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1.0 SUMMARY AND INTRODUCTION

1.1 SUMMARY

This report documents the second of two studies performed by Boeing Computer
Services on modeling the process of software error detection from the results of
experiments specifically designed to complement this activity. The experiments
consist of simulations conducted on code prepared under controlled conditions and
executed with randomly selected inputs. Six codes were developed in the first study
and this study continues the experiment with six more. The code is initialized to an
original state and flexed with independently generated random inputs. Errors are
corrected as they are encountered until a stopping rule is satisfied. Replication is
introduced by repeating the entire process from initialization.

This experiment has confirmed several of the conclusions of the first study with
regard to the probabilistic diversity of error structure, linearity of the log stage
failure rate, and the nearly exponential character of the stage distribution.

The previous study explored the effects of programmer and problem as experimental
design factors on the error structure. The current study enlarges this set of factors
by varying the experience level of the programmer and the relative frequency or
usage of the program inputs. The use of FORTRAN is contrasted with the use of a
micro-based assembler language as another design factor. All of these factors, not
surprisingly_ affected performance and some very tentative relational hypotheses are
suggested.

Although it can be demonstrated that stages are neither independent nor exponen-
tially distributed, empirical estimates show that the exponential assumption is nearly
valid for all but the extreme tails of the distribution. Empirical studies of the
dependence of a stage on its past indicate that some of the estimated correlations
are high and exhibit a curious periodicity. Except for the degree of dependence in
the stage probabilities_ it still appears that Cox's proportional hazards model_
introduced in reference [ I ] _approximates to a degree what is being observed.

An analytic framework for replicated and non-replicated (i.e., traditional) software
experiments is initiated in this study in order to present the results in a meaningful
context. A method of obtaining an upper bound on the error rate of the next error is
proposed. The method was validated empirically by comparing forecasts based on the
method with actual data. In all 14 cases the bound exceeded the observed parameter_

. albeit somewhat conservatively. Two other forecasting methods are proposed. One
based on a crude approximation to the proportional hazards model proved to be in the
neighborhood of the estimated parameter, as measured by a 9596 confidence interval,

- 5396 of the time. The other subtracted the observed error probability and the
program's success rate from one to estimate the remaining error rate. This method
generally underestimated the observed parameter but was within the interval 6796 of
the time.

1.2 INTRODUCTION

Software reliability forecasting continues to be an elusive problem. Many models
have been introduced in the literature, most of them without a clear statement of the



mathematical and statistical foundations that motivated the mode] and most of them
without data validation. Many statements have stressed the need for realism in data
collection and modeling. Unfortunately by enforcing realism, particularly in data
collection, control is sacrificed, i.e., so many variables are influencing quality that it
is difficult to identify the drivers causing change. Risk assessment has been confused ..
with software management goals and testing has been confused with debugging.

This experiment and the previous companion study documented in reference [1]
represent an attempt to wed experimental results and a modeling framework. The
study has four primary goals:

a. To produce quality data on software error detection with controlled
experiments,

b. To model the exact nature of the experiment as carefully as possible,
bowing to mathematical expediency only when necessary and after as much
empirical evaluation as possible,

c. To experimentally verify some of the more popular assumptions regarding
the process of error detection, and

d. To provide measures of the impact of various environmental factors on
software quality by varying them as design factors in the experiment.

The previous study defines an experimental framework with all of the controls
thought necessary for quality data. This experiment does not try to investigate all of
the issues that influence the software error structure but concentrates only on those
that are related to problems with fixed specifications and with code prepared by a
single programmer. An error is carefully defined in terms of a detector or criteria
establishing correctness, and the probability of detection is governed completely by
the set of inputs producing incorrectness and the probability distribution controlling
the usage of the input set.

Little software reliability growth modeling has been based on feedback gained from
controlled experiments. This is particularly relevant in forecasting the future
behavior of a program that necessarily depends on a model of the error removal
process. Since programming is a human endeavor, without a behavior model only
controlled experiments can provide this knowledge. The empirical studies reported on
in this document suggest that there is a commonality in the methods employed by
programmers to achieve their professional goals and that the accuracy of the
performance is related to some of the characteristics of the human producer. ..
Overall these studies also suggest that the error structure of software is a
forecastable process.

The remainder of the report is in six sections. Section 2.0 briefly reviews the
features of the overall experiment and describes the experimental factors explored in
the current study. Section 3.0 provides some operational detail of conducting the
experiment with a description of the programmers and problems used and the data
collected. In Section 4.0, descriptive statistics of the data observed in this study are
presented and compared with the previous work. Analytic results are discussed in
Section 5.0, together with an empirical study on forecasts. The conclusions of the
study are summarized in Section 6.0.



2.0 EXPERIMENT

Details of the replicated experiments that form the core of the experimental results
_ obtained in this study and its predecessor are contained in reference [l] and

therefore this section only describes the broad framework of the experiment. The
experiments are simulations performed on software written to support a given
problem specification by a programmer with designated qualifications. Both the
qualifications of the programmer and the specification of the problems are selected
with a predetermined experimental set of factors in mind.

2.1 TEST FRAMEWORK

The simulations are initiated by generating random input according to a distribution
called the usage distribution defined as part of the original problem specification.
The problems for this and the earlier study were selected from problems that had
been previously programmed and had been in use for some time. The output of this
seasoned program, executed with identical inputs to the program on test_ is used as a
comparator to determine the correctness of the new program. Complementing this
error detection mechanism is the error detection capability of the operating system
itself used as a companion detector.

Once correctness according to the detectors used has been established, new inputs
are generated independently and the process repeated. If for some execution an error
is indicated, the error is recorded together with the number of executions since the
last error, and then corrected.

The simulation begins with the program in its initial state. This state is reached
when the program successfully complies and correctly executes a number of
predetermined test cases. These tests are defined as the static tests for a given
specification and the program must pass these static tests as well as successfully
execute the input causing failure before simulation can be reinitiated. Once
reinitiated, the process is repeated error by error until a predetermined stopping rule
is satisfied. Termination in this study occurs when an error is detected that is too
costly to fix or an upper bound on the number of samples is reached, whichever comes
first.

Traditional tests on software force the experimenter to forecast the future from a
single manifestation of the error process, that is, a single series of program
executions, with the errors corrected in a single order. In order to provide statistical
replication of this process, in this experiment once the stopping rule is satisfied for a
particular program run the program is reinitiated to its original state and the process)
i.e., a new run is repeated. The experimental flow for each run is exactly the same
except for the consequences of using different r_ndom numbers. Each run has the
opportunity then, of generating different random errors in different orders with
different life lengths between errors. Fifty runs are simulated for each experimental
treatment examined.

Two concepts associated with this sampling are defined: program stage and program
state. Since errors can be recognized from run to run, they are identified as
encountered with an error number. This number is recorded as part of the data base

3



when the error shows up in the sampling. A program stage at a particular point in the
sampling refers to the number of errors that have been corrected since sampling
began for that run. A program state is a listing of errors by number that have been
detected and corrected since the run was initiated.

Figure 2.I-I illustrates the overall flow of this experiment for a given code. _

2.2 DESIGN FACTORS

The test framework introduced in the previous section was used in the first study to
explore several combinations of problem specification and programmer. This study
continues this investigation by exploring new features. These features are combined
with old features and new data is combined with old data in order to investigate many
new issues.

The experiments conducted are summarized in Figure 2.2-1. A factorial design of
two programmers (A and B) each programming from three separate problem specifi-
cations (1, 2 and 3) formed the nucleus of the first study. To this have been added
three programmers (C, D and E) and one new problem specification (4). From the
resulting 5 x _ array only those combinations indicated were selected for coding.

Programmers C and D are highly experienced programmers each with a strong
background in technical programming extending over several years as opposed to the
relative inexperience of programmers A and B. Programmer E has little more work
experience than B, but is considered a senior programmer in terms of job
performance and the quality of the experience. In coding problem t/4, program design
skills are emphasized more than the combined analysis/design skills called for in
coding the other three problems. Programs A3 and B3 have been rerun with a
different usage distribution. Programmers C and D reprogrammed problem 4/3 in the
ZS000 assembler language of the ONYX micro computer. FORTRAN is the language
common to all of the other programs written for this study. Programmers D and E
each programmed problem #1 and the new problem in FORTRAN.

It was the intent of the original design, that programmer C would assume the role
subsequently played by programmer E. Unfortunately, though not discovered until
nearly the end of the coding of C3, this programmer was undergoing a difficult period
of personal stress. As this condition was influencing the quality of the work being
performed, a substitution was necessary for the remaining work in the design. The
data for C3, though it is included in this report for consistency, should be considered
with some caution, particularly when compared across treatments in the design.

2.3 DATA RECORD

For each test condition, i.e., programmer-problem combination, and for each run, the
number of executions until failure for each stage is recorded together with the error
number of the error causing failure. In some cases, when a clock with sufficient
sensitivity was available for the machine in use at the time, the total time between
failures of the program was also recorded. The total data base recorded for this
experiment is presented in Appendices D through K.
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3.0 EXPERIMENT DATA COLLECTION

3.1 INTRODUCTION

The gathering of statistics on the failure detection/error correction process involves
embedding the subject programs in a software-test environment. The overhead
programs of the experiment as well as operational details are fully described in
reference [ 1].

In the current study, the DEC VAX/VMS System was extensively used for 3 of the #
problems. The remaining problem was run on the ONYX Microcomputer, a Zg000-
based system with the UNIX TM operating system. Z8000 Assembly Language was
used in this latter problem and FORTRAN was used in the other problems.

This chapter and the referenced appendices present the data-collection results of the
experiment. Also included is a brief description o¢ the programmers' backgrounds.

There are four parallel sections (3.3_ 3.4_ 3.5, and 3.6) corresponding to the four
problems of the experiment. Each of these sections together with corresponding
appendices and material in reference [ I] where appropriate, gives background
information on the problem specifications and correct version_ descriptions of test
cases and the usage distribution of the experiment runs.

A tabulation of software errors is given for each subject program. The identified
errors are categorized using the categories in reference [2 ]. These categories are
given in Appendix A.

UNIX is a trademark of the Bell Laboratories.

