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1 Introduction

In 1994 the American Society of Mechanical Engineers issued its latest revision of the dimensioning
and tolerancing standard (ASME, 1994). About three out of a total of over two hundred and
thirty pages in this standard are devoted to statistical tolerancing. Previous revisions issued
earlier contained no reference to statistical tolerancing at all. Though minimal, the latest attempt
by ASME to address statistical tolerancing is a significant beginning. Widespread practice of
statistical tolerancing within American companies, and those abroad, have forced ASME and other
international bodies to take a serious look at possible codification of statistical tolerancing. Recently
ISO has set up a task group towards this purpose (Srinivasan and O’Connor, 1995). Indications thus
far point to an increased level of activity in understanding and codification of statistical tolerancing.

An earlier paper (Srinivasan and O’Connor, 1994) proposed possible interpretations of sta-
tistical tolerancing in the context of geometric part specifications. That study was based on our
understanding of the prevailing manufacturing practices in leading companies. An important class
of interpretations depended on process capability indices:Cp, Cpk, andCc. This led us to define
statistical tolerance zones in theCpk-Cp plane as well as in the�-� plane to specify what popu-
lations are statistically acceptable. The focus thus far has been strictly on part specifications and
their interpretations.

Since most products are assemblies of parts, it is not sufficient to consider only part specifi-
cations. Ideally, a designer should start with an assembly “budget” for allowable variation, and
distribute it to the constituent parts. In reality, this problem is attacked by several iterations of
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tolerance analysis where part variations are composed to determine the assembly variation. In
statistical tolerance analysis, this means that techniques should be found to compose the part-level
specifications that are in the form of statistical tolerance zones. In this chapter, we provide such
mathematical and computational techniques.

What is the use of composing part-level statistical tolerance zones? The composed zone gives
us a compact geometric representation of “all” possible statistical outcomes of a critical assembly-
level characteristic. If we have the composed tolerance zone for an assembly-level characteristic,
we can then reason more rationally about the risk that some instances of the product may not
function properly. In the absence of the composed tolerance zone, people have often resorted to
heuristics to estimate the assembly-level failure rates that are hard to defend or explain, and even
grossly erroneous. It is the combination of the attraction of a compact geometric representation
of composed statistical tolerance zones and the possibility of subsequent risk analyses using these
tolerance zones that makes our work relevant.

Section 2 describes the type of part-level statistical tolerance zones covered in this chapter.
The actual task of composing the part specifications into assembly specification is addressed in
Section 3. Some thoughts on the risk analysis of the assembled product based on the composition
is the topic of Section 4. An example illustrating the use of the techniques is given in Section 5.
The mathematical details involved in the composition is presented in the Appendix.

2 Statistical Tolerance Zones

Let x be a random variable, andLSL andUSL be the lower and upper specification limits. If�
and� are the mean and standard deviation ofx, then

Cp =
USL� LSL

6�

and

Cpk = min
�
�� LSL

3�
;
USL � �

3�

�
=

USL�LSL
2

� jLSL+USL
2

� �j

3�

are known as the process capability indices. In addition, it is useful to define

Cc =
j� � LSL+USL

2
j

USL�LSL
2

to quantify the mean shift from the target value of(LSL+USL)=2. The variablex can be derived
from a collection of actual parts (or features) by Gaussian or Chebyschev fitting. In this case,x is
called anactual value. A particular type of actual value is theactual mating size, which is found
to be very useful for assembly analysis.

In many industrial practices a population of acceptable parts (or features) is statistically specified
by

Cp � P; Cpk � K; and Cc � F
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for particular valuesP , K, andF , or some subset of these inequalities. This leads to a set of
acceptable(�; �) pairs, that is, a statistical tolerance zone, hereafter referred to as an STZone. It
can be shown that as a subset of the�-� plane it is a polygonal region between the�-axis and the
graph of a function defined piecewise by finitely many non-negative linear functions with bounded
domains (Srinivasan and O’Connor, 1994). Such an STZone will be said to be�-polygonal.
Table 1 summarizes the results of our survey of current part-level statistical tolerancing practices
in five leading companies around the world. The names of the companies have been suppressed
for reasons of confidentiality. All the STZones in the table are�-polygonal.

One may construct a more complete statistical tolerance zone in the parametric space of
the population of parts. The parameters can be, for example, all the (central) moments of the
distribution. An STZone defined above may then be viewed as the intersection of the�-� plane
with such a higher dimensional statistical tolerance zone.

When two or more parts are assembled to form a product, we would like to know the STZone for
a product characteristic. When some product characteristic is a linear combination of statistically
independent primitive part-level characteristics, we can easily and explicitly provide this STZone.
All primitive part-level STZones will be assumed to be�-polygonal in what follows.

3 Composing STZones

Let a linear “gap” function be

G = a0 + a1X1 + a2X2 + :::+ anXn; (1)

whereX1;X2; :::;Xn are independent random variables with�-polygonal STZones. Without loss
of generality, equation (1) can be rewritten in terms ofg = G� a0 andxi = aiXi as

g = x1 + x2 + :::+ xn;

where thexi’s are independent random variables. Hereafter, for simplicity of statement, we assume
that all compositions are of this form, that is, linear with coefficients equal to unity involving only
finitely many independent variables. Sincexi is a simple linear transformation ofXi, we see that
the STZone forxi is also�-polygonal, because

(
�i
�i

)
=

"
ai 0
0 jaij

#(
�Xi

�Xi

)
(2)

where�i and�i are the mean and standard deviation ofxi, and�Xi
and�Xi

those ofXi. Our task
is to find the STZone forg; we call this the problem of composition. To accomplish this, we first
move from the�-� plane to the�-�2 plane, where the composition is reduced to simple Minkowski
sums. To see this, we will first define Minkowski sums.

