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Structureof this Talk

Early Importance of Data (Wright Brothers/Lindbergh)
Statisticians connected to aviation

Statistics within Boeing, BSRL, Reliability as Field
How safe is flying? Statistics about aviation.

Into Space, the New Frontier

Statistical challengesin aviation

Odds and Ends



Wilbur and Orville Wright

Wright Flyer at 10:35am on Dec 17, 1903

On Dec 14 Wilbur won the COI N t0SS, made the
first attempt and stalled, but Orville made the first
flight on Dec. 17, 12 seconds & 120 ft



Wind Tunnel Data Important from Start

Replica of the 1901 Wright Wind Tunnel
(constructed with assistance from Orville Wright).



Aerodynamics of Uprights




Experimenting for Flight

During January, 1903 the Wrights began to
Investigate the shape of the uprights (the long posts
which separated the upper and lower wings).

Initially, arectangular shape was used.

However, from their experiments on wing shapes,
the Wrights believed a shape with more curvature
on the sides and without the sharp edges of the
rectangle would be more aerodynamic.



These charts from the Franklin Institute Science Museum
are in Wilbur Wright's handwriting. Y ou can see the
different shapes the Wrights examined.




Charles Lindbergh, NY -Paris, May 20, 1927
after 33 Y2 hours of flight

As the plane took off, the plane’ s landing gear
missed a set of telephone wires by a mere 20 feet.




Take-Off Distance and Gross Weight

There were concerns over the take-off distance of a
fully loaded plane.

They could not test it because the landing gear might
not support alanding at that weight.

They did not want to fly it for hours to burn off fuel.
Thusthey tested it at lower weights and extrapol ated.
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Sross weight of airplane in lb.
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Gross weight of airplane in k.
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Designer — Circa 1970




A Physical Spline
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Statisticians in Aviation

Richard Martin Edler von Mises, 1883-1953
One of the greatest applied mathematicians of 20™ century.
Gave 1% university course in powered flight (1913, Strasburg).

At beginning of World War | he joined the Flying Corps of the Austro-
Hungarian Army & acquired apilot’s license.

Was recalled from field service to become technical instructor in flight
theory to German & Austrian Officers.

Founded: Zeatschrift fur Angewandte Mathematik und Mechanik 1921



Some of von Mises' L egacy
Theory of Flight (1959)
Fluid Dynamics (1971)
Probability, Statisticsand Truth (1981)
von Mises foundation of probability (Kollektiv)
von Mises expansions, von Mises functional
von Mises (directional) distribution,
Cramer-von Mises test

Extreme value theory: von Mises form of distribution,
von Mises conditions



During WWII and later in Korea and Vietnam,
the U.S. Navy and Air Force studied bullet-hole
patterns on returning aircraft to determine where
to reinforce the aircraft against ground fire.
Abraham Wald (a statistician at U.S. Center for
SERE Lo N T Naval Analyses) worked on this problem from
WO 1941, Wald dryly noted better information would
" Abraham Wald have been obtained from the planes that hadn't
1902-1950 returned. He nevertheless managed to construct
statistical models which gave a useful insight into

Father of the vulnerability of different parts of the aircraft.

Decision Theory &
Sequential Analysis

Wald died in an aircraft crash over Indiain 1950



An outline of a plane. A depiction of a plane
with shading indicating
where returning planes

had been shot.

Figure 6. A schematic representation of Abraham Wald'’s ingenious scheme to inves-
tigate where to armor aircraft.

Wainer, Palmer and Bradlow
Chance, 11, 2, 1998
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Boeing Scientific Resear ch Laboratories (BSRL)

George S. Schairer, acting head of the newly created
Boeing Scientific Research Laboratoriesin 1958:

"If you're considering manned spacecraft
applications, you need basic answersto alot of
guestions....\We're talking about temperatures only
science-fiction writers talked about afew years ago.
Our new research organization will give us one of
the spearheads for taking steps further into the
future than we've been able to do before."

A Bell Labs of the West Coast (Ron Pyke)



StatisticiangM athematicians associated with BSRL, 1958-1969

R.E. Barlow, V. Kleg, R. Pyke

Z.\W. Birnbaum, N.R. Mann, S.C. Saunders (B),
T.A. Bray, G. Marsaglia (B), R. Van Syke,
G.B. Crawford, AW. Marshal (B), D.W. Walkup (B),
G. Dantzig, J.M. Myhre, R. Wets

J.D. Esary (B), |. Olkin,

L.C. Hunter, F. Proschan (B)

(B) Boeing employee, others were visitors/consultants



TheBirth of Reliability Theory
Barlow (MMR 2002, Trondheim):

“It was not until 1961 with the publication of the Birnbaum, Esary
and Saunders paper on coherent structures that reliability theory
began to be treated as a separate subject.”

