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1 Introduction

Several characteristics, say d of them, are measured
on the output of a process. Such characteristics may
or may not be correlated. A case has been made that
one should not monitor such processes by keeping
separate control charts on each of the d character-
istics. What is often suggested is a single control
chart based on Hotelling’s T2. See Alt (1985) and
Murphy (1987) on this point and for further entries
into the literature. It is usually assumed that the
observations come in subgroups of size k each and
each such subgroup is used to compute an estimated
covariance matrix in order to capture the local vari-
ation pattern. These covariance matrices are then
averaged in order to obtain a more stable estimate
to be used in the formation of the Hotelling T2 cri-
terion.

Often subgroups are of size k = 1 or the varia-
tion within a subgroup is not representative of the
between subgroup variation, i.e., we may be dealing
with batch effects. In this latter case it would make
more sense to average the observations in each sub-
group and let the variation of these averages speak
for themselves, i.e., we will again deal with &k = 1. Tt
is this latter situation (subgroups of size k = 1) that
we address here and we follow the univariate strat-
egy of an X-chart. Such charts, also called charts
for individual measurement, are discussed in Mont-
gomery (1991), chapter 6-4. Since an X-chart is
typically based on substantially fewer data points,
say n = 20, the variance estimate obtained from the
moving range formula is not yet very stable. This
should be viewed in contrast to the fairly stable es-
timate based on n = 20 subgroups of size k = 5.
In that case we would have 20 - 4 = 80 degrees of
freedom in estimating o as opposed to 19 degrees
of freedom when the group size is k = 1. Here the
19 degrees of freedom are based on using the sam-

ple variance of all 20 observations. This however
has the drawback of completely ignoring the time
order of the observations and any trend in the ob-
servations could be mistaken for natural variability.
In the univariate situation such trends would eas-
ily be visible on the control chart but not so in a
multivariate situation. For this reason one prefers
o estimates that are based on local variation, such
as the moving range or the moving squared range.
The latter is more easily adapted to the multivariate
situation and was proposed by Holmes and Mergen
(1993), however without allowing for the degree of
freedom loss due to the overlap of the ranges.

We will show that with n = 20 the moving squared
range estimate of o has only roughly 13 degrees
of freedom, since the local variabilty estimates use
overlapping data values. For the same reason the
moving range estimate would presumably have sim-
ilarly reduced degrees of freedom, but here the effect
is more difficult to assess analytically. This reduc-
tion in degrees of freedom is still better than the
10 degrees of freedom one gets when using the 10
nonoverlapping, consecutive data pairs to estimate
o. To account for this small sample instability in the
o estimates we propose to use control limits based
on the Student-t distribution (F distribution in the
multivariate case) with appropriately adjusted de-
grees of freedom.

2 The Univariate Case

Before discussing the general multivariate setup we
will illustrate this issue with the univariate situa-
tion. Here we assume that we observe Xi,..., X,
iid. ~ N(u,0?) when the process is under control.
Compute

. 1 n 1 n—1
X,=—Y X;and 02 = —— Y (X;1—X,)?.
" ; ! "o2(n—1) ; ! ¢

For obvious reasons G2 is called the moving squared

range estimate of o2. It is an unbiased estimate for



02 and in the Appendix it is shown (as special case
of the multivariate case) that f -2 ~ O'QX? where
f=2(n—1)2/(3n — 4) are the effective degrees of
freedom which account for the overlap. We form
the following T statistic which compares a future
independent observation X with the past history of

the process
\/ n+1 On

Using the fact that X,, is independent of 52 we can
approximate the distribution of T by a Student ¢ dis-
tribution with f degrees of freedom when the process
is in control. The quality of this approximation is
illustrated in Figure 1. Here N = 1000 samples of
size n = 20 and N = 1000 future observations were
generated from a standard normal population. X oo
and o9 were computed for each such sample and the
corresponding T ratio was computed for each sam-
ple and its corresponding future observation. The
sorted T ratios are plotted against the corresponding
quantiles of a ¢ distribution with f = 12.9 degrees of
freedom. The point pattern follows the main diag-
onal exceptionally well and thus appears to confirm
the validity of the approximation.