3.2 PROGRAMMER DESCRIPTIONS

Programs from five programmers (labeled A9 B_ C, D9 and E) have been used in the
current study. Programmers A and B were also involved in the previous work [11,

Programmer A received a B.S. degree in Computer Science in 1979, and joined BCS in
3une 1979 as a programmer. The principal job of this programmer has been to
support and enhance a geometry package used to design wing and body configurations.
Past experience in the field of computer science has emphasized structured software
design, development and languages_ including FORTRAN_ Pascal_ ALGOL_ SNOBOL
and COBOL.

Programmer B received a B.S. degree in Computer Science in 197_ and joined BCS in
.. 3anuary 1976 as a programmer. B has worked on nuclear-waste engineering and

radiation-monitoring problems, using FORTRAN on a variety of machines. Later
assignments have involved integration testing on the AWACS program using 3OVIAL
languag% and conversion of a missile-simulation program and graphics package from
and IBM machine to the VAX/VMS system.

Programmer C received a B.S. in Physics in 1967 and a Ph.D in Astronomy in 1979
and has had extensive experience in both scientific and systems work. Scientific
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applicationshave included submarine avionics and navigation algorithms. The
experiencein systems work has involvedexecutive systems,I/0interfacesand real-

time data acquisition. C is familiarwith CDC, DEC and IBM mainframes plus
FORTRAN, CMS-2 and a varietyof assembly languages.

Programmer D graduated in 1962 with a B.S. in Mathematics and in 1964 with an M.S.
in Math and currently has over 20 years experience in systems and software
development. This experience has included participation in large-scale applications
scientific software development and extensive research in software validation and
verification technology. D is familiar with a variety of host mainframes, FORTRAN,
PASCAL and assembly languages.

Programmer E received a B.S. degree in Computer Science in 1979 and joined BCS
shortly thereafter as a software engineer. Assignments have included design and
development of a variety of software tools, including graphics software, Data
Manipulation Language precompiler, PL/I dynamic analyzer, HAL/S static and
dynamic analyzer, and a state-of-the-art symbolic execution tool for HAL/S.
Language proficiencies include Pascal, FORTRAN and Basic, and a working knowl-
edge of HAL/S, Lisp, SNOBOL, Simula and APL. E has worked on CDC and DEC
mainframes.

E was chosen to participate in the study as a senior programmer, based not on years
of experience alone, but more importantly on versatility; E has had much more
experience with a variety of languages compared to programmers A and B. In
addition, E's applications have also been more varied than those of A and B, ranging
from scientific programming to compiler construction. However, maturity based on
years of experience is also a part of one's seniority, which E is still increasing.
Consequently, the study findings with regard to the effects of seniority may be
clouded by the difficult question of what constitutes seniority in computer
programming.

3.3 PROBLEM#1

3.3.1 Background

The problem used in Problem #3 of reference [ I ] was used in the present study to
consider the effects of a different usage distribution. That program involved earth-
satellite calculations for which programmers A and B designed, coded and tested
their individual programs, A3 and B3, respectively. Those same programs were used
in the present study but with another usage distribution of the input data. They are
labelled A3* and B3*, respectively, to differentiate findings. See reference [ I ] for
program specifications, test cases, and a description of the correct version.

3.3.2 Usage Distribution

Three latitude-longitude coordinates on the Earth are required inputs, as well as an
angle between 0o and I g0o. In the previous study, the distribution for the
latitude-longitude coordinates was uniform over the sphere, but rounded to the
nearest 5° in both latitude and longitude. The distribution for the angle was uniform
between 0o and 180 ° with no rounding.



The distribution for the three latitude-longitude coordinates has been changed to
allow more latitudes at or near the equator. Figure 3,3,2-1 illustrates the triangular

- distribution centered at the equator (0o latitude) used for latitudes, Longitude
coordinates are still uniform over the sphere) and both latitude and longitude
coordinates are rounded to the nearest 5°. The continuous curve in Figure 3.3.2-1
approximates the discrete curve resulting from latitude rounding. The distribution
for the angle remains uniform between 0o and 150o with no rounding,

3.3,3 Error Descriptions

The same errors occurring for B3* and all errors but No, 5 in A3* in reference [ I ]
were also detected and corrected in the present study. Subject program A3* had ten
software failures) for which six errors were corrected. Subject program B3* had
seven different software failures for which five software errors were corrected,

(Note that in sections $.5.6 and 4.5.7 of reference [ 1 ] ) the descriptions of A3 and B3
are transposed,)
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3.3.3,1 Subject Program A3*

ERROR CLASSIFICATION
NUMBER CODE DESCRIPTION

1 A800 The determination of the sign of the azimuth
was not done.

2 A600 The algorithm to determine the order of the
two intersection points was incorrect.

3 A900 The argument for arccos was greater than 1.0
or less than =1.0.

4 A600 The algorithm to determine intersections
failed to find a correct intersection point.

5 Ag00 The argument for arcsin and/or arccos was
greater than 1.0 or less than -1.0.

6 A600 The sign of the calculated azimuth was
incorrect, when the magnitude of the azimuth
is pi.

7 A600 Determination of colinearity of two coor=
dinates and the center of the earth was
incorrect,

8 A600 There was an accuracy failure in some output
item (relative error > I%).

9 A600 There was division by zero when determining
intersections.

10 A600 The azimuth was incorrectly calculated as 0)
when the correct value was pi.

II



3.3.3,2 Subject Program B3 _

ERROR CLASSIFICATION
NU MBER CODE DESCRIPTION

1 A600 The determination of the sign of the azimuth
was incorrect,

2 AS00 There were uninitialized variables when cross-

product calculations were bypassed under
certain conditions.

3 A900 The argument for arccos was greater than 1,0
or less than =I.0.

# A600 The algorithm to determine intersections
calculated the wrong point of intersection.

5 A600 The azimuth was incorrectly calculated when
the path went through either the north or
south pole,

6 A600 The algorithm for calculating intersections
failed to determine the correct number of
intersections.

7 A600 There was an accuracy failure in some output
item (relative error > 196).

12



3°3.4 Run Results

_ 3.3.4.1 Subject Program A3*

Figure 3.3.4.1-1 presents the results of the experiment for subject program A3*.
- This figure, as well as those for the remaining programs (3.3.4.2-19 3.t+.3.1-19 3.4.3.2-

1, 3.5.3.1-19 3.5.3.2-1, and 3.6.7-19, traces the 50 runs for the particular program.

The figure is composed of levels, or stages, of program states, where each stage is
defined by the number of errors detected. Beginning with state 09 the occurring
program states and their frequencies are shown for the 50 runs. The encircled
number(s) represent a program state, in particular, the error numbers of the
corrected errors. For example) 12 is a given subject program with errors #1 and #2
corrected. A subject program at state 0 is identified with 0 following the program
name and dash, e.g., A3*-0. The directed line segments represent the random walk
of the subject program going from one state to another) i.e., having one or more
errors corrected. The number to the left of this line segment is the number of runs
experiencing that particular change in state.

For example9 using Figure 3.3.4.1=1 and beginning with state 0 (A3*-0), $7 of the runs
experienced error #1 first and errors #2, #7 and #9 were initially experienced by a
single run each. As shown in the table to the right of the figur% these 50 runs
required a total of 187 input cases for the first error(s) to occur.

From these states the runs continue to another stage. Note that not all 50 runs
continue through all stages, because some errors detected are not corrected. In
general, the number of input cases per run required to detect errors increases as the
stage increases.

Because of the complexity of the figure, multiple failures on the same case are not
indicated in the figure, (as was included in similar figures in reference [ 11), but
instead the trace follows the error numbers of the multiple failure in sequence.

3.3.t_.2 Subject Program B3*

Figure 3.3.4o2-1 illustrates the result of the software failure/error correction process
for B3*. Similiarly to Figure 3.3.4.1-1, multiple failures on the same case are not
shown in Figure 3.3.4.2-I.

3.4 PROBLEM #2

" 3.4.1 Background

The program for Problem 413 of reference [ 1 ] served as the basis for Problem 4/2 of
this study to consider the effects of computer language. Programmers C and D
designed and coded their respective programs in ZS000 Assembly Language based on
the program specifications from the first study. The subject programs are labelled
C3 and D3, respectively. The same test cases and usage distribution from that study
were used again. See reference [ 1] for program specifications, test cases, usage
distribution, and a description of the correct version.

13
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ERRORS RUNS TOTAL
DETECTED CASES

47

1 50 187

2 49 1521

3 45 1667

1 1

4 30 2086

1 1

5 15 964

EXPLANATION I
a = error#10

Figure 3.3.4.1-1 .' Trace of Runs for Subject Program A3*.



" ERRORS RUNS TOTAL
DETECTED CASES

48

/
1 50 127

7
2 50 2459

3 46 4852

1

4 38 7137

5 20 6703

6 3 1373

Figure 3.3.4.2-1. Trace of Runs for Subject Program B3*.

15



3.4.2 Error Descriptions

During the experiment for Problem #2, subject program C3 had 13 software, all of _
which were corrected. Subject program D3 had 15 failures with 13 corresponding
corrected software errors.

16



3.4.2.1 Subject Program C3

ERROR CLASSIFICATION
NUMBER CODE DESCRIPTION

I Ag00 There were spurious or missing intercepts.

2 A600 The computed longitude of the intercept was
off by a factor of 2 pi.

3 A600 The computed latitude of the intercept was
off by a factor of pi.

A600 The algorithm to determine the order of the
two intercepts was incorrect.

5 A600 The sign of the calculated azimuth was
incorrect when the magnitude of the azimuth
was pi.

6 A600 An accuracy failure caused a refinement of
error No. 2.

7 A600 The azimuth was incorrectly calculated when
the path went through either the North or
South Pole.

g Ag00 Intercepts were incorrectly calculated for
coincident or antipodal points.

9 A600 A refinement of error No. 7 was necessary to
correctly calculate intercepts for North Pole
cases.

I0 Ag00 Intercept cases were incorrect when all three
points lay on a great circle.

I I A600 A refinement of error No. 2 was necessary.

12 A600 The computed longitude was close to 2 pi
instead of O.

13 A600 A further refinement of error No. 2 was
necessary.
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3.4.2.2 Subject ProgramD3

ERROR CLASSIFICATION
NUMBER CODE DESCRIPTION

1 A600 The determination of the sign of the azimuth
was incorrect.

2 A800 The calculated intercepts were incorrect due
to inadequate checking of quadratic solutions.

3 A600 The azimuth was incorrect by a multiple of pi.

4 A600 Calculated intercepts were incorrect due to
wrong testing of point=solutionangles.

5 A600 The algorithm to determine the order of the
two intersection points was incorrect.

6 A600 There was a division by zero when determining
intercepts.

7 A600 The azimuth was incorrectly calculated when
the path went through either the North or
South Pole.

8 A600 A refinement of error No. 6 was necessary.

9 A600 An azimuth of -pi was calculated when the
correct value was +pi.

I0 A600 A refinement of error No. 8 was necessary.