The Minkowski sum of two setsA andB inRn is defined as

A�B = fa+ b : a 2 A; b 2 Bg:
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Company Practice Shape of STZone

A Cp � 2:0; Cpk � 1:5; Cc � 0:25

�

�

B Cp � 2:0; Cpk � 0:75Cp

�

�

C Cpk � 1:0; Cc � 0:20

�

�

D Cp � 2:0; Cpk � 1:5

�

�

E Cpk � 1:33

�

�

Table 1: Summary of current part-level statistical tolerancing practices in companies surveyed.
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Minkowski sums are also known as vector sums, for obvious reason. If we are summing up several
independent random variables, there is a simple rule from elementary probability theory that states
that the mean of the sum is the sum of the means, and the variance of the sum is also the sum of the
variances. Applying this simple rule we can see that if we work in the mean-variance (that is,�-�2)
plane, the composition problem becomes one of computing the vector sum (that is, the Minkowski
sum) of the STZones for the random variables in that plane. Minkowski sums are commutative
and associative. They also distribute over unions, that is,

A� (B [ C) = (A�B) [ (A� C):

For more details on Minkowski sums, see Matheron (1975) and Kaul (1993).

3.1 Composition in the �-�2 Plane

Since� is always non-negative, each(�; �) pair is uniquely associated with a(�; �2) pair by
squaring� or choosing the positive square root of�2. We can thus represent any STZone in either
the�-� plane or the�-�2 plane and pass trivially from one to the other. We claim that the STZone
for xi in the�-�2 plane is bounded by line segments and parabolic arcs. Indeed, if we start with an
inclined line in the�-� plane, given by

� = m�+ c;m 6= 0;1;

then when transformed to the�-�2 plane, it becomes the parabola

�2 = (m�+ c)2 = m2(� +
c

m
)2: (3)

A line segment in the line with non-negative� values is transformed to a parabolic arc, which can
include the apex (the point closest to the directrix) of the parabola only as an endpoint, so that the
arc is an increasing arc or a decreasing arc, that is, a monotonic arc. On the other hand, a horizontal
line in the�-� plane with a constant� value of�0 > 0 is transformed to a horizontal line in the
�-�2 plane with a constant�2 value of�20, and any line segment of the line in the�-� plane is
tranformed to a line segment of the line in the�-�2 plane. It follows that the upper boundary of the
STZone forxi in the�-�2 plane is composed of bounded non-negative horizontal line segments
and monotonic arcs of graphs of non-negative parabolic functions. The STZone itself is the region
between the�-axis and this collection of arcs. For example, the house-shaped STZone in the�-�
plane practiced by Company C in Table 1 leads to the region in the�-�2 plane of Figure 1.

In analogy to the property of being�-polygonal, an STZone will be called�2-parabolic, if it is
represented in the�-�2 plane by a region between the�-axis and the graph of a function defined
piecewise by finitely many bounded non-negative horizontal line segments and bounded monotonic
subarcs of non-negative parabolic functions. In these terms we have shown that a�-polygonal
STZone will always be�2-parabolic.

Since the random variables are independent, we have(
�g
�2g

)
=

(
�1
�21

)
+

(
�2
�22

)
+ :::+

(
�n
�2n

)
;
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Figure 1: A statistical tolerance zone in the�-�2 plane.

where�g and�g are the mean and standard deviation ofg. Thus the rule of composition in the
�-�2 plane reduces to

Lemma 1 In the�-�2 plane the STZone ofg is equal to the Minkowski sum of the STZones of the
xi’s.

In general, finding the representation of the STZone ofg in the�-�2 plane by applying this last
result requires computing the Minkowski sum of regions bounded by parabolic arcs. Computing
the Minkowski sum of regions bounded by nonlinear arcs can be difficult, at best. The algebraic
complexity of the arcs bounding the sum may grow (Kaul, 1993), so that in a sum involving many
summands, as is common in compositions of STZones, the complexity may become prohibitive.
However, in the case of sums of�2-parabolic zones these problems do not arise. The sums
themselves are easy to obtain, and the algebraic complexity of the sum is unchanged. In particular,
Corollary 1 of the appendix and the discussion following it imply the following two lemmas.

Lemma 2 The composition of�2-parabolic STZones is�2-parabolic.

Lemma 3 Let A be a collection of finitely many�2-parabolic STZones. LetP be the collection
of arcs formed by translating each defining arc in the upper boundary of each member of A by
each endpoint of each defining arc in the upper boundary of every other member of A. The upper
envelope ofP is the upper boundary of the representation of the composition of the STZones of A
in the�-�2 plane.
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The first of the lemmas implies that�2-parabolic STZones are closed under the Minkowski sum of
any finite number of them. The second implies that the arcs of the upper boundary of a Minkowski
sum of�2-parabolic STZones merely come from translates of the arcs bounding the summands.
These results permit the explicit calculation of the representation in the�-�2 plane of the STZone
of a composition of�-polygonal STZones. An example that involves two STZones is shown in
the top row of Figure 2. The upper boundary of the Minkowski sum consists of parabolic arcs that
are mere translates of those that form the upper boundary of the summands. The number of such
arcs on the upper boundary of the sum may increase in some cases, as illustrated in Figure 12, but
their algebraic complexity still remains the same. To obtain the representation in the�-� plane we
continue the analysis in the next section.

3.2 Composition in the �-� Plane

Translation of the parabola of (3) by(X;Y ) in the�-�2 plane yields the parabola

�2 = m2(��X +
c

m
)2 + Y: (4)

In the�-� plane (4) is satisfied by a nondegenerate hyperbola, whenY > 0, and the degenerate
hyperbola, a product of two lines,

0 = (m��mX + c+ �)(m��mX + c� �) ; (5)

whenY = 0.
First consider the case whenY > 0. If we transform the parabola of (4) in the�-�2 plane to

the�-� plane, it then becomes the upper curve of the nondegenerate hyperbola defined by (4). In
this case, a monotonic arc of the parabola is transformed to a monotonic arc of the upper curve of
the nondegenerate hyperbola.

