Characterization of the Weibull distribution

F.-W. Scholz

Boeing Computer Services, Seattle, WA 98124-0346, USA

Received April 1989 Revised November 1989

Abstract: Let *F* be a cumulative distribution function with quantiles $x_F(u) = x(u) = F^{-1}(u)$ $\inf\{x: F(x) \ge u\}$ for $0 < u < 1$ and let $C = \{(u, v, w): 0 < u < v < w < 1, \log(1-u)\log(1-w) = 1\}$ $(\log(1-v))^2$. For the three parameter Weibull distribution function, defined for $\alpha > 0$, $\beta > 0$ and $\tau \in R$ by $G(x) = 1 - \exp(-(x-\tau)/\alpha)^{\beta}$ for $x \ge \tau$ and $G(x) = 0$ for $x < \tau$, it is known that for some fixed *t*, namely $t = \tau$, the following relation holds between its quantiles, $x_G(u) = x(u)$: $x(u)x(w)-x^2(v)=t(x(u)+x(w)-2x(v))$ for all $(u, v, w) \in C$. We prove that this quantile relationship characterizes the three parameter Weibull distribution in the sense that a random variable *X* with c.d.f. *F*, satisfying this quantile relationship is either degenerate or $X \sim G$ with $\tau = t$.

Keywords: Weibull, Characterization, Quantile, Functional equation, Test of fit.

Introduction

Several characterizations of the Weibull distribution have been given, c.f. [3]-[6], [8]-[12]. However, all these concern the characterization of the two parameter Weibull distribution, i.e., assuming a lower threshold of zero. Here a characterization of the three parameter Weibull distribution is given in terms of relationships between particular triads of quantiles as delineated by the set C below. These relationships stipulate that a certain function of the quantile triad is always proportional to a second function of the same triad, the proportionality factor remaining constant over all such triads. These quantile relationships for the three parameter Weibull distribution are well known, c.f. [7] p. 261, and were investigated in [1] as basis for estimating the Weibull parameters. Of course, this characterization of the three parameter Weibull distribution is easily specialized to the case of a two parameter Weibull distribution. We conclude the paper with some thoughts on how to utilize this characterization in a test of fit test for the three parameter Weibull distribution.

0167-9473/90/\$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

Characterization Theorem

In order to state the characterization theorem the following notation is introduced. Let

$$
C = \left\{ (u, v, w) \colon 0 < u < v < w < 1, \log(1 - u) \log(1 - w) = (\log(1 - v))^2 \right\}
$$

and let *F* be a cumulative distribution function with quantiles $x_F(u) = x(u)$ $F^{-1}(u) = \inf\{x : F(x) \ge u\}$ for $0 < u < 1$. For the three parameter Weibull distribution function, defined for $\alpha > 0$, $\beta > 0$ and $\tau \in R$ by

$$
G(x) = 1 - \exp\left(-\left(\frac{x-\tau}{\alpha}\right)^{\beta}\right) \text{ for } x \ge \tau
$$

and $G(x) = 0$ for $x < \tau$, it is known that for some fixed *t*, namely $t = \tau$, the following relation holds between its quantiles, $x(u) = x_G(u)$:

$$
x(u)x(w) - x2(v) = t(x(u) + x(w) - 2x(v))
$$
 for all $(u, v, w) \in C$. (1)

The following theorem states that this relationship actually characterizes the three parameter Weibull distribution.

Characterization Theorem. *Any random variable X with cumulative distribution function* $F(x)$ *and quantiles* $x_F(u) = x(u)$ *satisfying the relationships* (1) *is either degenerate or X has a three parameter Weibull distribution* with $\tau = t$.

Of course the degenerate case could be subsumed in the Weibull model with $\alpha \geq 0$.

Proof. The proof consists of the following four steps.

- 1. The support of *F* cannot be $(-\infty, \infty)$.
- 2. The support is finite only in the degenerate case.
- 3. Assuming that the support is $[a, \infty)$ or $(-\infty, a]$ it follows that $a = t$.
- 4. Finally, it is shown that the quantile relationship (1) translates into a linearity relation from which the Weibull characterization follows.

Proof of 1: This follows by contradiction upon dividing the relation (1) by $x(u)$ $x(w)$ and letting $u \to 0$ and $w \to 1$ while holding v fixed.

Proof of 2: Suppose F has finite support [a, b]. Let $Y = X - a$ with corresponding quantiles $y(u)$. The quantile relation (1) translates to

$$
y(u)y(w) - y^2(v) = (t - a)(y(u) + y(w) - 2y(v))
$$
 for all $(u, v, w) \in C$.

Writing $s = t - a$ and letting $u \to 0$ and $w \to 1$ while holding *v* fixed, with $y(v) = y$, leads to the following equation

$$
-y^2 = s(b-a-2y)
$$
 with solutions $y = s \pm \sqrt{s^2 - (b-a)s}$.

For any s this equation yields at most one solution $y \in [0, b - a]$. This implies the degenerate case of the characterization.

Proof of 3: Dividing the relationship (1) by $x(w)$ (or $x(u)$, whichever becomes unbounded) and letting $u \to 0$, $w \to 1$ while *v* is fixed one obtains $t = a$.

Proof of 4: Proceeding as in step 2, the quantile relation becomes

$$
y(u)y(w) - y^2(v) = 0
$$
 for all $(u, v, w) \in C$.