A future observation X is said to be out of con-
trol when |T'| > ty, 99865, where the .99865 point is
chosen to parallel the pointwise false alarm rate in
the conventional control chart based on £30 lim-
its. Using limits based on the t distribution results
in wider control limits than would be used in or-
dinary X-charts. In these latter charts one usu-
ally treats the p and o estimates as though they
agree with the underlying process parameters. This
amounts to setting f = oo above. The difference
between this and our small sample treatment is il-
lustrated in Figure 2a, where the solid control lim-
its are based on the ¢ distribution and the dashed
control limits are the conventional ones (f = o0),
ie, £3y/n/(n+1). In either case the limits are
based on a training sample of size n = 20 (the train-
ing sample points are not shown here) and the long
run behavior for N = 1000 future observations is
exhibited. Note that the dashed lines are violated
more frequently than would be desired by the nom-
inal exception rate of 2.7/1000. In order to point
out another feature we have replicated Figure 2a in
Figure 2b. A comparison of the two figures illus-
trates the "random effect” of the training sample.
Namely, sometimes the training sample shows un-
usually high dispersion. In that case (Figure 2b)
the T ratios are scaled down too much and will be
far away from either set of control limits. On the
other hand, if the training sample shows unusually

low dispersion, then the T ratios will be inflated and
violate either set of control limits more than they
should. This is not illustrated in the interest of sav-
ing space. In any case, the nominal exception rate
of 2.7/1000 should be interpreted as averaged over
all these training sample random effects. If there are
too many exceptions that turn out to be false alarms
one could draw the conclusion that the initial train-
ing sample of size n = 20 is not very representative
of the process and one should then recalibrate the
limits taking the later data into account. In fact,
such a recalibaration can take place after each new
observation is obtained. This way the price of wider
t-based control limits is only temporary. Such an
updated control chart is illustrated in Figure 3, us-
ing an initial training sample of size n = 20 and
80 update observations. Strictly speaking, the first
20 points should not have been plotted, since they
do not represent future observation. The narrowing
control limits show the updating effect. The dashed
lines also show a very mild updating effect due to the
factor \/n/(n + 1). After some updating (to down-
play the random effect of the training sample) one
may want to stick with the established control limits
in order to be more sensitive to slow mean drifts.

3 The Multivariate Case

Here we assume that our observations are vectors
X1,...,Xp i.i.d. with d-variate normal distribution
with mean vector p and covariance matrix 3. We
will form n—1 unbiased estimates of X based on local

difference vectors y, = x,41 —x,, v =1,...,n—1,
namely
1
S, = 3 “Yv 'YZ/
Yv,1 " Yv1 Yv,1 " Yv,2 Yv1 " Yuv,d
— 1 Yv2 " Yv,1 Yv,2 " Yv,2 Yv,2 " Yv,d
2

Yvd  Yv,1 Yvd " Yv,2 Yv,d * Yv,d

and as pooled estimate for X use

n—1

~ 1
snfst

v=1

1 n—1
/!
y= s> Y Yl
2(n—1) —
In the Appendix it is shown that

[ f_d+1 n = vVa—1 =
F = 7 n+1(x Xn)'S,, (x —Xy)

~Fyp_av1,



where

I 2(n —1)2
=% =T
=1

and x is a future observation. The quality of this
F-approximation is illustrated with QQ-plots in Fig-
ures 4a-4c. Here the dimension is d = 5 and all com-
ponents have common correlation p = 0,.2,.5. The
sample size is n = 20, which results in effective de-
grees of freedom of 5 and 8.89. As in the univariate
case independent F-ratios were computed, sorted,
and compared against corresponding quantiles from
the approximating F-distribution. The approxima-
tion appears to be reasonable for various values of
p-

