
MAXIMUM LIKELIHOOD
ESTIMATION

Maximum likelihood is by far the most pop-
ular general method of estimation. Its wide-
spread acceptance is seen on the one hand in
the very large body of research dealing with
its theoretical properties, and on the other in
the almost unlimited list of applications.

To give a reasonably general definition
of maximum likelihood estimates, let X =
(X1, . . . , Xn) be a random vector of observa-
tions whose joint distribution is described
by a density fn(x|�) over the n-dimensional
Euclidean space Rn. The unknown parameter
vector � is contained in the parameter space
� ⊂ Rs. For fixed x define the likelihood∗
function of x as L(�) = Lx(�) = fn(x|�) con-
sidered as a function of � ∈ �.

Definition 1. Any �̂ = �̂(x) ∈ � which
maximizes L(�) over � is called a maximum
likelihood estimate (MLE) of the unknown
true parameter �.

Often it is computationally advantageous
to derive MLEs by maximizing log L(�) in
place of L(�).

Example 1. Let X be the number of suc-
cesses in n independent Bernoulli trials with
success probability p ∈ [0, 1]; then

Lx(p) = f (x|p) = P(X = x|p)

=
(

n
x

)
px(1 − p)n−x x = 0, 1, . . . , n.

Solving

∂

∂p
log Lx(p) = x/p − (n − x)/(1 − p) = 0

for p, one finds that log Lx(p) and hence Lx(p)
has a maximum at

p̂ = p̂(x) = x/n.

This example illustrates the considerable in-
tuitive appeal of the MLE as that value of
p for which the probability of the observed
value x is the largest.

Encyclopedia of Statistical Sciences, Copyright © 2006 John Wiley & Sons, Inc.

It should be pointed out that MLEs do
not always exist, as illustrated in the follow-
ing natural mixture example; see Kiefer and
Wolfowitz [32].

Example 2. Let X1, . . . , Xn be independent
and identically distributed (i.i.d.) with den-
sity

f (x|µ, ν, σ , τ , p) = p√
2πσ

exp

[
−1

2

(
x − µ

σ

)2
]

+ 1 − p√
2πτ

exp

[
−1

2

(
x − ν

τ

)2
]

,

where 0 � p � 1, µ, ν ∈ R, and σ , τ > 0.
The likelihood function of the observed

sample x1, . . . xn, although finite for any per-
missible choice of the five parameters, ap-
proaches infinity as, for example, µ = x1, p >

0 and σ → 0. Thus the MLEs of the five
unknown parameters do not exist.

Further, if an MLE exists, it is not neces-
sarily unique as is illustrated in the following
example.

Example 3. Let X1, . . . , Xn be i.i.d. with den-
sity f (x|α) = 1

2 exp(−|x − α|). Maximizing fn
(x1, . . . , xn|α) is equivalent to minimizing∑ |xi − α| over α. For n = 2m one finds that
any α̂ ∈ [x(m), x(m+1)] serves as MLE of α,
where x(i) is the ith order statistic of the
sample.

The method of maximum likelihood estima-
tion is generally credited to Fisher∗ [17–20],
although its roots date back as far as Lam-
bert∗, Daniel Bernoulli∗, and Lagrange in the
eighteenth century; see Edwards [12] for an
historical account. Fisher introduces the me-
thod in [17] as an alternative to the method of
moments∗ and the method of least squares∗.
The former method Fisher criticizes for its
arbitrariness in the choice of moment equa-
tions and the latter for not being invari-
ant under scale changes in the variables.
The term likelihood∗ as distinguished from
(inverse) probability appears for the first time
in [18]. Introducing the measure of informa-
tion named after him (see FISHER INFORMA-

TION) Fisher [18–20] offers several proofs
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for the efficiency of MLEs, namely that the
asymptotic variance of asymptotically normal
estimates cannot fall below the reciprocal
of the information contained in the sample
and, furthermore, that the MLE achieves this
lower bound. Fisher’s proofs, obscured by the
fact that assumptions are not always clearly
stated, cannot be considered completely rig-
orous by today’s standards and should be
understood in the context of his time. To some
extent his work on maximum likelihood esti-
mation was anticipated by Edgeworth [11],
whose contributions are discussed by Sav-
age [51] and Pratt [45]. However, it was Fis-
her’s insight and advocacy that led to the
prominence of maximum likelihood estima-
tion as we know it today.

For a discussion and an extension of Defi-
nition 1 to richer (nonparametric) statistical
models which preclude a model description
through densities (i.e., likelihoods will be
missing), see Scholz [52]. At times the pri-
mary concern is the estimation of some func-
tion g of �. It is then customary to treat g(�̂)
as an ‘‘MLE’’ of g(�), although strictly speak-
ing, Definition 1 only justifies this when g is a
one-to-one function. For arguments toward a
general justification of g(�̂) as MLE of g(�),
see Zehna [58] and Berk [7].