On the other hand, whenY = 0, the parabola of (4) is mapped to the two half-lines with non-
negative�-values defined by (5). If we call these two half-lines the upper curve of the degenerate
hyperbola, then a monotonic arc of the parabola becomes a line segment in the upper curve of the
degenerate hyperbola.

Conversely, any monotonic arc of the upper curve of a hyperbola defined by an equation of the
form of (4) withY � 0 in the�-� plane transforms to a monotonic arc of a non-negative parabola
of the�-�2 plane. See Figure 3 for an illustration. Proceeding as before, let a subset of the�-�
plane be called�-hyperbolic, if it is a region between the�-axis and the graph of a function defined
piecewise by finitely many bounded horizontal non-negative line segments or bounded monotonic
subarcs of the upper curves of a hyperbolas determined by equations of the form of (4) withY � 0.
In these terms we have shown

Lemma 4 An STZone is�2-parabolic, if and only if it is�-hyperbolic.

Since a�-polygonal STZone is always�2-parabolic, Lemmas 2 and 4 yield part of the charac-
terization of the STZone forg we have been pursuing.
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Figure 2: An illustration of composing two STZones. The bottom row shows the STZonesZ1

andZ2 of x1 andx2, respectively, and also their composition in the form of the STZoneZC of
g = x1 + x2, all in the�-� plane. In the process of composition, we transform the STZones ofx1
andx2 from the�-� plane to the�-�2 plane, and obtain their Minkowski sum as shown in the top
row. This sum is then transformed back to the�-� plane to get the desired composition.
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Figure 3: Transformation between�-� and�-�2 planes. WhenY > 0 in equation (4), a parabola in
the�-�2 plane goes to the upper curve of a hyperbola in the�-� plane (as� is always non-negative),
and conversely. WhenY = 0, the hyperbola degenerates into two half-lines.
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Proposition 1 The STZone of a composition of�-polygonal STZones is�-hyperbolic.

In fact, Lemmas 2 and 4 say more.

Proposition 2 The STZone of a composition of�-hyperbolic STZones is�-hyperbolic.

This means, loosely put, that�-hyperbolic STZones are closed under the operation of composition
of STZones. This is of more than merely theoretical interest. Since STZones often represent parts
in an assembly, which in turn are often subassemblies in a larger assembly, the last result assures that
no new analysis is required to treat this more general application. To complete the characterization
we need only to make more explicit the piecewise-hyperbolic function which defines the STZone
of g. This is accomplished by the following

Proposition 3 Let A be a collection of finitely many�-hyperbolic STZones. If

� 2 D !
q
(m�� c)2 + d (6)

is a parameterization of one of the defining arcs of the upper boundary of one of the members of A,
and (a,b) is an endpoint of a defining arc of the upper boundary of any other member of A, define
the parameterization of a new arc by

� 2 D + a!
q
(m�� c�ma)2 + d+ b: (7)

LetH be the collection of all possible such newly defined arcs. The upper envelope ofH is the
upper boundary of the representation of the composition of the STZones of A in the�-� plane.

Proof. Passing from the�-� plane to the�-�2 plane, applying Lemma 3, calculating the effect
of the translations, and passing back from the�-�2 plane to the�-� plane suffice to establish the
claim.

If one of the STZones is�-polygonal with linear parameterizations, “squaring” each of the
parameterizations yields ones compatible with the statement of the proposition. Ifm = 0, the
hyperbolic arcs of (6) and (7) reduce to line segments. Ifd = 0, the hyperbolic arc of (6) reduces
to a line segment, and ifb = d = 0, the hyperbolic arc of (7) reduces to a line segment. All other
arcs come from nondegenerate hyperbolas.

A calculation of the upper envelope called for in the last proposition requires the intersection
of hyperbolic arcs. The intersection of two hyperbolas usually requires the solution of a quartic
polynomial; however, the special form of (4) reduces this complexity to that of a simple quadratic.
The bottom row in Figure 2 shows an example of the composed STZoneZC for g = x1+x2 in the
�-� plane.

3.3 Special Case Simplifications

In this section to this point we have considered only the most general composition problem and
only from a theoretical viewpoint. Even in the general case many simplifications are possible
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for algorithmic purposes. For example, judicious use of the observation following Lemma 5 of
the appendix that sums of increasing and decreasing functions need only use part of the vertical
boundaries can decrease the resultant number of potential upper boundary pieces by a factor of four.
Treating monotonic chains by a simple generalization of the lemma can add further reductions.
Similar reductions are possible for pairs of increasing boundary elements.

In less general settings, prescribed design practices often allow obvious simplifications. For
example, symmetric part-level STZones produce a symmetric assembly-level STZone, so that only
half of the upper boundary of the STZone need be computed. More restrictive, though common,
practices can lead to very explicit compositions. For example, let us assume that all parts are
specified byCpk � K andCc � F , as practiced by Company C of Table 1, with some globally
fixed K andF . For ease of statement let us further assume that the nominal values of all part
dimensions equal zero, so that the specification for any actual value,xi, becomes

Ti � j�ij

3�i
= Cpk � K and

j�ij

Ti
= Cc � F ;

whereTi is theUSL of xi. Finally, let us assume thatfxigni=1 is ordered such thatTi � Tj for all
i � j. If g =

Pn
i=1 xi, let us say thatg is a restricted type C composition defined byK, F , and

fxi; Tig
n
i=1. In these terms we now have

Proposition 4 Letg be a restricted type C composition defined byK, F , andfxi; Tigni=1. Let

f(0) =
1

3K
(
nX
i=1

T 2
i )

1=2

and

f(�) =
1

3K

0
@(1� F )2

k�1X
i=1

T 2
i + T 2

k (1 � �F )2 +
nX

i=k+1

T 2
i

1
A
1=2

for j�j = F
�Pk�1

i=1 Ti + �Tk
�

with 0 < � � 1. The graph off is the upper boundary of the
representation of the STZone of g in the�-� plane.