II A600 There was an accuracy failure in some output
item (relative error > I%).

12 AS00 A "tangent point" intercept was not detected.

13 A600 A refinement of error No. 7 was necessary.

14 A600 There was an incorrect intercept of (0, pi) "
when 3 longitude coordinates were identical.

15 A600 There was an incorrect intercept in which a
calculated longitude was 2 pi instead of pi.

18



3.4.3 Run Results

3.4.3.1 Subject Program C3

Figure 3.4.3.1-1 shows the results of the software failure/error correction process for
C3. Because of the complexity of the figure, multiple failures on the same case are
not shown, but instead the trace follows the error numbers of the multiple failure in
sequence.

3.4.3.2 Subject Program D3

Figure 3.4.3.2-1 shows the corresponding results of the experiment for program D3.
As was the case in Figure 3.4.3.1-1, multiple failures on the same case are not shown.

3.5 PROBLEM #3

3.5.1 Background

The program in Problem #l of reference [ l] served as the basis for Problem #3 of
the current study. The original program is a missile-tracking simulation described in
reference [2 ]. Two senior-level FORTRAN programmers, D and E, were given the
specifications of the program. They then designed, coded and tested their own
versions. Their programs are designated DI and El with reference to Problem #1 of
the original study. See reference [ l] for program specifications, test cases, usage
distribution and a description of the correct version.

3.5.2 Error Descriptions

In the course of the experiment for Problem #3, subject program DI had 4 detected
software failures and corresponding corrected errors. Subject program El had 6
detected failures, for which there were 6 corresponding errors corrected.
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ERRORS RUNS TOTAL
DETECTED CASES

7
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C)

1 50 112

6" 1

2 5O 86

1 1

3 50 89

4 50 198

1

1

5 50 4720

6 50 6763

1
I

i

7 50 12.459

__/) EXPLANATION 3

• - error • 10
b-error•It
€ error • 12m

12345 d - error # 13 8 33 24,404

Figure 3.4.3.1-1. Traceof Runsfor SubjectProgramC3.
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ERRORS RUNS TOTAL
DETECTED CASES

3$

1 50 71

1
1

2 50 106

3 50 1257

4 50 1742

2

5 50 5010

1
!

1

6 50 23,024

7 50 45,542

8 50 153,045

.. 1 EXPLANATION

a = error#10
b = error#11
c = error # 12 9 15 19,838
d = error#13
e = error#14
f = error#15

Figure 3.4.3.2-1. Trace of Runs for Subject Program D3.
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3.5.2.1 Subject Program DI

ERROR CLASSIFICATION
NUMBER CODE DESCRIPTION

1 Ag00 The argument for square root was a very small
negative number.

2 Ag00 The argument for arccos was greater than 1.0
or less than -1.0.

3 Ag00 The argument for arccos was greater than 1.0
or less than -I.0.

4 A900 The argument for square root was a very small
number.

3.5.2.2 Subject Program El

ERROR CLASSIFICATION
NUMBER CODE DESCRIPTION

I A600 An incorrect equation was used to calculate
the area of a triangle.

2 A600 An incorrect algorithm was used to calculate
the angles of a triangle.

3 A600 An incorrect equation was used to calculate
the area of a triangle.

4 A600 Wrong subscripts were used in the algorithm to
determine point coverage by a circle.

5 Ag00 The argument for arccos was greater than 1.0
or less than -I.0.

6 A600 There was a division by zero.
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3.5.3 Run Results

_ 3.5.3.1 Subject Program DI

Figure 3.5.3.1-1 presents the results of the software failure/error correction process
for DI.

3.5.3.2 Subject Program El

Figure 3.5.3.2=1 illustrates the results of the software failure/error correction
process for El.

3.6 PROBLEM #4

3.6.1 Background

Algorithms of the Association for Computing Machinery (ACM) are a collection of
published and extensively tested routines used primarily for scientific applications.
Algorithm 479, A Minimal Spanning Tree Clustering Method [ 3], was chosen as the
correct version for Problem #4. This FORTRAN subroutine determines cluster-

membership of two-dimensional coordinates based on several cluster-description
parameters. Programmers D and E designed and coded programs D4 and E4,
respectively, to test against this correct version.

3.6.2 Specifications

Cluster-membership determination is based on first constructing a minimal spanning
tree connecting all of the input two-dimensional coordinates. Dijkstra [ 4 ] presents
an efficient algorithm for this construction. Zahn [ 5 ] then uses this spanning tree to
determine cluster membership. Specifications were provided to the programmers,
based on these latter two references. The complete specifications for Problem It t)
are presented in Appendix B.

3.6.3 Test Cases

Two test cases were used to bring both subject programs D4 and E4 to state 0. The
test cases and corresponding correct output are presented in Appendix C.

3.6.4 Usage Distribution

The usage distribution was designed to simulate randomly occurring clusters ("shotgun
shots") each with a random number of points ("pellets").

The coordinates of the points are generated for each input case in the following
manner:

I. Pick n, the number of clusters, uniformly in [ l, 2, 3, 4, 5 ].

2. For each cluster, choose a center from the distribution shown in Figure
3.6.4-1.
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ERRORS RUNS TOTAL -
D1-0 DECECTED CASES

31 1

1 2 3 1 50 38,126

2
17

12 13 23 2 50 88,243

24

• __ 134 3 50 147,941

Figure 3.5.3.1-1. Trace of Runsfor Subject Program D1.
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ERRORS RUNS TOTAL
DECECTED 'CASES

17

1
1 50 65

17

12 24 2 50 72

1 2
2 1

134 3 50 497

2
1

1235 4 50 794

1
18 31

5 50 65,5O7

31 118

6 50 109,512
123457

Figure 3.5.3.2-1. Trace of Runs for Subject Program El.
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P(A) = 75%, uniformly distributed within A

P(B) = 25%, uniformly distributed within B

Figure 3.6.4-1. Usage Distribution for Cluster Centers.
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3. For each center, choose a radius R, uniformly in [1,5].

. q. Pick m, the number of pointsfor each cluster,uniformlyin [1,2,3,0,5].

5. Calculatethe sphericalcoordinates(r,8)foreach pointin one cluster,for r
uniform in [0,R] and 0 uniform in [0,2_r].

6. Calculate rectangular coordinates for all points from the spherical
coordinates.

In thisway, each inputcase has from I to 25 2-dimensionalcoordinatesrepresenting
from I-5clusters.

The same clusterparameters (F,Sand D) used inthe testcaseswere partof the input
casesdescribedherein.

3.6.5 Correct Version

Correctness of the output was determined by composing the subject program's output
with that from ACM Algorithm #79 [ 3].

3.6.6 Error Descriptions

In the course of the experiment for Problem 4/4, both subject programs D_ and E4 had
only one detected software failure, both of which were corrected.

The software error (Classification Code AS00) in program D4 was the lack of
provision to handle the special case of only one point in the input data.

Program E# software error (Classification Code A600) was the use of incorrect
subscripts in calculating the standard deviation of nearby branches.

3.6.7 Run Results

The results of the software failure detection/error correction process for both
subject programs D4 and E4, are shown in Figure 3.6.7-I.
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ERRORS RUNS TOTAL
DECECTED CASES

1 50 1519

2 0 25,000

ERRORS RUNS TOTAL
DECECTED CASES

1 50
285

2 0 22,000

Figure 3.6.7-1. Trace of Runs for Subject Programs D4 and E4.
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4.0 DATA ANALYSIS

The data obtained in this test has been used to explore a number of possible
relationships. Some of them are motivated by the need to measure and evaluate a

- few of the more popular assumptions regarding the probabilistic failure structure of
software. Some of them are motivated by new theoretical results. Some of them are
motivated by an interest in determining if programmers display any similarity in the
errors made or, more significantly, in the rate at which their errors are detected,

The first study demonstrated that errors are distributed with widely varying failure
probabilities and that the logarithms of these probabilities show a nearly linear
decrease when plotted as a function of the number of errors corrected. These results
are re-explored in the current study as well as several other issues associated with
the design of this experiment.

4.1 ERROR PROBABILITIES

One of the major concerns of the original project at the time it was first proposed
was a concern that the models of the day made the assumption that errors embedded
in a particular code are identically distributed regardless of the mechanism guiding
their identification and withdrawal. In reference [ 1]) Table 5o2-1) experimental
evidence was offered that seriously negates this assumption by every one of the six
codes developed for that project.

The same is true of the current project. Estimates of the error probability for each
of the errors discovered during simulation for a given code are summarized in
Table 4.1-1. The estimates are computed for the i'th error by

A r.

Pi- 1
TTT.

i

where ri is the actual number of occurrences of the error in the 50 runs and TTT i is
the total time on test function. TTT i is the sum of all the life lengths of the
particular error measured from time 0, with the simulation in its initial state) to the
time of occurrence of the error if it did so, or to the time the simulation was
terminated for the run if it did not.

The table indicates a behavior very similar to that observed in the first study. In
every situation a wide range of probabilities are observed. In one case, the range
extends from 5x10 -I to 6x10 =6.