CONSISTENCY

Much of maximum likelihood theory deals
with the large sample (asymptotic) proper-
ties of MLEs; i.e., with the case in which
it is assumed that X1, . . . , Xn are indepen-
dent and identically distributed with density
f (·|�) (i.e., X1, . . . , Xn i.i.d. ∼ f (·|�)). The joint
density of X = (X1, . . . , Xn) is then fn(x|�) =∏n

i=1 f (xi|�). It further is assumed that the
distributions Pθ corresponding to f (·|�) are
identifiable, i.e., � �= �′, and �, �′ ∈ � im-
plies P� �= P�′ . For future reference we state
the following assumptions:

A0: X1, . . . , Xn i.i.d. f (·|�)� ∈ �;
A1: the distributions P�, � ∈ �, are iden-

tifiable.

The following simple result further supports
the intuitive appeal of the MLE; see Bahadur
[3]:

Theorem 1. Under A0 and A1

P�′ [fn(X|�′) > fn(X|�)] → 1

as n → ∞ for any �, �′ ∈ � with � �= �′. If,
in addition, � is finite, then the MLE �̂n
exists and is consistent.

The content of Theorem 1 is a corner-
stone in Wald’s [56] consistency proof of the
MLE for the general case. Wald assumes
that � is compact, which by a familiar com-
pactness argument reduces the problem to
the case in which � contains only finitely
many elements. Aside from the compactness
assumption on �, which often is not satisfied
in practice, Wald’s uniform integrability con-
ditions (imposed on log f (·|�)) often are not
satisfied in typical examples.

Many improvements in Wald’s approach
toward MLE consistency were made by later
researchers. For a discussion and further ref-
erences, see Perlman [42]. Instead of Wald’s
theorem or any of its refinements, we present
another theorem, due to Rao [47], which
shows under what simple conditions MLE
consistency may be established in a certain
specific situation.

Theorem 2. Let A0 and A1 be satisfied and
let f (·|�) describe a multinomial experiment
with cell probabilities π (�) = (π1(�), . . . ,
πk(�)). If the map � → π (�), � ∈ �, has
a continuous inverse (the inverse existing
because of A1), then the MLE �̂n, if it exists,
is a consistent estimator of �.

For a counterexample to Theorem 2 when the
inverse continuity assumption is not satisfied
see Kraft and LeCam [33].

A completely different approach toward
proving consistency of MLEs was given by
Cramér [9]. His proof is based on a Taylor
expansion of log L(�) and thus, in contrast
to Wald’s proof, assumes a certain amount
of smoothness in f (·|�) as a function of �.
Cramér gave the consistency proof only for
� ⊂ R. Presented here are his conditions gen-
eralized to the multiparameter case, � ⊂ Rs:

C1: The distributions P� have common
support for all � ∈ �; i.e., {x : f (x|�) >

0} does not change with � ∈ �.
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C2: There exists an open subset ω of �

containing the true parameter point
�0 such that for almost all x the den-
sity f (x|�) admits all third derivatives

∂3

∂	i∂	j∂	k
f (x|�) for all � ∈ ω.

C3:

E	

[
∂

∂	j
log f (X|�)

]
= 0, j = 1, . . . , s

and
Ijk(�) : = E�

[(
∂

∂�j
log f (X|�)

)

×
(

∂

∂�k
log f (X|�)

)]

= −E�

[
∂2

∂	j∂	k
log f (X|�)

]

exist and are finite for j, k = 1, . . . , s
and all � ∈ ω.

C4: The Fisher information matrix I(�) =
(Ijk(�))j,k=1,...,s is positive definite for
all � ∈ ω.

C5: There exist functions Mijk(x) indepen-
dent of � such that for all i, j, k, =
1, . . . , s,∣∣∣∣ ∂3

∂θi∂θj∂θk
log f (x|�)

∣∣∣∣ � Mijk(x)

for all � ∈ ω,

where

E�0 (Mijk(X)) < ∞.

We can now state Cramér’s consistency theo-
rem.

Theorem 3. Assume A0, A1, and C1–C5.
Then with probability tending to one as n →
∞ there exist solutions �̃n = �̃n(X1, . . . , Xn)
of the likelihood equations

∂

∂	j
log fn(X|�) = ∂

∂	j

n∑
i=1

log f (Xi|�) = 0,

j = 1, . . . , s,

such that �̃n converges to �0 in probability;
i.e., �̃n is consistent.

For a proof see Lehmann [37, Sect. 6.4]. The
theorem needs several comments for clarifi-
cation:

(a) If the likelihood function L(�) attains
its maximum at an interior point of �

then the MLE is a solution to the like-
lihood equation. If in addition the like-
lihood equations only have one root,
then Theorem 3 proves the consistency
of the MLE(�̂n = �̃n).