For the� coordinate of any point inZC , the STZone ofg in the�-� plane, there is a unique
representation ofj�j as required in this proposition, so that the result completely and explicitly
yieldsZC . We provide only a sketch of the proof of the proposition here.
Let

D� =

(
(�1; : : : ; �i; : : : ; �n) : 0 � �i � FTi for all 1 � i � n and

nX
i=1

�i = j�j

)
:

The point,(�; ~�), is in the upper boundary ofZC , if and only if9K2~�2 is the maximum of
h(�1; : : : ; �n) =

Pn
i=1(Ti � �i)2 overD�. This maximum occurs at an extreme point ofD�, that

is, a point inD� with �i = 0 or �i = FTi for all i except possibly one with�i = �FTi. Since

h(�1; : : : ; �i + �; : : : ; �j � �; : : : ; �n)� h(�1; : : : ; �i; : : : ; �j ; : : : ; �n) = 2�h1

for h1 = �i��j + �+Tj �Ti, a simple case analysis, comparing extreme points differing only on
coordinate pairs, and considering the form ofh1 shows thath never decreases as we pass in proper
direction from extreme point to extreme point to the claim of the proposition.
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4 Risk Analysis

As we pointed out in the Introduction, a major motivation for computing the composed STZone is
to perform assembly-level risk analysis more rationally. In this section we outline several ways to
exploit the composed STZone to perform such analyses. The main scope of this chapter is not the
risk analyses, but we include them here to show the usefulness of composed STZones.

Risk analysis entails evaluating or approximating the probability that the value of some random
variable from some collection of random variables will fall outside an acceptable region. One-
sided risk analysis considers probabilities of the formPr(g � k) (or the completely analogous
Pr(g � k)), and two-sided risk analysis the sum of probabilitiesPr(g � k) + Pr(g � k0), for
random variablesg and fixed real valuesk andk0. Of course, to provide such an analysis sufficient
information about the distributions of the random variables must be available.

An STZone uses only the mean and standard deviation to define a class of random variables.
This offers too little distributional information to say much about risk, in general. However, by
imposing mild assumptions on the class of random variables, we can change the situation. For
this purpose, if we assume that each random variable in the class of random variables defined
by an STZoneZ is completely determined by its mean and standard deviation, so that we can
parameterize the random variables of the class by(�; �) 2 Z ! g(�; �), and that any variable
of the class can be transformed to any other by shifting� and scaling�, so that for all(�; �) and
(�0; �0) in Z

Pr(g(�; �) � k) = Pr
�
�

�0
(g(�0; �0)� �0) + � � k

�
; (8)

then much more can be said.
Let us first consider the one-sided riskPr(g(�; �) � k) associated with(�; �) 2 Z. We begin

by observing that (8) implies immediately that

Pr(g(�; �) � k) = Pr

 
g(�0; �0) �

�0

�
(k � �) + �0

!
: (9)

It follows directly from this that for�0 6= k

Pr(g(�; �) � k) = Pr(g(�0; �0) � k); whenever � =
�0(k � �)

k � �0
;

so that each of the points in the intersection of a ray of the type
( 

�;
�0(k � �)

k � �0

!
: � > k if �0 > k

)
or

( 
�;
�0(k � �)

k � �0

!
: � < k if �0 < k

)

with Z is associated with the same risk. Each of these rays is a nonvertical ray in the� > 0
half-plane emanating from the point(k; 0). The vertical ray emanating from(k; 0) is the set of
pointsf(k; �) : � > 0g. Since shifting the mean and scaling the standard deviation does not change
the probability of the value of a random variable being less than the mean, (8) implies that there is a
constant� such thePr(g(�; �) � �) = � for all � and�, and in particularPr(g(k; �) � k) = �.
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Thus each of the rays in the half-plane emanating from(k; 0) is associated with a fixed risk. If�
increases without bound with� andk fixed, then (9) implies that the risk associated with(�; �)
decreases to a limiting value of zero. If� decreases without bound with� andk fixed, then (9)
implies that the risk associated with(�; �) increases to a limiting value of one. Hence, as we rotate
the rays through(k; 0) counterclockwise from the horizontal through the vertical to the horizontal
again, sweeping out all the points in the half-plane in the process, the risk associated with the rays
increases from zero at the horizontal through� at the vertical to one at the horizontal. We can also
express this in terms of the slopes of the rays, which will be most convenient. As the slope of the
ray increases from zero to the vertical and then through all negative slopes to zero again, the risk
increases from zero to� to one. See Figure 4 for an illustration.

risk

µ

σ

(k,0)

Figure 4: Illustration of isorisk contours in the STZoneZ. The risk is the probabilityPr(g � k).
The maximum risk is associated with a supporting line ofZ passing through(k; 0).

Determining the maximum one-sided risk,Pr(g(�; �) � k) over(�; �) 2 Z is now a simple
matter. If k > � for some(�; �) 2 Z, then rays emanating from(k; 0) with negative slopes
arbitrarily close to zero must intersectZ, so the risk is one. Ifk equals the minimum of all�
such that there exists some(�; �) 2 Z, then the risk is�. If k < � for all (�; �) 2 Z, we need
only determine the line through(k; 0) with maximum slope that intersectsZ, that is, the line of
support forZ through(k; 0), other than the�-axis. This can be computed easily for�-hyperbolic
STZones. By definition the hyperbolic arcs in the boundary ofZ come from the upper curves of
hyperbolas define by equations of the form of (4). No interior point of such an arc can be on a line
of support forZ, unless the arc is linear. If the arc is linear, and an interior point of it is on the line
of support forZ, then so are the end points. Thus, only the finitely many end points of the arcs are
needed to define the line of support through(k; 0). If Z comes from a composition of STZones,
that isZ = ZC , an explicit evaluation ofZC is not even required, as Proposition 3 enables us to
obtain these end points directly. In any event, if(�0; �0) is a point defining this line of support, then
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Pr(g(�0; �0) � k) is the maximum one-sided risk.
We wish to stress again that the assumptions made in this development are mild. They are met

by many common families of random variables. For example, assuming the random variables to
be normal more than suffices. In particular, for sum aggregates, likeg = x1+ :::+ xn, which form
ZC , normality is a reasonable and common assumption. In the case of normality, and many others,
then, a final evaluation of the maximum one-sided risk can be easily found by appeal to widely
available tables.