Let $h(z) = \log(\gamma(\rho^{-1}(z)))$ for all $z \in R$, where $\rho(p) = \log(-\log(1-p))$. For all $(u, v, w) \in C$ one now has

$$
h(\rho(u)) + h(\rho(w)) = 2h(\rho(v))
$$
 and $\rho(u) + \rho(w) = 2\rho(v)$.

This implies the following functional equation

$$
h\left(\frac{z_1+z_3}{2}\right) = \frac{h(z_1) + h(z_3)}{2} \text{ for all } z_1, z_2 \in R.
$$

Since $h(z)$ is bounded on any finite interval it follows (see [2], p. 91) that h is convex, concave and continuous, thus linear, i.e., $h(z) = A + Bz$ with $B > 0$ since $h(z)$ is strictly increasing. Hence

$$
y(p) = \exp(h(p(p))) = \exp(A + B\rho(p)) = \exp(A)(-\log(1-p))^b
$$
,

which is the p-quantile of a two parameter Weibull distribution with $\alpha = \exp(A)$, and $\beta = 1/B$. Hence $x(p) = y(p) + \tau$ is the p-quantile of $G(x)$.

Test of Fit Considerations

Replacing quantiles by sample quantiles and examining the characterizing proportionality property through some correlation metric one could easily devise a test of fit statistic for the three parameter Weibull distribution. Of course it is desirable to construct a metric for which the null distribution is independent of all three Weibull parameters. So far we were only successful in constructing a location and scale invariant metric.

To describe this metric consider the random sample X_1, \ldots, X_n and denote by $X_{(1)} \leq \ldots \leq X_{(n)}$ the corresponding order statistics. Select a triplet of order statistics $X_{(i)}$, $X_{(j)}$ and $X_{(k)}$, where $i < j < k$ are chosen such that $u_i = i/(n + 1)$, $v_j = j/(n + 1)$ and $w_k = k/(n + 1)$ approximately conform to the restrictions stipulated in C. There may be N such triplets. Let $U_l = X_{(i)} X_{(k)} - X_{(j)}^2$ and $V_l = X_{(i)} + X_{(k)} - 2X_{(i)}$ for $l = 1, ..., N$. Since under the three parameter Weibull model we expect for some t that $U_i \approx tV_i$ for all I we are led to the following location and scale invariant test of fit metric:

$$
R = \frac{\sum_{l} (U_l - \hat{t}V_l)^2}{\left(\sum_{l} V_l^2\right)^2}.
$$

 \overline{p}

Here \hat{i} represents the least squares estimator for the proportionality constant t , l.e.,

$$
\hat{t} = \frac{\sum_l U_l V_l}{\sum_l V_l^2}.
$$

If the corresponding correlation coefficient is denoted by

$$
\hat{\rho} = \hat{t} \cdot \sqrt{\frac{\sum_l V_l^2}{\sum_l U_l^2}} = \frac{\sum_l U_l V_l}{\sqrt{\sum_l U_l^2 \sum_l V_l^2}},
$$

then one easily shows the following simple relation between R and $\hat{\rho}$:

$$
R = \frac{\sum_l U_l^2}{\left(\sum_l V_l^2\right)^2} \left(1 - \hat{\rho}^2\right).
$$

To what extent the null distribution of this metric varies with the Weibull shape parameter still needs to be investigated through simulation and asymptotic methods.

References

- [1] Dubey, S.D., Some percentile estimators of Weibull parameters, *Technometrics,* 9 (1967), 119-129.
- [2] Hardy, G., Littlewood, J.E. and Polya, G., *Inequalities, 2nd edition* (Cambridge University Press, Cambridge, 1988).
- [3] Janardan, K.G. and Schaeffer, D.J., Another characterization of the Weibull distribution, *The Canadian Journal of Statistics,* 6 (1978), 77-78.
- [4] Janardan, KG., A new functional equation analogous to Cauchy-Pexider functional equation and its application, *Biom. J.,* **20** (1978), 323-328.
- [5] Janardan, KG. and Taneja, V.S., Characterization of the Weibull distribution by properties of order statistics, *Biom. J.,* **21** (1979) 3-9.
- [6] Janardan, KG. and Taneja, V.S., Some theorems concerning characterization of the Weibull distribution, *Biom. J.,* **21** (1979), 139-144.
- [7] Johnson, N.L. and Kotz, S., *Distributions in Statistics, Continuous Univariate Distributions-]* (John Wiley, NY, 1970).
- [8] Khan, A.H. and Ali, M.M., Characterization of probability distributions through higher order gap, *Commun. Statist.-Theory Meth.,* 16(5) (1987), 1281-1287.
- [9] Khan, A.H. and Beg, M.l., Characterization of the Weibull distribution by conditional variance, *Sankya: The Indian Journal of Statistics,* 49, Series A (1987), 268-271.
- [10] Ouyang, L.Y., On characterizations of probability distributions based on conditional expected values. *Tamkang Journal of Mathematics,* **18** (1987), 113-122.
- [11] Roy, D. and Mukherjee, S.P., A note on characterizations of the Weibull distribution, *Sankya: The Indian Journal of Statistics,* **48,** Series A (1986), 250-253.
- [12] Shimizu, R. and Davies L., General Characterization theorems for the Weibull and the stable distributions, *Sankya: The Indian Journal of Statistics,* 43, Series A (1981), 282-310.