(b) Theorem 3 does not state how to iden-
tify the consistent root among possibly
many roots of the likelihood equations.
One could take the root �̃n which
is closest to �0, but then �̃n is no
longer an estimator since its construc-
tion assumes knowledge of the un-
known value of �0. This problem may
be overcome by taking that root which
is closest to a (known) consistent esti-
mator of �0. The utility of this ap-
proach becomes clear in the section on
efficiency.

(c) The MLE does not necessarily coincide
with the consistent root guaranteed by
Theorem 3. Kraft and LeCam [33] give
an example in which Cramér’s con-
ditions are satisfied, the MLE exists,
is unique, and satisfies the likelihood
equations, yet is not consistent.

In view of these comments, it is advantageous
to establish the uniqueness of the likeli-
hood equation roots whenever possible. For
example, if f (x|�) is of nondegenerate mul-
tiparameter exponential family type, then
log L(�) is strictly concave. Thus the like-
lihood equations have at most one solution.
Sufficient conditions for the existence of such
a solution may be found in Barndorff-Nielsen
[4]. In a more general context Mäkeläinen
et al. [38] give sufficient conditions for the
existence and uniqueness of roots of the like-
lihood equations.

EFFICIENCY

The main reason for presenting Cramér’s
consistency theorem and not Wald’s is the fol-
lowing theorem which specifically addresses
consistent roots of the likelihood equations
and not necessarily MLEs.
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Theorem 4. Assume A0, A1, and C1–C5.
If �̃n is a consistent sequence of roots of the
likelihood equations, then as n → ∞,

√
n(�n − �0) L
⇒ Ns(0, I(�0)−1);

i.e., in large samples the distribution of �̃n
is approximately s-variate normal with mean
�0 and covariance matrix I(�0)−1/n. This
theorem is due to Cramér [9], who gave a
proof for s = 1. A proof for s � 1 may be found
in Lehmann [37].

Because of the form, I(�)−1, of the asymp-
totic covariance matrix for

√
n(�̃n − �), one

generally regards �̃n as an efficient estimator
for �. The reasons for this are now dis-
cussed. Under regularity conditions (weaker
than those of Theorem 4) the Cramér—Rao∗
lower bound (CRLB) states that

var(Tjn) � (I(�)−1)jj/n

for any unbiased estimator Tjn of 	j which
is based on n observations. Here (I(�)−1)jj
refers to the jth diagonal element of I(�)−1.
Note, however, that the CRLB refers to the
actual variance of an (unbiased) estimator
and not to the asymptotic variance of such
estimator. The relationship between these
two variance concepts is clarified by the fol-
lowing inequality. If as n → ∞

√
n(Tjn − 	j)

L−→ N(0, υj(�)), (1)

then

lim
n→∞

[
n var(Tjn)

]
� υj(�),

where equality need not hold; see Lehmann
[37].

Thus for unbiased estimators Tjn which
are asymptotically normal, i.e., satisfy (1),
and for which

lim
n→∞[n var(Tjn)] = υj(�),

the CRLB implies that υj(�) � (I(�)−1)jj. It
was therefore thought that (I(�)−1)jj is a
lower bound for the asymptotic variance of
any asymptotically normal unbiased estimate
of 	j. Since the estimators 	̃jn of Theorem 4

have asymptotic variances equal to this lower
bound, they were called efficient estimators.
In fact, Lehmann [36] refers to �̃n as an
efficient likelihood estimator (ELE) in con-
trast to the MLE, although the two often
will coincide. For a discussion of the usage
of ELE versus MLE refer to his paper. As
it turns out, (I(�)−1)jj will not serve as a
true lower bound on the asymptotic vari-
ance of asymptotically normal estimators of
	j unless one places some restrictions on the
behavior of such estimators. Without such
restrictions Hodges (see LeCam [35]) was
able to construct so called superefficient esti-
mators (see SUPEREFFICIENCY, HODGES for a
simple example). It was shown by LeCam [35]
(see also Bahadur [2]) that the set of superef-
ficiency points must have Lebesgue measure
zero for any particular sequence of estima-
tors. LeCam (see also Hájek [28]) further
showed that falling below the lower bound at
a value �0 entails certain unpleasant prop-
erties for the mean squared error∗ (or other
risk functions) of such superefficient estima-
tors in the vicinity of �0. Thus it appears not
advisable to use superefficient estimators.

Unpleasant as such superefficient estima-
tors are, their existence led to a reassessment
of large sample properties of estimators. In
particular, a case was made to require a cer-
tain amount of regularity not only in the
distributions but also in the estimators. For
example, the simple requirement that the
asymptotic variance υj(�) in (1) be a con-
tinuous function in � would preclude such
estimator from being superefficient since, as
remarked above, such phenomenon may oc-
cur only on sets of Lebesgue measure zero.
For estimators satisfying (1) with continu-
ous υj(�) one thus has υj(�) � (I(�)−1)jj.
Rao [49] requires the weak convergence in (1)
to be uniform on compact subsets of �, which
under mild assumption on f (·|�) implies the
continuity of the asymptotic variance υj(�).