This can be used to judge whether a future x is
out of line with the past history of the process by
comparing F' with the .9973 point of the Fy j_q11
distribution. These F-based limits are much wider
than those that would result if one took the esti-
mated parameters as "known” true parameters and
thus applied the appropriate Xﬁ limits, adjusted by
the factor (f —d+ 1)n/[fd(n + 1)] which appears
in the definition of F. The difference is illustrated
in Figures 5a-5b for common correlation p = .2. As
in Figures 2a-2b we again observe the random effect
of the start-up sample of size n = 20. The dashed
line is based on the 2 distribution (modified by the
above factor) and leads to many false alarms. This
is much more pronounced here than in the univari-
ate case, since another 4 degrees of freedom are lost
due to d = 5. Figure 6 is the counterpart to Fig-
ure 3 using multivariate data with common corre-
lation p = .2. It should be apparent that there is
a much stronger case for updating the limits in the
multivariate case.

4 Appendix

Let X' = (x1,...,X,) be the matrix of n data vec-
tors in R, where x; ~ Ng(p, X). Let y; = X;41 —X;
fori=1,...,n—1. In matrix form this can be writ-
ten as

-1 1 00 0 0 X

/

0 -1 0 0 0 X9

/

0 -1 1 0 0 X3

0 0 00 -1 1 <

/ !
X — X1 Y1
/ ! /

X3 — X3 Yo
/ ! /
= Xy — X3 = Y3
/ / !
Xy = Xpo1 Yn-1
or
DX =Y

where D is the above differencing matrix. Consider
next the following unbiased estimate S,, of 3:

1 = 1
S, = —— V= Y'Y
" 2(n—1) ;y’yl 2(n — 1)

1

n—1
where A = D'D/2. We will argue that a certain
multiple of §n has a distribution which can be ap-
proximated by a Wishart distribution Wy(f,X) for
some f. The idea behind this is basically the same
as the Satterthwaite method of approximating the
distribution of quadratic forms by an appropriate
multiple (a) of a chi-square random variable with
f degrees of freedom. The multiplier o and degree
of freedom f are obtained by matching the first two
moments of the quadratic form and the approximat-
ing distribution. That the same can be done in the

multivariate case hinges on the following theorem
which may be found in Seber (1984, p.24).

X'AX ,

Theorem: Let X' = (xy,...,X,), where x; ~
Ny(0,X), and let v = X £, where £ is a d-vector
of constants. Let A be an n x n symmetric matrix
of rank r. Then X'AX ~ Wy(r,X) if and only if
V' Av ~ o2x? for any £ € R, where o7 = £/3¥.

Without loss of generality we assume g = 0 when
considering the distribution of S,,. Denoting v; =
x/0 ~ N(0,02) and v/ = (v1,...,v,) we will invoke
the Satterthwaite approximation paradigm, namely,
for some « the quadratic form

1 ! 2.2
—VAvro
« eXs

for appropriate « and f. First note that

i=1

and

1 1 n—1
var (EV/AV> = Iaz Z var ((vi+1 - Ui)z)

i=1



2
+E Z

1<i<j<n—1

cov ((vi+1 — Ui)Q(UjJrl - UJ)Q)

4
9

Equating these to the corresponding mean and vari-
ance of a,?xfc we get the following two equations

n—1

4
o} = fo} and J—g(?;n —4) =2fo}
@
which yield

3n —4
Oé—m and f—

2(n—1)% 2n
3n—4 3

Since a and f do not depend on £, it appears rea-
sonable to claim that

(n—1)S,/a = fS, ~ Wy(f, Z) .
Now note that
1 n
Xn = E z;xi ~ Nd(”a E/H)
1=

is independent of S,. Further, if x ~ Ny(p, X) is a
future independent observation, then

X —Xp, ~ Ng(0,3(1+1/n))
is independent of S,,. From this it follows (see Seber
1984, p.30) that

~ f—d+1 n oy
Fo= 1727 ~%.)'S
Fd nri X%

Hx —%,)

n
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Figure 3: Univariate X-Chart
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Figure 4c: QQ-Plot for the
F-Approximation
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Figure 5b: Multivariate X-Chart
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Figure 5a: Multivariate X-Chart
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