Finding the analogous maximum two-sided risk,Pr(g(�; �) � k) + Pr(g(�; �) � k0), over
(�; �) 2 Z, is more difficult. A simple extension of the analysis of the one-sided case shows that
the two-sided risk is maximum for some(�; �) in the upper boundary ofZ; however, the risk
associated with(�; �) 2 Z need no longer be monotonic in a simple parameter like the slope of
a line, and the simple extension does not allow any claim that the risk must be maximized by an
end point of an arc. Thus rather than the simple calculation of the maximum slope over finite set
in the one-sided case, we are left with a one-dimensional nonlinear optimization problem in the
two-sided case. Approximation techniques exist and may suffice in many cases, but more work on
this remains.

In some situations, maximum risk analysis may be overly pessimistic. This may be particularly
so, if Z is an assembly-level STZone. If individual and joint distributions can reasonably be
assumed on the part-level means, then a distribution of the assembly-level means is implied.
Often this assembly-level distribution can be calculated or approximated. For example, if the
part-level means are independent and normal, then the assembly-level means are normal. Or if
part-level means have independent, uniformdistributions (or more generally, piecewise-polynomial
densities), then the assembly-level distribution has a piecewise-polynomial density which can be
explicitly calculated. It may even be justified to directly assume that the assembly-level means have
some distribution, for example, a normal distribution by an application of the central limit theorem.
In any case, if we assume that the distribution of the means inZ is known, this distribution can
be used to provide a less pessimistic risk analysis. For this purpose letPr(� 2 I) = p for some
intervalI, and letZI = f(�; �) 2 Z : � 2 Ig. If we apply the previous techniques toZI to obtain
a maximum risk,r, overZI , then we can claim that with probabilityp the risk is no worse thanr.
This reduced maximum risk analysis would be useful, when very unlikely� values far from the
mean of the means determine a highly pessimistic risk assessment.

It is worthwhile to point out the distinction between the two types of probabilitiesp andr. The
risk r concerns the fall out rate for fixed levels of(�; �). On the other hand,p concerns the chance
that� falls within certain limits. For one particular process this chance is taken just once. A long
run frequency interpretation is only possible over many such processes.

Even the reduced maximum risk analysis in certain cases may be less useful than information
about an average riskR, that is,

R =
Z
Z
R(�; �)dF (�; �);

whereR(�; �) is the risk associated with(�; �), anddF is the joint probability measure for� and
� overZ. It is quite possibly too much to assume full knowledge of the joint probability, but since
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Figure 5: A disk-drive assembly indicating critical parts

either the one-sided or the two-sided risk is increased by increasing�, we can boundR by

R �
Z
�

R(�(�))dH(�);

where� is the intersection ofZ with the�-axis,� is a parameterization of the upper boundary of
Z, anddH is the probability measure associated with�. The simple explicit form of� that can be
obtained from Proposition 3 implies that at least for the one-sided risk analysis the integral can be
easily approximated by standard techniques.

5 An Example

To illustrate the techniques described thus far, let us consider as a concrete example the statistical
specifications of a magnetic storage product. Figure 5 shows a vertical section view of a disk-drive
assembly. Four critical parts in this assembly are identified for our consideration: a magnetic disk
which stores the data, an arm that swings in an angular movement to enable a magnetic head to
read and write data onto the disk, and two bearings that support the disk and the arm. This figure
is a grossly simplified version of an actual disk-drive cross-sectional view, but is sufficient for our
purpose of illustration.

A critical assembly characteristic in such a disk-drive is the arm-to-disk clearance, shown in
Figure 6 as the gapg. For proper functioning of the disk-drive, this clearanceg should be neither
too large nor too small. It is, of course, controlled by the critical dimensions of the four parts we
identified earlier. More precisely, we have an instance of the linear “gap” function (1) in the form

g = l1 + l2 � l3 � l4: (10)

Each of the critical dimensions belongs to a different part in the disk-drive assembly, and can be
justifiably assumed to be mutually independent random variables.

Part-level statistical specifications of these critical dimensions are summarized in Table 2. We
have chosen a practice similar to that of Company C described in Table 1. For ease of explanation,
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Figure 6: Critical part dimensions and an assembly characteristic in a disk-drive assembly. The
critical assembly characteristic is the arm-to-disk spacingg which is related to the critical part
dimensionsl1; l2; l3; andl4 by the linear “gap” functiong = l1 + l2 � l3 � l4.

Part C.D. N.D. T.I. USL LSL K F

Arm l1 1.75 0.10 1.80 1.70 1.5 0.25
Arm Bearing l2 2.00 0.14 2.07 1.93 1.5 0.25
Disk Bearing l3 2.00 0.14 2.07 1.93 1.5 0.25
Disk l4 1.00 0.06 1.03 0.97 1.5 0.25

Table 2: Statistical specifications on critical dimensions of the disk-drive example. C.D. = Critical
Dimension, N.D. = Nominal Dimension, T.I. = Tolerance Interval.

the lower boundK for Cpk and the upper boundF for Cc have been chosen to be the same,
1:5 and0:25 respectively, for all the four critical dimensions. STZones that correspond to these
statistical specifications are plotted in Figure 7. The STZone forl1 in Figure 7.1 is the region
under the piecewise linear function of� 2 [1:7375; 1:7625]. These limits for� are obtained from
the constraint thatCc =

j��1:75j
0:05

� 0:25. The other constraint thatCpk = 0:05�j1:75��j
3�

� 1:5 leads
explicitly to

�(�) =

8><
>:

