	4		18	22	15	10	11	2	2	1	1	6	1	1	1	1	2	1			1	1	2	3		130	
Early widebody	4	1	1	1	1	4	3	5	1	4	1	1	1		3	3	1		5	3	1	1	1	2	3	2			53	
Current	12	16		1	1	24	13	35	2	14	1		1	1	4	3	8		3	4	1	3	1	3	2	2	4		161	
Total	36	32	2	7	2	52	41	58	18	37	4	4	3	3	14	7	10	3	12	9	3	4	2	7	7	6	9		393	
Generation First Comet 4, 707/720, DC-8, CV-880/-990, Caravelle, Mercure Second 727, Trident, VC-10, BAC 1-11, DC-9, 737-100/-200, F-28 Early widebody 747-100/-200/-300/SP, DC-10, L-1011, A300 Current MD-80, -90, 767, 757, A310, Bae 146, A300-600, 737-300/-400/-500, F-70, F-100, A320, 319, 321, 747-400, MD-11, RJ-70, -85, -100, A340, A330, 777, 737NG, 717											Ea	rly V	Se Vide	First	st id	0-Y	2.8	Acc 5.3	cide	nt R	late		27	.2						
			*Mis	scel	lan	eous	s Ad	cide	ents										Cu	urrea	nt	1.	5		_	_	_			
Coffee maker exp Instrument Error Flight attendant fo	alosior all from	n n do	or	Je Pi	t bla lot i	ast ncap	acit	ated		RT Ta	0 – cied	off e acro	and oss (ditch							0	,	5 Acci	deni	10 ts pe	1 er m	5 nillion	20 n depa	25 artures	30

DEING

Fatalities by Accident Categories

Fatal Accidents - Worldwide Commercial Jet Fleet - 1992 through 2001

16 2001 STATISTICAL SUMMARY, JUNE 2002

BDEING

Accidents and Onboard Fatalities by Phase of Flight

Hull Loss and/or Fatal Accidents - Worldwide Commercial Jet Fleet - 1992 - 2001

²⁰⁰¹ STATISTICAL SUMMARY, JUNE 2002

Accidents by Primary Cause*

Hull Loss - Worldwide Commercial Jet Fleet - 1992 through 2001

Off into Space, the New Frontier

International Space Station (ISS)

Probabilistic Design was used to balance penetration risk and cost Penetration by space debris and meteoroids

Marked Poisson process, frequency, mass, angle, and velocity, combined with engineering models of wall design and strength Initially the risk of penetration was aimed at 5% over 10 years

NASA TM-82585 Each surface element of the ISS was modeled for its risk

Lach surface clement of the 155 was modeled for its fisk

The Challenger disaster caused delays and increases in costs

The latest risk found: 24% risk of at least one penetration over 10 years. (Aircraft Survivability-Fall 2000)

Some Statistical Challenges in Aircraft Industry High reliability requirements will yield data that are highly censored. Tracking 30,000 instances of a part in the field could easily yield just 47 failures, the rest still functioning and thus censored. Very expensive parts only allow small sample sizes for testing. In both cases large sample asymptotics need to be treated with care.

Meaning of 95% upper confidence bound of 2.3×10^{-8} on a risk? How do we bring two such disparate chances under one hat?

How to regulate maintenance for large and small fleets. One adverse event in a large fleet makes for a small/acceptable rate. One adverse event in a small fleet (it has to happen somewhere) will cause a flap.

Acceptance Sampling: The c = 0 Issue

Accept shipment or lot as long as number D of defects in a sample of size n does not exceed c = 0, i.e., accept when $D \le c$.

This leads to sample sizes n which guarantee a specified risk α of false lot acceptance when the true defect rate p > p₀

- It also leads to high lot rejection rates ($\approx 1 \alpha$) when the defect rate $p < p_0 \ (p \approx p_0)$
- It is very hard to get across that a cutoff c > 0 with a higher n leads to much better operating characteristics.
- For some people it is very difficult to accept a lot when some defects are found.
- "Rejection" of lot most often means 100% inspection, high cost.

Maintenance Schedules

Strongly linked to probability of crack detection and crack growth curves.

Micro-cracks are always present and it is important to catch them before they get too large.

The chance of missing them on inspection is factored in.

The fleet leaders will give warnings for the rest of the fleet when new trouble spots arise.

Similar strategies play a role for other wear phenomena.

Lightning strikes do happen and they present mostly a risk for composite material technology for non-conductivity reasons.

Efron's Bootstrap is 25 Years Old

It gave wings to statistics

The Weibull Distribution

Plays a dominant role in aviation reliability.

The **Weibull Analysis Handbook** by Abernethy, Breneman, Medlin, and Reinman was originally created at Pratt & Whitney Aircraft.

Before joining Boeing I knew little about it, not exponential family.

One of my first projects led to a program for computing A- and B-Allowables for the 3-parameter Weibull distribution. It was incorporated into MIL-HDBK-5.

A- and B-Allowables are 95% lower confidence bounds for the .01quantile and .10-quantile of a population, a double probability statement.

The six sigma program is alive and well inside Boeing.

Shobbo Basu in our group has a black belt D1-82-0015-1

Tables of Percentiles of

 $m{Q}_2(s,r) = m{P}\left(X^2 + s^2Y^2 \leq r^2
ight)$ where X and Y are i.i.d. $\mathcal{N}(0,1)$

and

 $egin{aligned} m{Q}_3(s,v,r) = \ & P\left(X^2 + s^2Y^2 + v^2Z^2 \leq r^2
ight) \end{aligned}$

where X, Y, Z are i.i.d. $\mathcal{N}(0, 1)$

BOEINGRESEARCH

Tables Of The Distribution Of Quadratic Forms Of Ranks Two And Three

George Marsaglia

August, 1960

Peter Hall (2002), Statistical Smoothing and the Investigation of Flight 587, *Chance 15, 4, 25-26*.

Discusses the smoothing that pilots see and as it is recorded on the Flight Data Recorder (FDR).

The current (old) smoothers flatten irregular signals, Hall advocates wavelets, a relatively new methodology.

It can handle irregular signals, which might be important to the pilots.

In 1994 the NTSB recommended that unsmoothed data be fed to FDR, and the FAA accepted this recommendation in 1997.

Hall also recommends that some smoothed data be recorded with the raw data. Presumably to be sure of what the pilot saw on the display in case of an accident.