4.2 STAGE PROBABILITIES

The probability for the i'th stage has several interpretations depending on the
conditional information contained in the previous i=1 stages available to the
researcher, The ramifications of this remark will be discussed more completely in
Section 5,0) but in this section the stage probability of interest will be considered to
be conditional on the number of errors corrected prior to the initiation of the stage.
Table 4.2-I gives estimates for the stage probabilities for the experiments conducted
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TABLE 4.1-1

SPECIFIC ERROR PROBABILITIES - RANKED ESTIMATES

Error Error
Prog. Error No. of Prob. Per Prog. Error No. of Prob. Per

No. Failures Execution No. Failures Execution

A3* I 49 2.50xi0-I B3* I 50 3.85xi0-I

2 36 1.63xi0-2 2 44 1.26xi0-2

7 25 7.05xi0-3 5 35 4.74xi0"3

6 18 3.23x10-3 7 45 1.99xi0-3

4 18 2.80xi0-3 4 25 1.79xi0-3

I0 16 2.49xi0-3 6 5 2.21xi0-4

3 13 2.31xi0-3 3 3 l.#2xlO-_

8 8 1.25x10 -3

9 7 1.09x10 -3
5 Did Not Occur

C3 1 50 3.29x10 -1 D3 1 50 4.67x10 -1

3 50 2.25x10 -1 2 50 3.38x10 -1

2 50 1.77x10 -1 4 50 2.75x10 -2

4 50 1.14x10 -1 3 50 7.70x10 -3

5 4q 4.04x10 -3 5 50 7.04xi0-3

7 42 2.79x10 -3 7 q3 6.Sqx10 "4

6 40 1.94x10 -3 10 46 2.85x10 -4

9 30 4.76x10 -4 8 34 1.74x10 "4

8 19 4.02x10 -q 6 28 1.69x10 -4

11 15 2.27x10 -4 9 6 2.44x10 -5

10 5 7.57x10 -5 11 3 1.20x10 -5 -

13 2 3.03x10 -5 12 2 8.01x10 -6

12 I 1.52xi0-5 13 I #.OlxlO-6

14 l 4.01xlO-6

15 I 4.01xi0-6
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TABLE _.I=I (Continued)
SPECIFIC ERROR PROBABILITIES = RANKED ESTIMATES

Error Error

Prog. Error No. of Prob. Per Prog. Error No. of Prob. Per
No. Failures Execution No. Failures Execution

DI I 50 9.37xi0 =4 El 2 50 4.59xI0 -I

2 49 2.71xi0 -4 I 50 4.42xi0 -I

3 50 2,67x10 -4 3 50 6.41x10 -2

4 1 3.44xi0 =6 4 50 3,30xi0 -2

5 50 5.04x10 =4

6 49 3.51x10 -4

7 1 5.81x10 -6

D4 1 50 3.29x10 =2 E4 1 50 1.75x10 -1

2** 0 < 3.77x10 -5 2** 0 < 4.48x10 =5

** No second error encountered in 25,000(D4) and 22,000(E4) additional runs.
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TABLE 4.2-I

STAGE PROBABILITIES AS A FUNCTION OF THE NUMBER OF CORRECTED ERRORS

No. of Stage No of Stage _
Prog. Corrected Prob. Per Iln PI Prog. Corrected Prob Per Iln PI

Errors Execution Errors Execution

A3* 0 2.67x10 -1 1.32 B3* 0 3.94x10 -I 0.93

1 3.20x10 -2 3.44 1 2.03x10 -2 3.90

2 2.45x/0 -2 3.71 2 9.31x10 -3 4.68

3 1.41x10 -2 4.27 3 4.79x10 -3 5.34

4 1.16x10 -2 4.45 4 2.98x10 -3 5.81

5 2.08x10 -2 3.87 5 2.18x10 -3 6.13

C3 0 4.46xi0-I 0.81 D3 0 7.04x10 -1 0.35

I 3.76x10 -1 0.98 l 4.07x10 -l 0.90

2 2.84x10 -I 1.26 2 3.97x10 -2 3.23

3 2.02x10 -1 1.60 3 2.45x10 -2 3.71

4 /.06x10 -2 4.55 4 9.78x10 -3 4.63

5 6.12x10 -3 5.10 5 2.17x10 "3 6.13

6 3.54x10 -3 5.64 6 1.10xl0 -3 6.81

7 1.32x10 -3 6.63 7 3.27x10 -4 8.03

8 8.72x10 -3 7.05 8 7.56x10 -4 7.19

DI 0 1.31x10 -3 6.64 El 0 7.69x10 -1 0.26

1 8.95x10 -4 7.02 1 5.62x10 -1 0.58

2 2.53x10 -4 8.28 2 1.01xl0 -1 2.30

3 6.14x10 -2 2.79

4 7.63x10 -4 7.18

5 4.75x10 -4 7.65

D4 0 3.29x10 -2 3.41 E4 0 1.75x10 -1 1.74

I** <4.00x10 -5 1"* <4.54x10 -5

No second error encountered.
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for this study andis comparableto Table 5.3-1 of reference [ 1.]. The entry for line i
of this table estimates the conditional probability that a random execution of the

_ program indicated will result in an error given that i-I errors have been corrected.
This probability has averaged out all of the effects due to stat% that is9 all of the
effects due to the particular set of errors corrected and their order of correction.
Since these effects do exert a random influence on this conditional probability_ the
actual probability is a random variable and the estimates in this table represent the
rate associated with the mean number of executions to failure for the i'th stage. The

first stage is based on the program in its initial state as defined by the static
detectors9 with all of the programVs remaining errors intact.

Figure 4.2-I is a graph of these probabilities as a function of the number of errors
corrected for the programs of this study. For comparison_ Figure 4.2-2 is a graph of
the results obtained in the first study, More detailed comparisons will be made in
later sections_ but it is notable that for all their diversity the graphs of this
experiment are strikingly similar to those of the previous study and exhibit a similar
degree of linearity.

One of the more difficult problems in modeling from these graphs involves the
definition of the origin on the horizontal axis. The reason for this difficulty is that
highly probable errors indicate programs that are not well checked out. Although
minimum codes are screened by the initial static program tests_ the actual state of
the program at this time is not controlled and is_ among other variables_ a function of
the time spent in the programming activity or the rate at which programming is
conducted. The most interesting feature of these graphs is their slope9 particularly
at maturity_ and too many of the early_ highly probable errors remaining in the codes_
can exert undue influence.

Reference [I ] discusses this problem in some detail and introduces an ad hoc
definition of the initial error state as minlln Pil_>l.0 where Pi is the i'th stage
probability. A more interesting definition might involve sliding the graphs horizon-
tally_ so that the pairwise vertical distances between observed points is optimal in
some sense. Since this seemed beyond the intent of the study at this timer the data
of Figure 4.2-I was replotted in Figure 4.2-3 using the definition of reference [ I ] °

The advantages of using this definition of origin in reference [ I ] seemed minimal at
best and these results seem to confirm it.

4.3 EFFECT OF USAGE DISTRIBUTION ON ERROR RATE

One of the issues of interest in this experiment was a "comparison of the effect of
using two quite different usage distributions on error detection. The hypothesis had
been proposed that the more uniformly inputs are selected the more linear the graph
of the log rate parameter. Of the specifications described in reference [ I ]_
problem 3 had the most uniform requirement on input usage and therefore was
selected as a candidate for exploring this hypothesis.

Two new experiments were run: one based on the code labelled A3 of reference [ I ]
and the other on code B3. The new non-uniformly weighted usage distribution is
described in Section 3. Tables 4.3-I and 4.3-2 compare the results of the four
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Figure 4.2-1. Estimated Error Rate as a Function of the Number
of Errors Corrected-- Original Data Current Study.
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NUMBER OF ERRORSCORRECTED

Figure 4.2-2. Estimated Error Rate as a Function of the Number
of Errors Corrected -- Original Data Study No.:L
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Figure 4.2-3. Estimated Error Rate as a Function of the Number
of Errors Corrected -- Modified Origin.
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TABLE _.3-1

COMPARING THE EFFECT OF UNIFORM AND NON-UNIFORM

• USAGE DISTRIBUTION ON ERROR PROBABILITIES

Uniform (Study #1) Non Uniform (Current Study)
Error Error

Program Error Prob. Per Program Error Prob. per
Execution Iln PI Execution Iln PI

A3 l 2.37x10 -I 1.44 AB* 1 2.50xi0 -1 1.39

2 1.78x10 -2 4.03 2 1.63x10 -2 4.12

3 2.51x10 -3 5.99 3 2.31x10 -3 6.07

4 2.37x10 -3 6.04 4 2,80x10 -3 5.88

5 1.03xlO-2 4.53 5** 1.56xi0-4 8.77f

6 1.16xlO-2 4.46 6 3.23xi0-3 5.73

7 4.08xi0-3 5.50 7 7.05xi0-3 4.95

8 1.33xi0-3 6.59 8 1.25x10-3 6.69

9 1.97xi0-4 8.53 9 1.09xi0-3 6.82

I0 3.15xi0-3 5.76 I0 2.49xi0-3 5.99

** DID NOT OCCUR

B3 l 3.29x10 -1 l.l I B3* 1 3.85x10 -1 0.95

2 8.13x10 -2 2.51 2 1.26x10 -2 4.37

3 3.08x10 -4 8.04 3 1.42x10 -4 8.86

4 1.53xi0-3 6.48 4 1.79xi0-3 6.32

5 4.55XI0-3 5.39 5 4.74X10-3 5.35

6 3.84XI0-4 7.86 6 2.21x10-4 8.42

7 1.75XI0-3 6.35 7 1.99xi0-3 6.22
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TABLE 4.3=2

COI_PARING THE EFFECT OF UNIFORM AND NON=UNIFORM

USAGE DISTRIBUTION ON STAGE PROBABILITIES

Uniform (Study #1) Non-Uniform (Current Study)
No. of Stage No. of Stage

Program Corrected Prob. Per Iln PI Program Corrected Prob Per Iln PI
Errors Execution Errors Execution

A3 0 2.49xi0 =I 1.39 A3* 0 2.67xi0 =I 1.32

I 5.38xi0 =2 2.92 I 3.20xi0 =2 3.44

2 3.52xi0 =2 3.35 2 2.45xi0 =2 3.71

3 2.69xi0 =2 3.62 3 1.41xI0 =2 4.27

t_ 2.30xi0 =2 3.77 4 1.16xl0 =2 4.45

5 1.29xi0 -2 4.35 5 2.08xi0 =2 3.87

B3 0 3.65xi0 -I 1.01 B3* 0 3.gt)x10 =I 0.93

I 1.04x10 =I 2.27 I 2.03xi0 =2 3.90

2 1.02x10 -I 4.58 2 9.31xi0 =3 4.68

3 4.68x10 -3 5.36 3 4.79x10 -3 5.34

4 2.41x10 -3 6.03 4 2.98x10 -3 5.81

5 1.2t4xlO=3 6.69 5 2.18x10 -3 6.13
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experiments on the error probabilities and on the stage probabilities respectively and
Figure 4.3-1 plots the stage probabilities for all four as a function of the number of
errors corrected. Figures 4.3=2 and 4.3-3 pair the results of the two experiments by
error number and by stage.