��1:70
4:5

for � 2 [1:7375; 1:7500]

1:80��
4:5

for � 2 (1:7500; 1:7625]

as the piecewise linear function. Similarly Figures 7.2 and 7.3 involve the piecewise linear function

�(�) =

8><
>:

��1:93
4:5

for � 2 [1:9825; 2:0000]

2:07��
4:5

for � 2 (2:0000; 2:0175]

and Figure 7.4 has

�(�) =

8><
>:

��0:97
4:5

for � 2 [0:9925; 1:0000]

1:03��
4:5

for � 2 (1:0000; 1:0075]
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Figure 7: Plots of the STZones for the four critical dimensions.
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as its piecewise linear function. Notice the change in scales in these plots, from the mean to the
standard deviation axes as well as from dimension to dimension, adopted for clarity.

The next task is to compute the composed STZone forg. Since we have set the same bounds
K = 1:5 andF = 0:25 for all the four variables, after rearranging the critical dimensions in
the increasing order of tolerance intervals, the conditions of Proposition 4 are met. Therefore,
the piecewise hyperbolic function, which is the upper boundary of the STZone ofg, is given by
Proposition 4 explicitly as

�(�) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1

4:5

q
0:00466875 + 0:0049(1 � 0:250:7125��

0:0175
)2 for 0:6950 � � < 0:7125

1

4:5

q
0:00681250 + 0:0049(1 � 0:250:7300��

0:0175
)2 for 0:7125 � � < 0:7300

1

4:5

q
0:01030625 + 0:0025(1 � 0:250:7425��

0:0125
)2 for 0:7300 � � < 0:7425

1

4:5

q
0:01230000 + 0:0009(1 � 0:250:7500��

0:0075
)2 for 0:7425 � � < 0:7500

and

�(�) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1

4:5

q
0:01230000 + 0:0009(1 � 0:25��0:7500

0:0075
)2 for 0:7500 � � � 0:7575

1

4:5

q
0:01030625 + 0:0025(1 � 0:25��0:7575

0:0125
)2 for 0:7575 < � � 0:7700

1

4:5

q
0:00681250 + 0:0049(1 � 0:25��0:7700

0:0175
)2 for 0:7700 < � � 0:7875

1

4:5

q
0:00466875 + 0:0049(1 � 0:25��0:7875

0:0175
)2 for 0:7875 < � � 0:8050

:

Figure 8 shows a plot of the composed STZone forg. At the resolution in which it is plotted, the
curvatures of the hyperbolic arcs in the upper envelope of the STZone are barely visible.

Once we have the composed STZone risk analyses can be performed in many ways, as pointed
out in a previous section. First we need to make an assumption about the distribution of the arm-to-
disk clearanceg, and we will assume that it is normal. We may appeal to the central limit theorem
to justify that normality is a good approximation. If we are concerned about this clearance reaching
below a critical value of, say,0:65 units, we can estimate the one-sided risk as the probability
Pr(g(�; �) � 0:65). This risk will vary as the(�; �) point varies within the STZone forg.
However, following discussions of the previous section we know that the maximum risk is attained
at the tangent point(�; �) on the supporting line of the STZone ofg passing through(0:65; 0). This
tangency occurs at one of the end points of the hyperbolic arcs of the upper boundary of the STZone.
Thus, since�(�) is increasing for� � 0:75 and decreasing thereafter, only the five endpoints
f(0:6950; 0:01915) , (0:7125; 0:02174), (0:7300; 0:02405), (0:7425; 0:02515), (0:7500; 0:02553)g
are possible points of tangency. Visual inspection (see Figure 9.1 and Figure 4 for comparison)
indicates that and simple calculations prove that tangency occurs at (0.6950,0.01915), so that
maximum risk occurs there. Using easily available approximations for the error function we
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Figure 8: Composed STZone for the arm-to-disk clearanceg.
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Figure 9: Maximum risk analysis based on supporting lines.
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find that this maximum risk is approximately9:4 parts per thousand. If we want to estimate the
maximum risk for a different critical valuek of the lower limit for the arm-to-disk clearanceg,
we first find the supporting line that passes through(k; 0). A simple calculation shows that for
0:566 < k < 0:695 the supporting lines pass through the same tangent point(0:695; 0:01915). Then
the associated risk is given byPr(z � k�0:695

0:01915
) of a unit normal variatez. Figure 9.2 illustrates

this for several values ofk. Figure 10 shows a plot of the risk for a small range ofk. The designer

0

5

10

15

20

25

30

35

0.63 0.635 0.64 0.645 0.65 0.655 0.66

ris
k 

in
 p

ar
ts

 p
er

 th
ou

sa
nd

lower limit for clearance

Figure 10: Variation of the maximum risk as a function of the lower limit for the arm-to-disk
clearanceg.

can then decide if such risks are acceptable, and if not, start the re-design process. If other types of
risk analyses are needed, then the STZone forg provides a basis for them.

6 Summary and Conclusions

National and international standards committees are currently investigating how to codify the
statistical specifications of part tolerances. Because of the widespread use of process capability
indices (Cp, Cpk, andCc) in industry, a case can be made for using them in standardizing the
statistical tolerancing of parts. However, it will not be a strong case in the absence of techniques
that the designers can use to infer assembly-level variation from such part specifications. In this
chapter we provided the needed mathematical and computational techniques.