“The Boeing 707 was under development at the time the de Haviland
Comets were crashing. It was partly for this reason that the Boeing
Scientific Research Laboratories in Seattle began to emphasize
reliability theory in their mathematics division.”

—— Mathematical Theory of Reliability (1965),
by Barlow & Proschan (w. contributions by Hunter)
Mathematical Methods of Reliability Theory (1965)
by Gnedenko, Belyayev, and Solovyev
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Multi-Component Systems and
Structures and Their Reliability

Z. W. Birnbaum A

J. D. Esary

S. C. Saunders

Mathematics Research

Technometrics,
1961, 55-77



Frank Proschan (1963), Theoretical Explanation of
Observed Decreasing Failure Rate, Technometrics

This paper presents the famous air conditioner failure data
from afleet of Boeing 720 planes.

Pooled failure time data do not appear to be exponential, in
fact they seem to indicate a decreasing failure rate.

Failure data from individual planes appear to be exponential.

Proschan used thisto illustrate that a mixture of exponentials

nas a decreasing failure rate and suggested to be aware of this
possibility for any DFR appearance.

This data set has since been much reanalyzed.

It isone of the few data sets that got away.
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Ron Pyke (1965), Spacings, with Discussion, JRSYB)

Thislandmark paper, partially supported by The Boeing Company
through BSRL, was presented before the Royal Statistical Society

In the spirit of such presentations Ron felt he had to show a data
analysis application to the theory, although he admits to not having
much experience in data analysis.

He had observed that aircraft accidents seemed to come in clusters of
3, speculating that the first would lead to preventive maintenance
actions, possibly leading to screw-ups and more accidents.

He put this to the test for data from US and British carriers and found
by various metrics. Accidents happen randomly over time.

The discussion confirmed that, although some criticized rightly that
calendar time was probably not appropriate. Number of flights would
have been better.
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The Boeing Bust
Over 86,000 employees were laid off 1n 1969-71

Boeing employment reached alow of 56,300

BSRL was closed, some found refuge elsewhere in Boeing, some
went into academia

The economic downturn (Boeing was the mgor employer, no
Microsoft, etc) inspired the billboard bel ow.

It also |ed to the demise of the planned UW Statistics Department

According to Ron Pyke it led to my T e et person

¢ leaving SEATTLE -

arrival at the UW Math Department in "1 Tum out the lights
1972. =

Dean Beckman made sure that the next




The Applied Statistics Group of the Boeing
Math Group has 17 members

Roberto Altschul, Shobbo Basu, Andrew Booker, Bill Fortney, Roman Fresnedo,
Stephen Jones, I-Li Lu, Martin Meckesheimer, Ranjan Paul, Julio Peixoto, Fritz Scholz,
Shuguang Song, Winson Taam, Valeria Thompson, Rod Tjoelker, Tom Tosch,
Virginia Wheway

It is part of the Math & Computing Technology which isthe
closest successor organization to BSRL within Boeing

We do some research but mostly consult within Boeing, with
occasional outside contract work

There are many more statisticians and mathematicians clustered
throughout the company



How safeisflying?

Since accidents do happen the answer
IS given statistically

For more definitive information see

http://www.boeing.com/news/
techissues/pdf/statsum.pdf



Departures, Flight Hours, and Jet Airplanes in Service*

Worldwide Operations 1966 to 2001
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= 395.8 million cumulative departures
{330.0 million on Boeing airplanes)

« G445 million cumulative flight-hours
(546.5 million on Boeing airplanes)

« 7 Manufacturers - 33 significant
types (13 Boeing) in service as of
12/3172001

*Certified jet airplanes greater than
60,000 pounds maximum gross
weight, including those in temporary
non-fliying status and those in usa
by non-airline operators. Excluded
are military airplanes and CIS -
manufactured airplanes,

[
2001 STATISTICAL SURMARY, JUKE 2002



Accident Summary by Damage and Injury
All Accidents - Worldwide Commercial Jet Fleet - 1959 through 2001

1,307 accidents worldwide

42 personal injury accidents with
lags than subsiantial damage
(58 fatal)

B&1 hull Insses
{421 hull lossas with fatalrlies)

681
{421 fatal)

536
(19 fatal)

536 substantial damage accdanis
(19 substantial damage wilh fatalities)

Excludes:
« Fatal injuries from natural causes, or suicide.
« Experimental test flights.
= Military airplanes.

» Sabotage, hijacking, terrorism, or military action.
= Mon-fatal injuries involving:
« Atmospheric lurbulence, manauvering, or loose objects.
* Boarding, disembarking, or evacuation.
+ Maintenance or servicing.
= Persons not onboard the airplane.