- Figure 4.3-1 indicates that a drastic change in usage distribution seems to alter the
detection process but in ways that maintain the basic patterns of detection. Figure
4.3-2 indicates that some of the error probabilities are severely altered by a change
in usage, but that these differences average into the stag e probabilities and have a
less pronounced impact. There does not seem to be a great deal of support for the
hypothesis referred to earlier but it is extremely premature to make any kind of
judgment at this time.

4.4 EFFECT OF EXPERIENCE ON ERROR RATE

Experience was a deliberate design factor of this experiment, and the four codes
written for problem #1 can be compared in order to partially understand the effect of
this variable. Programmer D is a very mature programmer with over 20 years of
experience. B and E are professional programmers, each with about five years of
experience, but programmer E has had a richer, more varied exposure to computer
science which manifested itself in a more sophisticated9 more structured coding style
for problem #1. Programmer A is the most junior of the group.

Figure 4.4-I compares the four programs AI, BI, DI and El using stage probability as
a function of the number of errors corrected. As there were some errors in the

published table for AI_ and BI has been recalculated according to the suggestion of
reference [ 1], page 53, the recomputed values of both the individual error probabili-
ties and the stage probabilities for these programs are given in Table 4.4-1.

The graphs are somewhat surprising in that except for the position of the crossing at
zero, the slopes of the linear tendency in aU cases are fairly similar and show no
particular difference as a function of experience. Since D is by far the most
experienced of the four programmers, it would seem that this experience greatly
affects the initial zero crossing but affects the remaining structure only slightly.

4.5 EFFECT OF LANGUAGE ON ERROR DETECTION

Since reasonably efficient assembler=level programmers are usually found only in
experienced professionals, these two factors are confounded in the next comparison.
It is expected, however, that the effect due to language will far outweigh the effect
of experience particularly in light of the results of the previous section. It will be.r

assumed therefore that the observed differences are due to language alone and leave
the subtleties of interaction to other researchers.

Figure #.5-1 makes this comparison as before in terms of the stage probabilities. All
of the four programmers are coding problem 3 with the junior level programmers A
and B writing in FORTRAN and the senior programmers C and D writing in the
assembler language for the ONYX Microcomputer. Figure 4.5-2 compares the same
assembler language program of programmer D to another program by D written in
FORTRAN for another problem.
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Figure 4.3-2. Comparing the Effect of Uniform and Non-uniform
Usage Distributions on Error Probabilities.
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Table #.#=I

RECOMPUTED ERROR PROBABILITIES FOR

STUDY NO, 1 = RANKED ESTIMATES

Error Error

Prog. Error No. of Prob. Per Prog. Error No. of Prob. per
No. Failures Execution No. Failures Execution

A 1 1 50 8.20x 10-1 B 1 1 50 1.52x I0-1

2 50 9.84x10 -2 4 50 6.89x10 -3

4 30 1,22x10 -3 5 46 2,38x10 -3

3 26 g.04xl0 "4 6 25 2.23x10 -4

5 23 #.16x10-4 8 II 1.07x10-4

6 22 3.81xi0 -4 7 12 9.84x10 -5

8 14 2.42xi0 -4 9 3 2.68xi0 -5

I0 5 8.66xi0 -5

7 I 1.73xi0-5

9 I 1.73xi0-5

RECOMPUTED STAGE PROBABILITIES

STUDY #I

No. of Stage No. of Stage
Prog. Corrected Prob. Per Iln P I Prog. Corrected Prob Per Iln PI

Errors Execution Errors Execution

AI 0 ' 9.80x10 =1 0.02 BI 0 1.52x10 -1 1.88,

1 1.07x10 -1 2.24 1 8.80x10 =3 4.73

2 2,65xi0 =3 5.93 2 3.48xi0 =3 5.66 .

3 2.04xi0 =3 6.19 3 4.99xi0 =4 7.60

4 9.96x10 -4 6.91 4 5.21x10 =4 7.56 -

5 " 6.05x10 -4 7.41
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Figure 4.5-1. Effect of Language / Experience on Log Failure Rate
as a Function of the No. of Errors Corrected.
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The graphs in Figure 4.5-2 suggest that assembler language, as expected, has a strong
effect on the failure structure of software. Those in Figure 4.5-1 suggest that it is

- equivalent to several years of experience. That is, the performance of an experi-
enced programmer writing in a low-level language is little different in terms of error
structure from a novice programmer writing in FORTRAN. When comparing the

- performance of a single programmer using high- and low-level languages) the
differences are even greater but primarily one of zero crossing rather than slope.
The surprising result in all of these charts is that slope varies so little across widely
varying conditions.

4.6 EFFECT OF PROBLEM TYPE ON ERROR STRUCTURE

Program 4 was selected to emphasize a still different process in program develop-
ment. Programs 1_ 2 and 3 were selected, somewhat naively, as problems offering
enough challenge to the programmer to cause errors) without being so difficult that
programming would take weeks of effort. In thinking about the task of scientific
programming, however, it seems that there are at least two broad categories
depending on the nature of the problem) one primarily involving analysis and the
other primarily involving program design, and that all programs represent some mix
of these two. Problems 19 2 and 3 place most of their emphasis on analysis and little
on design so a 4th problem was selected with design in mind. Unfortunately) the
problem selected offered little challenge to experienced programmers and only a
single error was detected for each programmer in the more than 47,000 executions
conducted to date. See Table 4.2-1 for a summary of this data.

4.7 EXPONENTIAL ASSUMPTION AND TIME BETWEEN SOFTWARE FAILURES

In Section 5.0 of this document, analytical results are presented that show that the
unconditional times between failures under a very general model of software failure
are not exponentially distributed nor are they mutually independent. This has
particular impact on the analysis of the data of this experiment since the
consequence of this result means that the distribution of time to next failure) that is
the distribution of stage failure, is not exponential and is in fact dependent on the
history observed to that stage.

The unsuitability of the exponential assumption was known at the time of the first
study and a result was presented in reference [ I ] that showed for a special case that
the distribution of the time to next failure was an exponential mixture with
decreasing failure rate. Since an exponential mixture distribution is still monotone
decreasing everywhere, an exponential approximation to the mixture might be
reasonable. This has been explored for several stages and programs in terms of the
cumulative distribution of the observed data plotted as if it were exponentially
distributed. That is) if the data set is exponential the log of the survivor function

_ plotted against the ordered observations should approximate a straight line. The
survivor function in the case of noncensored data is defined as

R(t(i )) = 1 - i/n

Log survivor functions for several program-stage combinations have been plotted in
Figures 4.7-I through 4.7-4.
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Figure 4.7-1. Minus Log of Observed Survivor Function (Selected Points)
for Program B3*, 1st Stage and Program C3, 2nd Stage.
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The thing to note in these graphs and similar ones given in reference [ I ] is that
although a straight line appears to be a reasonable approximation to the log survivor
function, in every case, a "best fitting" straight line using some reasonable optimiza-
tion criteria would underrun the data in the upper tail. That is, in every case, for

some large to and for some optimum k

- In (l-F(t)) > Xt for t >t o

where F(t) is the cumulative distribution function of the program's life in a given
stage. This implies that

- - Xt
e > l-F(t) for t_t o

which suggests that I= has a smaller right-hand tail than the "best" exponential. Thus
the exponential defined in this way does not provide a conservative approximation to
the mixture distribution since it weights too heavily the longer times between errors,
for a given stage.

51



4.8 DEPENDENCE OF STAGE LIFE LENGTH ON TOTAL LIFE AND AD3ACENT
LIFE

In order to measure the degree of the dependence between stages to determine if this
is an important factor, it was felt that the nature of the effect would be

strengthened if it were considered on a cumulative life length basis rather than
between stages. That is, the total life of the program up to the beginning of i'th
stage should govern the life of the i'th stage more than the life of any of the
preceding stages. The expectation was that the correlation between the total life up
to the i'th stage would be negatively correlated with the life of the i'th stage but only
mildly. Long lives before i would tend to support short lives after i and vice versa
but because of the mixing of the order of withdrawal, the correlation would not be
strong. Table 4.8-I gives the observed correlation between the total time to the i'th
failure and the time to the next failure i+l where time is measured in numbers of

executions. For this computation multiple errors are treated as single errors as the
emphasis here is on the observed spacings and their relative size, not the number of
errors.

There is some tendency for these values to cycle: starting low, increasing,
decreasing and increasing again with some variation in cycle length, but the expected
negative correlation is nowhere substantiated. Not only are the correlations
generally positive but are, in some cases, large as well as positive. The reasons for
this are not at all clear but may have something to do with the probability
distribution of the original errors and the relative likelihoods of the order in which
they are removed.

Cox's proportional hazards model, introduced in reference [ 1 ] assumes that the time
between shocks is independent. Theoretical results presented in Section 5.0 demon-
strate that under very general conditions the spacings for software are dependent. It
was therefore hoped that the nature of the dependence would be negligible which
does not appear to be the case.