In developing these techniques we depended only on two major assumptions: that the assembly
characteristic is a linear function of the part characteristics and that the part variations are mutually
independent. With these we showed that the STZones in the�-� plane can be composed by first
transforming them to the�-�2 plane, where the composition is reduced to Minkowski sums, and
then transforming the sum back to the�-� plane. We proved that the algebraic complexity of the
Minkowski sum remains low and unchanged irrespective of the number of parts that participate in
the assembly. More precisely, the STZone for the assembly-level characteristic is bounded only by
line-segments and hyperbolic arcs. This enabled us to present an exact and explicit representation
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for the composed STZone. In a somewhat restricted, but useful, special case an explicit expression
for the piecewise hyperbolic curve that forms the upper boundary of the composed STZone was
given. Under some mild assumptions, the one-sided isorisk contours become line-segments in the
composed STZones so that designers can reason about the chances they take with such statistical
designs. We also outlined several avenues for exploring the risk analysis further. Thus a critical
assembly analysis gap has been, at least partially, filled.

As we pointed out in the body of the chapter, the risk analysis may be refined further. Other
advances may be attempted, if deemed important, in at least three directions: the geometric form of
primitive part-level STZones may be enriched, and the assumptions of linearity and independence
in the parts-to-product characteristics relation may be relaxed. The first is perhaps the easiest. If
the geometric shape of the primitive part-level STZones differs from those in Table 1, but is still
�-polygonal (or, more generally,�-hyperbolic), then all of our results apply and are sufficient to
achieve the composition. STZones in the form of semi-circular disks, proposed in some literature,
can be composed. For more difficult cases, linear approximations may be used to reduce them to
�-polygonal cases, which we know how to handle.
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Appendix

In this appendix we present and prove a collection of mathematical properties of certain Minkowski
sums that support the main chapter. Results presented here are more general than needed in the
body of the chapter. However, we found that the proofs are no more difficult in the general case
and hope that they may lead to new applications in the future. We begin with some terminology.

Recall (Theorem 4.1, Part IV of Valentine (1964) ) that a closed setS � R2 with nonempty
interior is convex, if and only if for eachx in @S, the boundary ofS, there is a line of support ofS
atx, that is, a line throughx which defines an open half-plane that is disjoint fromS.

For a piecewise-continuous functionf : Dom(f) ! R
2 with Dom(f) � R let

U(f) = f(x; y) 2 R2 : x 2 Dom(f) and y � f(x)g :

Note that the graph off is a subset of the boundary ofU(f) and that the piecewise continuity off
assures thatU(f) will have interior points. Iff is also non-negative, defineL(f), the region below
f , as

L(f) = f(x; y) 2 R2 : x 2 Dom(f) and 0 � y � f(x)g :

Call a continuous functionf convex, ifU(f) is convex, (where bar indicates closure.) Recall
that a function is monotonic if either it is an increasing function on its entire domain or it is a
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decreasing function on its entire domain. Let a simple function be a non-negative continuous
monotonic function defined on a closed bounded interval with at most one root. For a simple
functionf with domain,[a; b], defineV (f), the vertical part of the boundary ofL(f) as

V (f) = f(a; y) 2 R2 : 0 � y � f(a)g [ f(b; y) 2 R2 : 0 � y � f(b)g :

V (f) is composed of two closed vertical line segments or a point on thex-axis and a closed vertical
line segment. The continuity off implies that the interior ofL(f) is a nonempty open set bounded
by V (f), the graph off , and those points inL(f) with y-coordinate equal to0. In these terms we
have the following principal lemmas.

Lemma 5 If f is a simple increasing function andg is a simple decreasing function, then

L(f) � L(g) = fL(f) � V (g)g [ fV (f)� L(g)g :

Proof. Let [a; b] be the domain off and [c; d] that of g. If p 2 L(f) � L(g); then there exist
(x; y) 2 L(f) and(u; v) 2 L(g) with p = (x; y) + (u; v): Trivially, p = (x+ t; y) + (u� t; v) for
all t 2 R; and in particular, fort � 0: If t � 0, then sincef is increasing,f(x+ t) � f(x) � y,
wheneverx + t 2 [a; b], so that(x + t; y) 2 L(f). Similarly, (u � t; v) 2 L(g), whenever
u� t 2 [c; d]. Thus, if we lett0 be the minimum ofb� x andu� c, then either(x+ t0; y) 2 V (f)
and(u� t0; v) 2 L(g) or (x+ t0; y) 2 L(f) and(u� t0; v) 2 V (g). In either case, we have shown
thatp 2 fL(f)�V (g)g[fV (f)�L(g)g; so thatL(f)�L(g) � fL(f)�V (g)g[fV (f)�L(g)g:
The opposite inclusion is trivial.

First, note that sinceV (f) consists of points and vertical line segments, the computation of
each Minkowski sum in the union is trivially obtained by a translation of the defining functions.
Next note that the proof in fact shows that not all ofV (f) andV (g) are required. The right part of
V (f) and the left part ofV (g) would suffice. This is illustrated in Figure 11.

Lemma 6 If f andg are simple convex functions, then

L(f) � L(g) = fL(f) � V (g)g [ fV (f)� L(g)g :

Proof. If for S � R
2; we let S� = f(x; y) : (�x; y) 2 Sg; then for subsetsD;E � R

2;
D�E = (D� �E�)�: Thus we may assume thatf is increasing, or otherwise we may reflect the
problem around they�axis. If g is decreasing, then the claim follows from the preceding lemma,
so we may also assume thatg is increasing.

Let [a; b]be the domain off and[c; d] that ofg. If p 2 L(f)�L(g); then there exist(x; y) 2 L(f)
and(u; v) 2 L(g)with p = (x; y)+(u; v):Trivially, p = (x; y+t)+(u; v�t) for all t 2 R: If �1 is the
minimum off(x)�y andv, then eithery+�1 = f(x) and0 � v��1 � g(u), or0 � y+�1 � f(x)
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Figure 11: Minkowski sum of a region below a simple increasing function and one below a simple
decreasing function. Ifl(p; q) denotes the line-segment between pointsp andq, then Lemma 5
states thatP � Q can be obtained as the union ofP � l(q1; q

0
1), P � l(q2; q

0
2), Q� l(p1; p

0
1), and

Q � l(p2; p02). However, unioning only the first and the last of the summands will suffice in this
case.

andv � �1 = 0, so that eitherp is the sum of(x; f(x)) and(u; v + y � f(x)) 2 L(g), or p is the
sum of(x; y + v) 2 L(f) and(u; 0). We now discuss these two cases separately.