Hájek [27] proved a very general theorem
which gives a succinct description of the
asymptotic distribution of regular estima-
tors. His theorem will be described in a some-
what less general form below. Let �(n) =
�0 + h/

√
n, h ∈ Rs and denote by

L�(n)−→ con-
vergence in law when �(n) is the true param-
eter.
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Definition 2. An estimator sequence {Tn}
is called regular if for all h ∈ Rs

√
n(Tn − �(n))

L�(n)−→ T

as n → ∞, where the distribution of the ran-
dom vector T is independent of h.

The regularity conditions on f (·|�) are for-
mulated as follows.

Definition 3. f (·|�) is called locally asymp-
totically normal (LAN) if for all h ∈ Rs

log[fn(X|�(n))/fn(X|�0)]

= h′�n(�0) − 1
2 h′I(�0)h + Zn(h, �0)

with

�n(�0)
L�0−→ Ns(0, I(�0))

and

Zn(h, �0)
P�0−→ 0 as n → ∞.

Comment. Under the conditions A0, A1, and
C1–C5, one may show that f (·|�) is LAN and
in that case

�′
n(�0) =

(
∂

∂	1
log fn(X|�), . . . ,

× ∂

∂	s
log fn(X|�)

)
/
√

n.

Theorem 5. (Hájek). If {Tn} is regular and
f (·|�) is LAN then T = Y + W, where Y ∼
Ns(0, I(�0)−1) and W is a random vector
independent of Y. The distribution of W is
determined by the estimator sequence.

Comment. Estimators for which P�0 (W =
0) = 1 are most concentrated around �0 (see
Hájek [27]) and may thus be considered effi-
cient among regular estimators. Note that
this optimality claim is possible because com-
peting estimators are required to be regular;
on the other hand, it is no longer required
that the asymptotic distribution of the esti-
mator be normal.

As remarked in the comments to Theorem
3 the ELE �̃n of Theorem 4 may be cho-
sen by taking that root of the likelihood
equations which is closest to some known
consistent estimate of �. The latter estimate

need not be efficient. In this context we note
that the consistent sequence of roots gen-
erated by Theorem 3 is essentially unique.
For a more precise statement of this result
see Huzurbazar [31] and Perlman [43]. Roots
of the likelihood equations may be found by
one of various iterative procedures offered
in several statistical computer packages; see
ITERATED MAXIMUM LIKELIHOOD ESTIMATES.
Alternatively on may just take a one-step
iteration estimator in place of a root. Such
one step estimators use as starting point

√
n-

consistent estimators (not necessarily effi-
cient) and are efficient. A precise statement is
given in Theorem 6. First note the following
definition.

Definition 4. An estimator Tn is
√

n-
consistent for estimating the true �0 if for
every ε > 0 there is a Kε and an Nε such that

P�0 (‖ √
n(Tn − �0) ‖� Kε) � 1 − ε

for all n � Nε , where ‖ · ‖ denotes the
Euclidean norm in Rs.

Theorem 6. Suppose the assumptions of
Theorem 4 hold and that �∗

n is a
√

n-consis-
tent estimator of �. Let δ′

n = (δ1n, . . . , δsn) be
the solution of the linear equations

s∑
k=1

(δkn − 	∗
kn)R′′

jk(�∗
n) = −R′

j(�
∗
n),

j = 1, . . . , s, where

R′
j(�) = ∂

∂	j
log L(�),

and

R′′
jk(�) = ∂2

∂	j∂	k
log L(�).

Then
√

n(δn − �0)
L−→ Ns(0, I(�0)−1)

as n → ∞, i.e., δn is asymptotically efficient.

For a proof of Theorem 6 see Lehmann [37].
The application of Theorem 6 is particu-

larly useful in that it does not require the
solution of the likelihood equations. The two
estimators �̃n (Theorem 4) and δn (Theorem
6) are asymptotically efficient. Among other
estimators that share this property are the
Bayes estimators. Because of this multitude
of asymptotically efficient estimators one has
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tried to discriminate between them by con-
sidering higher order terms in the asymp-
totic analysis. Several measures of second-
order efficiency∗ have been examined (see
EFFICIENCY, SECOND-ORDER) and it appears
that with some qualifications MLEs are se-
cond-order efficient, provided the MLE is
first corrected for bias of order 1/n. Without
such bias correction one seems to be faced
with a problem similar to the nonexistence
of estimators with uniformly smallest mean
squared error in the finite sample case (see
ESTIMATION, CLASSICAL). For investigations
along these lines see Rao [48], Ghosh and
Subramanyam [23], Efron [13], Pfanzagl and
Wefelmeyer [44] and Ghosh and Sinha [22].
For a lively discussion of the issues involved
see also Berkson [8].

Other types of optimality results for MLEs,
such as the local asymptotic admissibility∗
and minimax∗ property, were developed by
LeCam and Hájek. For an exposition of this
work and some perspective on the work of oth-
ers, see Hájek [28]. For a simplified introduc-
tion to these results, see also Lehmann [37].