Correlations of adjacent spacings are given in Table 4.8-2. Generally the values are
small and positive but some are significantly greater than .5. It is not known if this
effect lessens as the length of the spacing increases as more errors are corrected.
The tendency to pulse is also in this data although not as pronounced as in Table
4.8-I. Correlations between the j'th and (j+2)nd spacing have also been computed.
They are generally smaller and again predominately positive. These facts generally
imply that the size of the dependence between the spacings is not a negligible factor.
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Table tf.8-1

CORRELATION BETWEEN THE TOTAL TIME TO THE ith FAILURE AND THE

TIME TO THE NEXT FAILURE i + 1

Current Study

Program _ S.S___, Cor____zr Program i S.S___.: Cor___.Z
A3* 1 #9 .12 B3* l 50 .26

2 41 .21 2 45 .53

3 26 - .26 3 37 -.027

# 9 .65 # 17 -.065

C3 l 50 .009 D3 l 50 .21

2 50 .50 2 50 .48

3 48 .30 3 50 .45

# 47 .40 # 50 .035

5 35 .01 5 50 .015

6 18 .49 6 49 .59

7 9 .61, 7 36 .012

8 8 -.27

DI 1 50 .015 El 1 50 .024

2 49 - .042 2 50 .19

3 50 .030

4 50 -.15

5 35 .047
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Table #.8- I (Continued)

CORRELATION BETWEEN THE TOTAL TIME TO THE ith FAILURE AND THE

TIME TO THE NEXT FAILURE i + 1

Study#I

Program i S.S___: Corr Program ! S.S___: Corr
AI I 50 -.035 BI I 50 -.009

2 45 -.054 2 50 .05

3 34 -.24 3 46 .43

4 17 -.16

A3 1 -.012 B3 I 50 -.062

2 .25 2 50 .22

3 .28 3 36 -.14

4 .33 4 17 -.14
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Table 4.8-2

AUTOCORRELATION BETWEEN AD3ACENT STAGES

i AND i+l

Current Study

Program _ S.SI_: Corr Program _ S.S____: Corr
A3* 1 49 .12 B3* 1 50 .26

2 41 .19 2 45 .53

3 26 -.22 3 37 -.022

4 9 .67 4 17 .15

C3 1 50 .0087 D3 1 50 .21

2 50 .50 2 50 .47

3 48 .24 3 50 .46

4 47 .28 4 50 .0022

5 35 -.040 5 50 -.040

6 18 .35 6 49 .49

7 9 .73 7 36 .059

8 8 -.21

DI 1 50 .015 El 1 50 .02¢

2 49 -.073 2 50 .214

3 50 -.055

4 50 -.15

5 35 .046
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Table 4.8-2(Continued)

AUTOCORRELATION BETWEEN AD3ACENT STAGES

(i AND (i+l))

Stud), 411

Program i_ S.S___: Corr Program i__ S.S____. Corr
AI l 50 -.035 BI I 50 -.0086

2 49 -.055 2 50 .042

3 35 -.239 3 44 .23

4 17 .109

A3 1 49 .073 B3 1 50 =.062

2 45 .21 2 50 -.011

3 36 .164 3 34 -.18

4 25 .159 4 14 -.087

5 q .qq
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5.0 ANALYTIC CONSIDERATIONS

At the time the first study was conceived) the fact that replication would have its
own statistical framework that would differ from those which had become popular for
the traditional problem) was not completely considered. As the requirement for a
deeper understanding of the process grew, so did the need for a consistent theoretical
foundation. This section introduces the modeling advances achieved to date. They
are by no means complete and many important problems remain to be solved.

The software reliability problem is equivalent to the problem of a not quite perfect
hardware design released before all the bugs are removed to let experience perfect
the design. It is assumed that there are some number of bugs in the design and that
each bug has a certain probability or average rate with which it is detected. Its time
to detection) measured in some convenient unit, is a random variable. The bugs,
then) compete for detection and are removed as discovered. The ordered detection
times form the basic observations. The following paragraphs formalize this process.

The section begins by discussing the general problem from two points of view:
discrete and continuous, and a theorem is proved that gives a sufficient condition
under which they can be treated as equivalent processes. These results are then
particularized to the problem of forecasting the future from a given state. The
results in this section have a direct bearing on the replicated experiment.

5.1 MULTINOMIAL MODEL

In the following) a probabilistic model or framework is presented within which the
process of software debugging may be analyzed and understood. The model is by no
means a perfect reflection of reality but it is a step towards capturing some of the
very basic aspects of a software debugging experience. In particulaG it can provide a
general model within which the appropriateness of certain modeling assumptions
made by other researchers in a more or less ad hoc fashion can be evaluated.

It is assumed that the generic piece of software manipulates a certain set of inputs,
taken from a space A of possible inputs, and either successfully computes the desired
output or not. In the latter case, the used inputs have resulted in the detection of a
bug. Thus, the input space A is viewed as partitioned into mutually disjoint sets

A=AoUA1U...UA N (AINA j= 0 i_j),

where input from Ao results in the successful execution of the software program and
input from Ai (i=I, .., N) results in the detection of bug i in the program.

- At this point, the possibility that multiple bugs may be found for certain inputs is
excluded. This model deficiency may be dealt with at a later stage after the
ramifications of the current model have been fully understood.

Each execution of the program constitutes a multinomial trial) the outcome of which
can be characterized by the "ceil" A i (i=0) I) ...) N) in which the input was chosen.
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A probability structure is imposed by considering a usage probability distribution over
the input space A. Let Po, Pl) ..., PN be the respective probabilities that the input
will be chosen in Ao, AI, ..., AN, with Po + Pl + ... + PN = I. The probabilities Pi
confound the "size" and location of the sets Ai with the usage frequency distribution
over A.

The program debugging sequence consists of repeatedly exercising the program with
various inputs and observing whether the program executes properly or whether a bug
has been uncovered. In the latter case, the program is repaired with respect to this
particular bug and the debugging sequence is continued. The repair of the program
with respect to bug i amounts to joining the partition set A i to the set Ao.

At this point, a further strong model assumption is made, namely that the individual
multinomial trials are independent. In some contexts this assumption may be quite
realistic whereas in other contexts successive usages of the program may use inputs
which are highly correlated. Relaxation of this independence assumption may be
pursued after the independence model is well understood.

Some useful notation for describing the debugging experience is now introduced.

Let Xit = I if the t th trial results in input choice from cell Ai,
i=O,...,N.

= 0 otherwise

Xot+Xlt+...+XNt= I

P(Xit = I)= I = P(Xit = 0) = Pi t = I, 2, 3, ....

Let Yi =rain It: Xit= 1 } i= 1,2)..., N,

i.e., Yi represents the waiting time (counted in number of trials) to the first
detection of bug i.

In the process of debugging, Y1, Y2) ... are not actually observed since the "model
label" of the bug is not known when it is found. All that is known is that a new bug
has been detected (since all previously detected bugs have been corrected) and its
occurrence time.

Thus, what is really observed after having found the k th bug are the first k order

statistics Y(1) ... Y(k) of YI, ..., YN. Since the joint distribution of (Y(1), ..., Y(k))
derives from that of (Y(1), ..., Y(N)) the latter will be studied first.

Some more notation will be useful. Let zr = (zrl, ...) zrN) denote a permutation of
(I, ..., N) and let _PNdenote the set of all N! such permutations. Further let

N

Ai(_)= _ PTr.,i= I,...,N
j=i )
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and note that AI(TT ) : I - Po for all 7r E PIN. Let Q be the random vector inPN
consisting of the bug labels in the order in which the bugs are uncovered, i.e., if
Q = ¢r then 7rl is the model label of the first bug uncovered, etc. Further_ let
Di = Y(i) - Y(i-1), i = 1, ..., N, (Y(o) = 0) denote the spacings between the bugs.

Then for integers di > I and zr : __PN,

i

P(Q : 7r,D i:di,i:l,...,N) : P(Yzr i= _ dj ,i= I,...,N)
j=l

N N
= /7 Pi/7 (l-Ai(rr))di-1 (1)

i=I i=I

N d.-I

: w(_)i//l= Ai(Tr)(l - Ai(Tr)) I

N
where w(_r) = ]'] (pi/Ai(_r)),

i=I

Summing (1) over di _>1, i = 1, ..., N gives P(Q = rr) = w(rr) and thus

N
P(Di = di, i = 1, ..., N/Q =7r)= /7 Ai(7r)(1-/li(rr)) di-l. (2)

i=l

The marginal distribution of DI, ..., D N (and hence of Y(1) < ... < Y(N)) is given by

_ N Ai(zr))di_ 1P(Di : di, i = 1, ..., N) : _ w(Tr) /7 Ai(Tr)( 1- (3)
_"_PN i=1

= _ p(Q: rr)P(Di=di, i: I,...,N/Q: rr).
_'_ _PN
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As seen from (2) the spacings DI, ..., D N are conditionally (given Q = 7r) independent
geometric random variables with decreasing "success probabilities"
A l(Tr ) > A 2(7r) > ...>AN(rr). Unconditionally, as seen by (3), the spacings D2, ..., D N

are neither independent nor geometrically distributed. However, D 1 is independent
of (D2,...,DN) , since A l(Tr)= I-Po is independent of 7r. Also, D 1 has
unconditionally a geometric distribution with "success probability" Ai(Tr) = 1-po.

Ultimately, only the first k (k %N) bugs in the debugging sequence are observed which
is equivalent to knowing the first k spacings DI, .., Dk. Their joint density is
obtainable from (3) as

k Ai(_))di_IP(Di= di,i= I,...,k) = _ w(zr)/7 Ai(zr)(l- (#)
zr_PN i=I

-- _ P(Q=zr)p(Di= di,i--I,...,k/Q= _"),

zrEPN

where

k di_ 1
P(Di=di, i--l,..., k/Q = 7r) =/7 Ai(Tr)(l _ Ai(Tr)) . (5)

i--I

5.2 EXPONENTIAL MODEL

The discrete nature of program executions and the nature of the error withdrawal
process (except for intersecting errors) makes the multinomial model a natural one
for formulating the software reliability problem. Many models in use, however,
model the process, for convenience, with independent exponential random variables
with decreasing failure rate. In this section, results similar to those of the previous
section are obtained.

5.2.1 General Model

Let ZI, .., ZN be independent exponential random variables with respective failure
rates k i = Pi, i : I,...,N, i.e., the joint density of Z = (ZI, ...,Z N) is

N

fN(ZI, .., ZN) = /7 pie - piZi , Z i > 0, i= 1,..., N
i=l

Here Zi is interpreted as the waiting time to the first occurrence of bug i. Note that
here the waiting times for the individual bugs are assumed to be independent whereas
in the discrete model the waiting times are by assumption dependent since they are
based on a sequence of multinomial trials.

Let Z(I), ..., Z(N ) denote the order statistics of ZI, ..., Z N and by
D i = Z(i ) - Z(i_l) , (Z(o)=0) denote the spacings between these order statistics. Fur-
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ther, let Q denote the random N-vector of bug labels in the order in which they are
uncovered, i.e.,

Q= rrEPNiff Z(i)=Zrrii=l,...,N.

The joint density of D = (DI, .", DN) and Q is given by

N i

gN (d, _) = 17 P_i exp(- p_i _ dj)
i--l j-1

N
= w(zr)/7 Ai(rr)exp(-Ai(rt)di),di >0i=I,...,N

i=I

N N

where Ai(_) = _ p_j and w(Tt) = /7 (pi/Ai(_)) as before.
j=i i=I

Again, it can be seen that P(Q-- _) = w(_) and that the joint density of D is:

N
hN{d ) = _ w(zr) I7 A i( _ ) exp(- A i( _ )di) (6)

rr_P__ i=l

whereas the conditional density of D given Q -- Tzis:

N
gN(d/n ) = /-/ A i( 7r) exp(- Ai(_ )di) , (7)

i=l

i.e., conditionally, given Q = _, the spacings are independent exponentially distribu-
ted with decreasing failure rates A I(_) > ...>AN(_). However, unconditionally only
DI and (D2, -.., DN) are independent and only Dl is exponentially distributed. D2,
.., DN are dependent and not exponentially distributed. By integrating out the
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remaining d variables from (6), the unconditional distribution of dj is obtained as

h'. N(dj) = _ w(_) /_j (_) exp (- Aj(rr)dj) (g)b
rr_ PN

i.e., an exponential mixture. This distribution is the general case of the marginal
distribution of the second spacing for N = 3 given in reference (I).