First consider the case wherep is the sum of(x; y + v) 2 L(f) and(u; 0). If we let �2 be the
minimum of b � x andu � c, then eitherx + �2 = b andc � u � �2 � d, or a � x + �2 � b
andu � �2 = c. Whetherx + �2 = b or u � �2 = c, y + v � f(x) � f(x + �2), sincef is
increasing. Thus eitherp is the sum of(b; y + v) in V (f) and(u + x � b; 0) in L(g), or p is the
sum of(x+ u� c; y + v) in L(f) and(c; 0) in V (g), establishing the claim in this case.

Now consider the case wherep is the sum of(x; f(x)) and (u; v + y � f(x)) 2 L(g). For
simplicity of notation letw = v + y � f(x). We may assume that neitherf(x) = 0 norw = 0,
since these conditions would be covered by the previous case by relabelingf andg, if necessary.
We may also assume thatx 6= a; b and thatu 6= c; d, or nothing remains to be demonstrated. The
convexity off implies the existence of a line of supportM for U(f) at(x; f(x)). SinceM is a line
of support, it could be vertical only ata or b, so thatM is not vertical. We can thus parameterize
M asf(x; 
(x)) : x 2 Rg for some linear function
 with 
(x) � f(x) for all x in the domain
of f . It follows that the intersection ofM andL(f) is a closed bounded line segment containing
(x; f(x)) in its interior with end points inV (f) or having ay-coordinate of0.

LetN be the line through(u;w) parallel toM . We wish to show the existence of a half-lineN+

of N emanating from(u;w), such thatN+ intersected withL(g) is a closed interval with(u;w) as
one end point and a point inV (g) or one with ay-coordinate of0, as the other. Ifw = g(u) andN
is a line of support forU(g) at(u;w), then an analysis identical to that just completed for(x; f(x))
andM verifies the existence ofN+: If w = g(u), butN is not a line of support forU(g) at (u;w),
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then at least one of the half-lines ofN emanating from(u;w) is strictly below any line of support
for U(g) at (u;w), and hence below the graph ofg. This half-line serves asN+: Finally, if (u;w)
is not in the graph ofg, then it is in the interior ofL(g). The convexity ofU(g) implies that at least
one of the half-lines ofN emanating from(u;w) is disjoint fromU(g), and this half-line fulfills
the requirements onN+:

ParameterizeN+ asN+ : t � 0 ! N+(t) = (u;w) + tv for some nonzero vectorv, and a
half-line ofM asM� : t � 0 !M�(t) = (x; f(x))� tv. Note thatp = N+(t) +M�(t). Let �3
be the minimumt such thatN+(�3) is in V (g) or has ay-coordinate of0 orM�(�3) is in V (f) or
has ay-coordinate of0. If N+(�3) is in V (g), thenM�(�3) is in L(f), or if M�(�3) is in V (f),
thenN+(�3) is in L(g), as claimed in the lemma. IfN+(�3) has ay-coordinate of0, thenM�(�3)
is in L(f), or if M�(�3) has ay-coordinate of0, thenN+(�3) is in L(g), which are situations we
have already considered.

The opposite inclusion is trivial.
The parabolic arcs used to define�2-parabolic STZones are simple convex functions. If a

�2-parabolic STZone can be represented in the�-�2 plane by a single defining parabolic arc, call
it simple. Lemmas 5 and 6 are then applicable to the Minkowski sum of simple�2-parabolic
STZones. Figure 12 partially illustrates this. Most often,�2-parabolic STZones are not simple. To
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Figure 12: Minkowski sum of two simple�2-parabolic STZonesP andQ. If l(p; q) denotes the
line-segment between pointsp andq, then Lemma 6 states thatP �Q can be obtained as the union
of P � l(q1; q01), P � l(q2; q02), Q � l(p1; p01), andQ � l(p2; p02). In some cases, one of the two
verticesp1 + q2 andp2 + q1 may lie in the interior of the sum, as shown in Figure 2.

treat Minkowski sums of�2-parabolic STZones in general, however, we need only a little more.
If for a setD inR2 there is a set of non-negative piecewise continuous functions,F ; such that

D = [f2FL(f), say thatD is generated byF : If each of the functions inF is simple, defineV (F)
to be[f2FV (f):
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Corollary 1 If F is generated by a finite set of simple convex functions,F , andG is generated by
a finite set of simple convex functions,G, then

F �G = fF � V (G)g [ fV (F)�Gg :

Proof. SincefA[Bg�C = fA�Cg[fB�Cg for any subsetsA;B, andC, the claim follows
directly from Lemma 6.

SinceV (F) is a union of points and vertical line segments, andG is a union of regions below
simple convex functions,V (F) � G reduces to the union of the Minkowski sums of points or
vertical line segments with regions below simple convex functions. Each of these Minkowski
sums is easily obtained by translating a simple convex function to a new simple convex function
and defining a new region below this new function. The union of this myriad of new regions that
yieldsF �G is itself easy to obtain, at least conceptually, since it reduces to the region below the
upper envelope of the graphs of the functions defining the regions in the union.

We close by considering the implications of this corollary on the Minkowski sum of�2-
parabolic STZones. If we denote the set of the defining arcs of a�2-parabolic STZone byF ,
then the STZone is generated byF , a finite set of simple convex functions. Corollary 1 thus
applies to the Minkowski sums of�2-parabolic STZones in the�-�2 plane. The translations of
the defining monotonic parabolic arcs drawn from non-negative parabolas yield arcs of the same
type. The upper envelope is then defined piecewise again by arcs of the same type, determined by
intersections of the arcs, yielding another�2-parabolic region.
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