The following example (see Lehmann [37])
illustrates a different kind of behavior of the
MLE when the regularity condition C1 is not
satisfied.

Example 4. Let X1, . . . , Xn be i.i.d. ∼ U(0,
	) (uniform on (0, 	)). Then the MLE is
	̂n = max(X1, . . . , Xn) and its large sample
behavior is described by

n(	 − 	̂n)
L−→	 · E

as n → ∞, where E is an exponential ran-
dom variable with mean 1. Note that the
normalizing factor is n and not

√
n. Also the

asymptotic distribution 	E is not normal and
is not centered at zero. Considering instead
δn = (n + 1)	̂n/n one finds as n → ∞

n(	 − δn)
L−→	(E − 1).

Further

E[n(	̂n − 	)]2 → 2	2

and

E[n(δn − 	)]2 → 	2.

Hence the MLE, although consistent, may no
longer be asymptotically optimal.

For a different approach which covers regular
as well as nonregular problems, see Weiss
and Wolfowitz [57] on maximum probability
estimators∗.

MLES IN MORE GENERAL MODELS

The results concerning MLEs or ELEs dis-
cussed so far all assumed A0. In many sta-
tistical applications the sampling structure
gives rise to independent observations which
are not identically distributed. For example
one may be sampling several different pop-
ulations or with each observation one or
more covariates may be recorded. For the
former situation Theorems 3 and 4 are easily
extended, see Lehmann [37]. In the case of
independent but not identically distributed
observations, results along the lines of Theo-
rem 3 and 4 were given by Hoadley [29] and
Nordberg [40]. Nordberg deals specifically
with exponential family∗ models presenting
the binary logit model and the log-linear
Poisson model as examples. See also Haber-
man [26], who treats maximum likelihood
theory for diverse parametric structures in
multinomial and Poisson counting data mod-
els.

The maximum likelihood theory for incom-
plete data∗ from an exponential family is
treated in Sundberg [55]. Incomplete data
models include situations with grouped∗, cen-
sored∗, or missing data and finite mixtures.
See Sundberg [55] and Dempster et al. [10]
for more examples. The latter authors present
the EM algorithm for iterative computation
of the MLE from incomplete data.

Relaxing the independence assumption of
the observations opens the way to stochas-
tic process applications. Statistical inference
problems concerning stochastic processes∗
only recently have been treated with vigor.
The maximum likelihood approach to param-
eter estimation here plays a prominent
role. Consistency and asymptotic normality∗
of MLEs (or ELEs) may again be estab-
lished by using appropriate martingale∗ limit
theorems. Care has to be taken to define
the concept of likelihood function when the
observations consist of a continuous time
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stochastic process. As a start into the grow-
ing literature on this subject see Feigin [16],
Basawa and Prakasa Rao [5,6].

Another assumption made so far is that
the parameter space � has dimension s,
where s remains fixed as the sample size
n increases. For the problems one encoun-
ters as s grows with n or when � is so rich
that it cannot be embedded into any finite
dimensional Euclidean space, see Kiefer and
Wolfowitz [32] and Grenander [25] respec-
tively. Huber [30] examines the behavior of
MLEs derived from a particular paramet-
ric model when the sampled distribution is
different from this parametric model. These
results are useful in studying the robustness
properties of MLEs (see ROBUST ESTIMATION).

MISCELLANEOUS REMARKS

Not much can be said about the small sample
properties of MLEs. If the MLE exists it is
generally a function of the minimal sufficient
statistic∗, namely the likelihood function L(·).
However, the MLE by itself is not necessar-
ily sufficient. Thus in small samples some
information may be lost by considering the
MLE by itself. Fisher [19] proposed the use
of ancillary statistics∗ to recover this infor-
mation loss, by viewing the distribution of the
MLE conditional on the ancillary statistics.
For a recent debate on this subject, see Efron
and Hinkley [15], who make an argument
for using the observed and not the expected
Fisher information∗ in assessing the accu-
racy of MLEs. Note, however, the comments
to their paper. See also Sprott [53,54], who
suggests using parameter transformations
to achieve better results in small samples
when appealing to large sample maximum
likelihood theory. Efron [14], in discussing
the relationship between maximum likeli-
hood and decision theory∗, highlights the role
of maximum likelihood as a summary prin-
ciple in contrast to its role as an estimation
principle.

Although MLEs are asymptotically unbi-
ased in the regular case, this will not gener-
ally be the case in finite samples. It is not
necessarily clear whether the removal of bias
from an MLE will result in a better estima-
tor, as the following example shows (see also
UNBIASEDNESS).