5.2.2 Specific Results

The results of Section 5.2.1 have been particularized for the cases N=2 and N=3. This
section gives the joint distribution for the spacings for these N's, and the marginal
distributions of the spacings as a function of the number of errors corrected. Also
included are the results of a Bayesian inquiry into the nature of the distribution of
the parameter for these N's given the number of errors corrected. The results are
applicable to a general prior but are confined to N=2, 3. The extension to a general N
has been completed but is not included in this report.

5.2.2.1 N=2

Let X I and X 2 be the failure rate of the two errors and let t I and t 2 be the times of
occurrence for each error respectively. Then the two possible orderings are rr = (1,2)
and 7r = (2,1) and from w(_r) in (I) one obtains

P(rr = (1,2)) = P(tl<_t 2) = kl/(k i+X2)

and

P(rr = (2,1)) = _2/(_.1+X2) .

Thus using (6) the joint density of d I and d 2 is

kl (_kl+k2)e- (_kl+_k2)dI_k2e-k2d2h2(dl'd2)=Xl +_k2

_2 -()_ + )_2)di -_kld2
- _kI +_k2 (_kI +_2)e I _kI e
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-(kl+k2) dl [- )kld2 - k2d2]"" = k I k2e e +e

Note that d I is independent of d2. By integrating over dl) the marginal distribution
of the second spacing is

"I

_'I_2 [ - kid2+ =k2d2/
h' (d2)--_ ¥ X2 Le e .I
2,2

which is the exponential mixture distribution characteristic of the marginal spacings.

5.2.2.2 N=3

For this case define X = (_ I, )_2) _ 3), t = (tl, t2, t 3) and note that since there are
six permutations of three numbers, there are six rt's. From w(#) in (I) one again
obtains

P(w = (Wl' rt2' #3 ))= P(ttr.l< ttr2< trt3 )

= krtI k rt21((k tr2+ k rt3)(ArtI + h rt2 + h tr3))"
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Therefore) again by (6)) the joint distribution is the exponential product mixture:

h3(d l,d2,d 3)= )kl )k2 )k3e -_I )kidl e e +e

-+e e + e

+e e + e

As before by integrating over dI and d3 the marginal distribution of the second
spacing is obtained as:

, [- - (h 2 + )k3)d2 - (_ I + 2_3)d2
h2' 3 (d2) = LX I ( )k2+;k3) e + )k2 ( )kI + )k3) e

-(A i+ _2)d211(+ _'3 (_'1 + K2) e g'l + g'2 + )k3)

which agrees with the exponential mixture distribution given in reference (I).

64



The distribution of the third spacing can be found in similar fashion"

- )t3d 3 - k2d 3
, h I k2(A + B) k3 e + hl x3(C + B) k 2 e

h 3,3(d3) = ABD CBD

- _id3
_2 _3 (A + C) h I e

4-
ACD

where A- h I + _3

B= _2 + _3

C- 2_14- 2t2

D= hi4- X2 4- X3 -

!

As expected, h 3,3 is also an exponential mixture.

5.2.2.3 Distribution of the Rate Parameter Given the Number of Errors Corrected

Littlewood [6] gives a Bayesian analysis of the prediction problem for the traditional
software experiment, i.e., where forecasting is based on a single series of observed
spacings. In that reference, he derives the posterior distribution of the parameter of
the time to next error detection conditioning, not only on the number of errors
corrected, but also on the total life, z-, of the program observed to that time. The
gamma prior on the failure rate of the individual bugs transforms into a gamma
posterior for the failure rate of the time to next detection. The parameters of the
posterior gamma reflect not only the fewer numbers of remaining bugs in the
program but also the change in the scale parameter of the gamma by an amount equal
to the observed life. This has a reciprocal effect on the standard deviation of the
parameter. Thus the distribution of the posterior is shifting closer to zero for two
reasons, one, there are numerically fewer parameters, and two, by living, the
program tells the observer to bet on those that are smaller and smaller. That is with
age comes rigidity. There is still a third effect causing the shift toward zero in that
by observing the order statistics of the process the errors are being removed roughly
in the order of decreasing failure rate. This section quantifies this effect for some

_ special cases and suggests a general conjecture.

In the context of the replicated experiment, it is interesting to know what is
happening to the distribution of the parameter of the next spacing as a function of
the number of errors corrected keeping in mind that the distribution of the spacing is
not exponential with a single parameter, but an exponential mixture with several
parameter possibilities. The cases for N=2 and N=3 have been examined and density
functions for a general prior have been obtained.
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The general conjecture on the effect of the "ordered" removal of failure rates is as
follows:

For the j'th spacing if GN_i+ I is the probability distribution function for the sum of
N-j+I independent, identicilly distributed parameters with Bayesian prior density g,
then the posterior distribution Gj, N of the actual failure rate of the j'th spacing
satisfies

Gj, N (x) > GN_j+I(x) for all x

Proof: (For N=2 second spacing and N=3, second and third spacings).

In the following assume that the failure rates Al,... , k N represent a random sample
from some distribution with density g(x). Given A i the conditional distribution of the
time to failure Zi for bug i is exponential with failure rate X i. The El,..., Zn are
assumed to be independent as in Section 3.2.1. The following analysis concentrates
on N=2 and N=3, the general case being a conjecture at this point.

For the second spacing for N:2, let ;k be the parameter remaining after the first
error has been corrected, i.e.

A = X1 if Z2 < Z1

: X2 if Z l < Z2

Then

P(A -< x) = P()_I <- x,Z 2< ZI)+P(A2-< x,Z I< Z2)

= 2P(I 2< x,Z 1< Z2),

where the second equality follows from symmetry considerations.

Further

P(A < x): 2E(IEk2< x]P(ZI<Z2 ;kl'k2))

X co

= 20fOf )kl_l+ )k2 g()k )g()k2)d)kld)k2l

= G2,2 (x).
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The marginal density of the remaining parameter k after one error has been
corrected 9 can then be obtained by differentiating:

[z ]g2,2(x):g(x)L_Jokl+x g(xl)dxl "

The bracketed expression is the modifier of the original prior g due to the removal of
an error. The major question then is, "What is its effect"?

The intuitively appealing answer is that the distribution G 2 2 of k is stochastically
smaller than G, the cumulative distribution of the original pmor density g, i.e., the
distribution G2, 2 is shifted toward zero or

G2,2(x) > G(x) forall x>o.

To demonstrate this note that g2_2(x)/g(x) is strictly decreasing in x, i.e., the
monotone likelihood ratio property is satisfied. The stated result is thus a direct
consequence of Corollary 1, p. 67 or Theorem 2, p. 68 of Lehmann [ 7].

For the second spacing for N=3 let

X : ),2+ X 3 ifZl< Z2andZl< Z3

= k I + X3 ifZ2< Z I andZ 2< Z3

= kl + X2 ifZ3< ZIandZ 3< Z2

Again

P(X <_ x) : 3P(12 + 13 < x, Z1< Z2, Z 1< Z3)

X oo

- : 3ff _1 g(X1) g2(Z)dX 1 dz : G2,3 (x).
o o X1 X2

Here g2 is the convolution density of k 1 + k 2"
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As before the density of G2, 3 is

g2,3(x) = g2(x)" L3_'I+X g(X1 ) d A.I]
and

G2, 3(x) > G2(x) for allx>o,

where G 2 is the cumulative distribution function of g2"

For the third spacing for N=3 let

)" = )'1 ifZ 2< Z1 andZ 3< 71

= 12 if ZI< Z2andZ3< Z2

= )'3 if ZI< Z3 and Z2< Z3.

As before

P(A. < x) = 3 P(k 3_<x, Zl< Z3, Z2< Z3)

X=ofofof_ )'1 k2 (1 + 1 >g(_l) g()_2)g()_3)d),ld)`2d), 3=3 A'I+ )`2 + )'3 )'2 + )`3 )`1 + X3

= G3,3(x)

with density

g3,3(x)=g(x) 3- )`l )`2 1 + 1 g(Xi) g(A.2) dA.l d)` 2I + _'2 +x 2 +x )`1 +x
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Again one concludes that

G3,3 (x)> G(x) for all x > o.

Although the above stochastic ordering pattern generalizes to any N and any spacing_
the proof was determined too late for inclusion in this document. Results of similar
spirit9 but in a different setting_ were obtained by Pledger and Proschan [ 8 ].

5.3 THE TRADITIONAL EXPERIMENT: MODELS AND METHODS OF PREDICTION

For the traditional software debugging experiment a single partial replicate is
observed, i.e., one series of spacings ending with the k'th observed bug. Forecasting
the future behavior of the program based on this information is then of major
interest. Based on the theory developed in Sections 5.1 and 5.29 multinomial and
exponential models are developed for this case and methods of forecasting are
suggested. The section ends with a discussion of the similarities of the two methods
of modeling and gives a sufficient condition under which the discrete case can be
approximated by its continuous analog.