=)

,{'- O EINE 2001 ETATISTICAL SUMMARY, JUNE 2002



Accident Rates and Fatalities by Year

All Accidents - Worldwide Commercial Jet Fleet - 1959 through 2001
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Accident Rates by Years Following Introduction

Hull Loss and/or Fatal accidents - Worldwide Commercial Jet Fleet - 1959 through 2001
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Accident Rates by Airplane Type

Hull Loss Accidents - Worldwide Commercial Jet Fleet - 1959 through 2001
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Accident Categories by Airplane Generation
All accidents - Wnrldwide Enmmer{:ial Jet Operations - 1992 through 2001
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Fatalities by Accident Categories
Fatal Accidents - Worldwide Commercial Jet Fleet - 1992 through 2001
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Accidents and Onboard Fatalities by Phase of Flight

Hull Loss and/or Fatal Accidents - Worldwide Commercial Jet Fleet - 1992 - 2001
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Accidents by Primary Cause*
Hull Loss - Worldwide Commercial Jet Fleet - 1992 through 2001

18

2001 STATISTICAL SUMMARY , JUNE 2002

0% 10% 20% 0% 40%, 50% B0% 7% B0
Flight Crew 98 B 20000
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* As determined by the investigating authority
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Off into Space, the New Frontier




| nter national Space Station (1SS)

Probabilistic Design was used to balance penetration risk and cost
Penetration by space debris and meteoroids

Marked Poisson process, frequency, mass, angle, and velocity,
combined with engineering models of wall design and strength

Initially the risk of penetration was aimed at 5% over 10 years
NASA TM-82585

Each surface element of the ISS was modeled for itsrisk
The Challenger disaster caused delays and increases in costs

The latest risk found: 24% risk of at |east one penetration over 10
years. (Aircraft Survivability-Fall 2000)
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Some Statistical Challengesin Aircraft Industry
High reliability requirements will yield data that are highly censored.

Tracking 30,000 instances of apart in the field could easily yield just
47 failures, the rest still functioning and thus censored.

Very expensive parts only allow small sample sizes for testing.

In both cases |large sample asymptotics need to be treated with care.

Meaning of 95% upper confidence bound of 2.3 108 on arisk?

How do we bring two such disparate chances under one hat?

How to regulate maintenance for large and small fleets. One adverse
event in alarge fleet makes for a small/acceptable rate. One adverse
event in asmall fleet (it has to happen somewhere) will cause aflap.



Acceptance Sampling: Thec =0 Issue

Accept shipment or lot aslong as number D of defects in a sample of
size n does not exceed c =0, I.e., accept when D < c.

Thisleads to sample sizes n which guarantee a specified risk a of
false lot acceptance when the true defect rate p > p,

It also leads to high lot rejection rates (= 1— a) when the defect rate
P <Py (P= Po)

It Isvery hard to get across that a cutoff ¢ > 0 with ahigher n leads
to much better operating characteristics.

For some people it is very difficult to accept alot when some defects
are found.

“Rgection” of lot most often means 100% inspection, high cost.
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M aintenance Schedules

Strongly linked to probability of crack detection and
crack growth curves.

Micro-cracks are always present and it is important to
catch them before they get too large.

The chance of missing them on inspection is factored in.

The fleet leaders will give warnings for the rest of the
fleet when new trouble spots arise.

Similar strategies play arole for other wear phenomena.



Lightning strikes do happen and they present
mostly arisk for composite material technology
for non-conductivity reasons.

) ?




Efron’s Bootstrap i1s 25 Y ears Old
It gave wingsto statistics
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TheWaealbull Distribution

Plays a dominant role in aviation reliability.

The Weibull Analysis Handbook by Abernethy, Breneman,
Medlin, and Reinman was originally created at Pratt & Whitney
Alrcraft.

Before joining Boeing | knew little about it, not exponential family.

One of my first projects led to a program for computing A- and B-
Allowables for the 3-parameter Welbull distribution. It was
Incorporated into MIL-HDBK-5.

A- and B-Allowables are 95% |lower confidence bounds for the .01-
guantile and .10-quantile of a population, a double probability
statement.



Process Excellence

The six ssgmaprogram is
alive and well inside
Boeing.
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Tables of Percentiles of
Qa(s,7) = P(X?*48%Y? < TEJ
where X and Y are 1.id. A(0,1)

and

QE(S:U:T) —
P(X?+ Y2+ 0272 < 1‘2)

where X, Y, Z are i.i.d A(0,1)



Peter Hall (2002), Statistical Smoothing and the
| nvestigation of Flight 587, Chance 15, 4, 25-26.

Discusses the smoothing that pilots see and as it is recorded on the
Flight Data Recorder (FDR).

The current (old) smoothers flatten irregular signals, Hall advocates
wavelets, arelatively new methodology.

It can handle irregular signals, which might be important to the pilots.

In 1994 the NTSB recommended that unsmoothed data be fed to FDR,
and the FAA accepted this recommendation in 1997.

Hall also recommends that some smoothed data be recorded with the
raw data. Presumably to be sure of what the pilot saw on the display in
case of an accident.