Example 5. Let X1, . . . , Xn be i.i.d. N(µ, σ 2);
then the MLE of σ 2 is

σ̂ 2 =
n∑

i=1

(Xi − X)2/n,

which has mean value σ 2(n − 1)/n, i.e., σ̂ 2

is biased. Taking instead σ̃ 2 = σ̂ 2n/(n − 1)
we have an unbiased estimator of σ 2 which
has uniformly smallest variance among all
unbiased estimators; however,

E(σ̂ 2 − σ 2)2 < E(σ̃ 2 − σ 2)2

for all σ 2.

The question of bias removal should therefore
be decided on a case by case basis with con-
sideration of the estimation objective. See,
however, the argument for bias correction
of order 1/n in the context of second-order
efficiency of MLEs as given in Rao [48] and
Ghosh and Subramanyam [23].

Gong and Samaniego [24] consider the
concepts of pseudo maximum likelihood esti-
mation which consists of replacing all nui-
sance parameters∗ in a multiparameter
model by suitable estimates and then solving
a reduced system of likelihood equations for
the remaining structural parameters. They
present consistency and asymptotic normal-
ity results and illustrate them by example.

AN EXAMPLE

As an illustration of some of the issues and
problems encountered, consider the Weibull∗
model. Aside from offering much flexibility
in its shape, there are theoretical extreme
value type arguments (Galambos [21]), rec-
ommending the Weibull distribution as an
appropriate model for the breaking strength
of certain materials.

Let X1, . . . , Xn be i.i.d. W(t, α, β), the
Weibull distribution with density

f (x|t, α, β) = β

α

(
x − t

α

)β−1

exp
(

−(
x − t

α
)β

)
,

x > t, t ∈ R, α, β > 0.

When the threshold parameter t is known,
say t = 0 (otherwise subtract t from Xi) the
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likelihood equations for the scale and shape
parameters α and β have a unique solu-
tion. In fact, the likelihood equations may
be rewritten

α̂ =
(

1
n

n∑
i=1

xβ̂

i

)1/β̂

, (2)

n∑
i=1

xβ̂

i log xi

(
n∑

i=1

xβ̂

i

)−1

− β̂ − 1
n

n∑
i=1

log xi = 0,

(3)

i.e., α̂ is given explicitly in terms of β̂, which
in turn can be found from the second equation
by an iterative numerical procedure such as
Newton’s method. The regularity conditions
of Theorems 3 and 4 are satisfied. Thus we
conclude that

√
n

((
α̂

β̂

)
−

(
α

β

))
L−→ N2(0, I−1(α, β)),

where

I−1(α, β) =
[

1.109
(

α
β

)2
.257α

.257α .608β2

]
.

From these asymptotic results it follows that,
as n → ∞,

√
n(β̂ − β)/β

L−→ N(0, .608),
√

nβ̂ log(α̂/α)
L−→ N(0, 1.109),

from which large sample confidence inter-
vals∗ for β and α may be obtained. How-
ever, the large sample approximations are
good only for very large samples. Even for
n = 100 the approximations leave much to be
desired. For small to medium sample sizes
a large collection of tables is available (see
Bain [1]) to facilitate various types of infer-
ence. These tables are based on extensive
Monte Carlo∗ investigations. For example,
instead of appealing to the asymptotic N(0,
.608) distribution of the pivot

√
n(β̂ − β)/β,

the distribution of this pivot was simulated
for various samples sizes and the percentage
points of the simulated distributions were
tabulated. Another approach to finite sam-
ple size inference is offered by Lawless [34].

His method is based on the conditional dis-
tribution of the MLEs given certain ancil-
lary statistics. It turns out that this con-
ditional distribution is analytically manage-
able; however, computer programs are ulti-
mately required for the implementation of
this method.

Returning to the three-parameter Weibull
problem, so that the threshold is also un-
known, we find that the likelihood function
tends to infinity as t → T = min(X1, . . . , Xn)
and β < 1, i.e. the MLEs of t, α, and β do not
exist. It has been suggested that the parame-
ter β be restricted a priori to β � 1 so that the
likelihood function remains bounded. In that
case the MLEs will always exist, but with
positive probability will not be a solution to
the likelihood equations. It is not clear what
the large sample properties of the MLEs are
in this case.

Appealing to Theorems 3 and 4 one may
attempt to find efficient roots of the likelihood
equations or appeal to Theorem 6, since

√
n-

consistent estimates are easily found (e.g.,
method of moments, method of quantiles∗).
However, the stated regularity conditions,
notably C1, are not satisfied. In addition to
that the likelihood equations will, with posi-
tive probability, have no solution at all and if
they have a solution they have at least two,
one yielding a saddle point and one yielding
a local maximum of the likelihood function
(Rockette et al. [50]). A further problem in
the three-parameter Weibull model concerns
identifiability for large shape parameters β.
Namely, if X ∼ W(t, α, β) then uniformly in α

and t, as β → ∞

β

α
(X − t − α)

L−→ E0

where E0 is a standard extreme value∗ ran-
dom variable with distribution function F(y)
= 1 − exp(− exp(y)). Hence for large β,

X
L
 t + α + α

β
E0 = u + bE0

and it is clear that (t, α, β) cannot be recovered
from u and b. This phenomenon is similar
to the one experienced for the generalized
gamma distribution∗; see Prentice [46]. In
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the Weibull problem the identifiability prob-
lem may be remedied by proper reparame-
trization. For example, instead of (t, α, β)
one can easily use three quantiles. How-
ever, because of the one-to-one relationship
between these two sets of parameters the
abovementioned problems concerning maxi-
mum likelihood and likelihood equation esti-
mators still persist.

It is conceivable that the conditions of
Theorem 6 may be weakened to accommo-
date the three-parameter Weibull distribu-
tion. Alternatively one may use the approach
of Gong and Samaniego [24] described above,
in that one estimates the threshold t by
other means. Mann and Fertig [39] offer one
such estimate; see WEIBULL DISTRIBUTION,
MANN–FERTIG TEST STATISTIC FOR. Neither
of these two approaches seems to have been
explored rigorously so far. For an extensive
account of maximum likelihood estimation as
well as other methods for complete and cen-
sored samples from a Weibull distribution
see Bain [1] and Lawless [34]. Both authors
treat maximum likelihood estimation in the
context of many other models.

For the very reason that applications em-
ploying the method of maximum likelihood
are so numerous no attempt is made here
to list them beyond the few references and
examples given above. For a guide to the
literature see the survey article on MLEs
by Norden [41]. Also see Lehmann [37] for a
rich selection of interesting examples and for
a more thorough treatment.

Acknowledgments
In writing this article I benefited greatly from
pertinent chapters of Erich Lehmann’s book Theory
of Point Estimation [37]. I would like to thank him
for this privilege and for his numerous helpful
comments.

I would also like to thank Jon Wellner for the use
of his notes on maximum likelihood estimation and
Michael Perlman and Paul Sampson for helpful
comments. This work was supported in part by
The Boeing Company.

REFERENCES

1. Bain, L. J. (1978). Statistical Analysis of Reli-
ability and Life-Testing Models. Dekker, New
York.

2. Bahadur, R. R. (1964). Ann. Math. Statist., 35,
1545–1552.

3. Bahadur, R. R. (1971). Some Limit Theorems
in Statistics, SIAM, Philadelphia.

4. Barndorff-Nielsen, O. (1978). Information and
Exponential Families in Statistical Theory.
Wiley, New York.

5. Basawa, I. V. and Prakasa Rao, B. L. S.
(1980). Stoch. Proc. Appl., 10, 221–254.

6. Basawa, I. V. and Prakasa Rao, B. L. S.
(1980). Statistical Inference for Stochastic Pro-
cesses. Academic Press, London.

7. Berk, R. H. (1967). Math. Rev., 33, No. 1922.
8. Berkson, J. (1980). Ann. Statist., 8, 457–469.
9. Cramér, H. (1946). Mathematical Methods of

Statistics. Princeton University Press, Prince-
ton, N.J.

10. Dempster, A. P., Laird, N. M., and Rubin,
D. B. (1977). J. R. Statist. Soc. B, 39, 1–22.

11. Edgeworth, F. Y. (1908/09). J. R. Statist. Soc.,
71, 381–397, 499–512, and J. R. Statist. Soc.,
72, 81–90.

12. Edwards, A. W. F. (1974). Internat. Statist.
Rev., 42, 4–15.

13. Efron, B. (1975). Ann. Statist., 3, 1189–1242.
14. Efron, B. (1982). Ann. Statist., 10, 340–356.
15. Efron, B. and Hinkley, D. V. (1978).

Biometrika, 65, 457–487.
16. Feigin, P. D. (1976). Adv. Appl. Prob., 8,

712–736.
17. Fisher, R. A. (1912). Messenger of Mathemat-

ics, 41, 155–160.
18. Fisher, R. A. (1922). Philos. Trans. R. Soc.

London A, 222, 309–368.
19. Fisher, R. A. (1925). Proc. Camb. Phil. Soc.,

22, 700–725.
20. Fisher, R. A. (1935). J. R. Statist. Soc., 98,

39–54.
21. Galambos, J. (1978). The Asymptotic Theory

of Extreme Order Statistics. Wiley, New York.
22. Ghosh, J. K. and Sinha, B. K. (1981). Ann.

Statist., 9, 1334–1338.
23. Ghosh, J. K. and Subramanyam, K. (1974).

Sankhya (A), 36, 325–358.
24. Gong, G. and Samaniego, F. J. (1981). Ann.

Statist., 9, 861–869.
25. Grenander, U. V. (1980). Abstract Inference.

Wiley, New York.
26. Haberman, S. J. (1974). The Analysis of Fre-

quency Data. The University of Chicago Press,
Chicago.
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38. Mäkeläinen, T., Schmidt, K., and Styan, G.
(1981). Ann. Statist., 9, 758–767.

39. Mann, N. R. and Fertig, K. W. (1975). Techno-
metrics, 17, 237–245.

40. Nordberg, L. (1980). Scand. J. Statist., 7,
27–32.

41. Norden, R. H. (1972/73). Internat. Statist.
Rev., 40, 329–354; 41, 39–58.

42. Perlman, M. (1972). Proc. Sixth Berkeley
Symp. Math. Statist. Prob., 1, 263–281.

43. Perlman, M. D. (1983). In Recent Advances
in Statistics: Papers in Honor of Her-
man Chernoff on his 60th Birthday,
M. H. Rizvi, J. S. Rustagi, and D. Siegmund,
eds. Academic Press, New York, pp. 339–370.

44. Pfanzagl, J. and Wefelmeyer, W. (1978/79).
J. Multivariate Anal., 8, 1–29; 9, 179–182.

45. Pratt, J. W. (1976), Ann. Statist., 4, 501–514.
46. Prentice, R. L. (1973), Biometrika, 60,

279–288.
47. Rao, C. R. (1957). Sankhya, 18, 139–148.
48. Rao, C. R. (1961). Proc. Fourth Berkeley Symp.

Math. Statist. Prob., 1, 531–546.
49. Rao, C. R. (1963). Sankhya, 25, 189–206.
50. Rockette, H., Antle, C., and Klimko, L. (1974).

J. Amer. Statist. Ass., 69, 246–249.
51. Savage, L. J. (1976). Ann. Statist., 4, 441–500.
52. Scholz, F. -W. (1980). Canad. J. Statist., 8,

193–203.
53. Sprott, D. A. (1973). Biometrika, 60, 457–465.
54. Sprott, D. A. (1980). Biometrika, 67, 515–523.
55. Sundberg, R. (1974). Scand. J. Statist., 1,

49–58.

56. Wald, A. (1949). Ann. Math. Statist. 20,
595–601.

57. Weiss, L. and Wolfowitz, J. (1974). Maximum
Probability Estimators and Related Topics.
Springer-Verlag, New York. (Lect. Notes in
Math., No. 424.)

58. Zehna, P. W. (1966). Ann. Math. Statist., 37,
744.

BIBLIOGRAPHY

Akahira, M. and Takeuchi, K. (1981). Asymptotic
Efficiency of Statistical Estimators: Concepts of
Higher Order Asymptotic Efficiency. Springer-
Verlag, New York. Lecture Notes in Statistics
7. (Technical Monograph on higher order effi-
ciency with an approach different from the
references cited in the text.)

Barndorff-Nielsen, O. (1983). Biometrika, 70,
343–365. (Discusses a simple approximation
formula for the conditional density of the max-
imum likelihood estimator given a maximal
ancillary statistic. The formula is generally
accurate (in relative error) to order O(n−1) or
even O(n−3/2), and for many important mod-
els, including arbitrary transformation models,
it is in fact, exact. The level of the paper is
quite mathematical. With its many references
it should serve as a good entry point into an area
of research of much current interest although
its roots date back to R. A. Fisher.)

Fienberg, S. E. and Hinkley, D. V. (eds.) (1980).
R. A. Fisher: An Appreciation. Springer-Verlag,
New York. (Lecture Notes in Statistics 1. A
collection of articles by different authors high-
lighting Fisher’s contributions in statistics.)

Ibragimov, I. A. and Has’minskii (1981). Statisti-
cal Estimation, Asymptotic Theory. Springer-
Verlag, New York. (Technical monograph on
the asymptotic behavior of estimators (MLEs
and Bayes estimators) for regular as well as
irregular problems, i.i.d. and non-i.i.d. cases.)

LeCam, L. (1970). Ann. Math. Statist., 41,
802–828. (Highly mathematical, weakens
Cramér’s third-order differentiability condi-
tions to first-order differentiability in quadratic
mean.)

LeCam, L. (1979). Maximum Likelihood, an Intro-
duction. Lecture Notes No. 18, Statistics
Branch, Department of Mathematics, Univer-
sity of Maryland. (A readable and humorous
account of the pitfalls of MLEs illustrated by
numerous examples.)

McCullagh, P. and Nelder, J. A. (1983). General-
ized Linear Models. Chapman and Hall, Lon-
don. (This monograph deals with a class of



MAXIMUM LIKELIHOOD ESTIMATION 11

statistical models that generalizes classical lin-
ear models in two ways: (i) the response variable
may be of exponential family type (not just nor-
mal), and (ii) a monotonic smooth transform of
the mean response is a linear function in the
predictor variables. The parameters are esti-
mated by the method of maximum likelihood
through an iterated weight least-squares algo-
rithm. The monograph emphasizes applications
over theoretical concerns and represents a rich
illustration of the versatility of maximum like-
lihood methods.)

Rao, C. R. (1962). Sankhya A, 24, 73–101. (A read-
able survey and discussion of problems encoun-
tered in maximum likelihood estimation.)

See also ANCILLARY STATISTICS—I; ASYMPTOTIC NORMALITY;
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