5.3.1 Multinomial Case

Using the notation of Section 5.1 where it was assumed that the first k bugs are
observed9 let Q = (Ql9 .-9 QN) be some permutation of the N integers I through N and
let Q_ denote the (k-l)-vector consisting of the first k-I components of Q. With theb
usual convention that _ = 0 when b < a_ note that

a

N i-1

Ai(a-) = j_iP/r =l=Poj_lPTrj.=.J "= i=l, 2,...,k

remain fixed as long as only Ir k, ..., 7rN vary while holding the ,projection
7r*= h(_r)= (Trl)..., Ir k_l) fixed. Thus the notational convention Ai(_r )= Ai(Tr)
for i<_k poses no problems. Further let

m

P_ =ITr*:Tr* =h(Tr), 7r _PN}

and

w*(Tr*) = _ w(Tr) = P(Q* = 7r*) (9)

z_ PN
h(Tr): 7r*
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Thus (t$)and (5) may be rewritten as follows:

k

P(Di= di,i=l,...,k) = _ w*(_r*)H Ai(Tr*)(l=Ai(Tr*))di=l (lO) -

rr*_ P_ i=l

= _ P(Q*= Ir*)P(Di=di,i=l,...,k/Q*= Tr*)
7r*eP*

-N

where

k

P(Di = di, i=l, ..., k IQ*= =*) =/7 Ai(= *)(I-Ai(= *)) di-l. (II)
i=l

At this point, it is not yet clear whether formula (10) or (l l) represents the most
appropriate basis for inference concerning the reliability of the software that is being
debugged. To this end the various aspects to this problem are reconsidered.

i) N, Pl, "-', PN and Po represent unknown parameters which (in conjunction with
the independence assumption of the multinomial trials) describe the probabilis-
tic structure of the debugging process.

ii) Q* is an unobservable random label vector whose distribution is determined by
the quantities N, Pl, .-., PN, cf. (I) and (9).

iii) DI, ..., D k are the spacings between the first k detected bugs.

Since 0nly one (although unknown) realization of Q* E P*N pertains, just as only one
(unknown) set of parameter values N, Pl, ..., PN pertal_ it would seem reasonable to
treat the unknown value zr* of Q* as a parameter just like Pl, "-', PN and N.

This then leads to

P(DI = di,"..,Dk = dk/N, Pl, .-.,PN, Q* = tr*)

k

= /'/Ai(7r*)(l-Ai(rr*)di-I (12)
i=l
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as the appropriate basis for inference rather than

P(DI =dl, ..., Dk = dk/N, P/, ..-, PN)

k

= _ w*(_*) /7 A (_*)(I-A(_*)) di-I 03)
7r _ E P* i= I i i

--N

which averages over all possible realizations of Q_, namely the one that pertained
and all of those N(N-I)...(N-k+2)-I which did not pertain in this particular data case.

Note that the form of the likelihood of dl, ..., dk as given in (12) presents certain
identifiability problems in that many different sets of parameters N(> k), p[, ..., PN
and 7r_ lead to the same set of parameters AI = AI(_*), ..., Ak = Ak(_ *)- Since
the likelihood (12) depends on the unknown parameters only through AI, ..., Ak it
seems natural to reparameterize (12) in terms of its natural identifiable parameters
AI, .-., Ak which satisfy the following constraint: AI > ... > Ak.

With this problem reformulation, the parameter N has been eliminated, which was
unidentifi able anyway.

The objective of this inference is to learn something about Ak which presents an
upper bound for the error probability Ak+l of the program after having observed d I,
..., dk. Inference concerning Ak+l cannot be made since A k+l is not part of our
likelihood. But since Ak >_Ak+ l upperbounds on Ak will be useful conservative
upper bounds on Ak+ I.

The maximum likelihood estimates for AI > ... > Ak were derived out of context by
Barlow, et al., [ 9 ] p. 42, 43, and are equivalent to isotonic regression estimates of
AI, ..., Ak. The m.l.e.'s are

t -I

( )j=s
Ai = max rain i=I, ..., k (14)

l<s<i k>t>i t-s+l

In particular

A / k -I

Ak =|max _dj (15)

\l_<s<kj=s

= rain k-_+ 1
l_<s<_k k

s djj=s
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A

The distribution of Ak involves all k unknownparameters A 1 -> .'. _ A k" Further
work needs to be done to develop confidence upper bounds for Ak (and hence for
Ak+l).

5.3.2 Exponential Case

The parallels with the preceding discrete model are obvious in spite of the fact that
the waiting times in the discrete case are dependent through the multinomial model
whereas in the continuous case they are assumed to be independent.

Again, only the first k (< N) spacings DI, ..., Dk are observed. Their joint density
obtained from (6) is

k
hk, N (d 1, ..., dk) = Y_- w*(_ *) /7 Ai(" *) exp (- Ai(-*)di) (16)

7r* E P* i=l
-N

using the same _ notational convention as in (I0). Conditionally, given Q* = _r *, the
density of DI, ..., D k is

k

gk,N (dl, ..., dk/_" *) = /7 Ai(_r *) exp(-Ai(;r*)d i) . (17)
i=l

The same arguments can be made for preferring (17) over (16) as the basis for
inference. By reparametrizing as before, the identifiability problem is avoided, and
the following likelihood as a basis for inference concerning the natural identifiable
parameters is considered:

k

gk(dl, ..., dk I_*) = /7 Ai exp (- A i di) (18)
i=l

with AI_>..._ Ak.

The parallel between the two approaches is not accidental. It turns out that (18) and -
(12) approximate each other quite well as demonstrated in the following.

Let Di: - _
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Then

P(D_= di,i=l,...,kl_-*)= P(di-l-<"Di< di,i=l,...,k 17T)

k

= /7 exp (-Ai(di-l))(l-exp(-AiDi=l

k

= 1'7 (I-A._)di-IA
(19)

i=l I i

with A._= I - exp(- Ai), i=l, ..., k.I

Note that (19) and (12) are identical except for the use of A_ vs. Ai. Further note

that AI----_0 implies that max IA. - A_I-----_0 which in turn implies the local
approximation theorem: I__-i< k i

IP(Di = di, i=l, ..., k)- P(Di = di, i=l, ..., k) 1-----*0

for all di > I, i = I, ..., k.

It is of interest to see to what extent a global approximation is also possible, To this
end note that

= _ [P(Di di, i=l,.-.,k)-P(D_=di, i=l,...,k)l +

where[x] + =xif x > 0

= 0 else.
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Further

P(Di = di, i=I,..., k) - P(D; = dp i=I,..., k)

k j d.-1 k d.-I ( A_. (l-A*.) d.-l)
= E H A (l-A I) : /7 A* _ i j j jj=l i=l i i=j+l i(l- A ) 1--- •Aj 1 Aj

Since

A .<-I- _ = I- <
A

we have

k

a_' [P(Di = di'i= 1,...,k)-P(D_=di, i=l, ..., k)] +__ Z A /2 (20)
j=l J "

k

Hence, it appears that the global approximation depends on j__El A j, and not just on
A I. This is somewhat disturbing, especially if k is large and it is not clear whether

the error bound (20) represents the best possible result.

Inference concerning A I > ... > Ak based on the conditional likelihood (18) can again
proceed along the lines of Barlow, et al, [ 9 ] and was indeed proposed by Campbell
andOtt [I0]. The m.l.e.'s of AI >_ --.>__ Akare

A t -I

Ai = (max min Z dj/(t-s+l))
s<_i t_>i j=s
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and in particular

^ k dj/(k_s+1))-IA k = (max ._]
s_<k J=s

= min k-s+l
s<.k k (21)

z dj
j=s

To obtain a crude upper confidence bound for A k note that

k Ak -I
k/Ak = (max _ Dj AI /(k-s+l))

s<_k]:s -AT

k

_> (max E Dj/_j/(k-s+l))-I= Tk.
s<k j=s

Note that the distribution of Tk is independent of all unknown parameters. Thus, the

distribution of Tk may be obtained through extensive simulations. Suppose tp, k is the
p percentile of the T k distribution then

^

)'= P(Tk---tl-)',k)-<P(Ak/Ak ---tl-)',k)

^

= P(Ak/tl-}',k> A k)

^

i.e., Ak/t 1_ 7,k is a conservative 100 _/% upper confidence bound for Ak.
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Another ad hoc procedure would be to obtain (by simulation perhaps) the distribution
of

k Ak
max _ Dj Aj /(k-s+l)

j=s -AY

f_r a fixed set of ratios Ak/Aj) j = l) ...) k) where for lack of any other better choice
k/_i would be substituted for Ak/A i. Having obtained this distribution, we again

proceed as above to obtain confidence bounds for A k. The validity of such an
approach would needsome testing9 of course.

5.3.3 Forecasting

Forecasts of the rate for Ak_ 1 from the observations through the k'th error have
been calculated using formula (21) as a function of selected program states or nodes
as illustrated in the graphs of Section 3. Nodes were selected that were far enough
down the structure to have relatively small rates of occurrence) and at the same time
to be on the path of a large number of runs. Final nodes were excluded from
consideration. These nodes were selected as interesting cases to forecast having
enough replication to stabilize both the forecast and the estimate of the parameter
being forecasted. Nodes were also selected from the data in reference [ 1].

Table 5.3.3-1 provides a list of the forecasts and the estimated parameter being
forecast for the nodes selected from both experiments. In calculating this table)
samples that had a multiple error leading directly to node entry or to an exit from
the node were omitted from the sample. In interpreting this table) two things should
be noted. There are many paths coming into a node) but there is only one parameter
of interest leaving the node, namely the sum of the failure rates of all the errors still
remaining in the program. It can be shown) in part from the distribution of dk
obtained by integration from (16)) that the distribution of d k conditioned on a set of
detected errors in any order rather than on a particular 7r_) is also exponential. This
conclusion relies heavily on the fact that A i depends only on the sum of the failure of
the remaining errors and not on the order of the previous i - ! detections. Thus) the
time to next program failure leaving a particular node is exponential. Since it is
exponential) the MLE estimator is the familiar number of failures over the total time
on test computed only over those paths leading to and from the selected node. These
computations appear in the last column of Table 3.3.3-1.

Replication is used in this table to improve the forecast. The first two of the three
forecast columns of Table 5.3.3-1 are based on the isotonic regression estimator of
equation (21). The first of these gives the average of the forecasts across all of the
replications for that node as an upper bound on the exiting failure rate. This is a
conservative estimate. Since each of the estimates represents an upper bound, it is
also tempting to use the min of the upper bounds as an estimate. This is the second
of the two forecasts given. Unfortunately) the minimum is a function of sample size
and gets smaller and smaller as the sample size increases. As this process is
understood more completely) some other statistic of these forecasts that
compensates for the effect of sample size) might prove to have better properties
than the average.
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Table 5.3.3- I

FORECASTS OF THE (K + I)ST PARAMETER CONDITIONED

ON A SPECIFICK'THNODE

WITHINDEPENDENTESTIMATESOF THE PARAMETER

Forecasts Data Based

Program Node S. Size Avg. U.B. Min U.B. Regr Estimate

Current Study:
A3* 127 15 3.74xi0 -2 8.13x10-3 5.4x10-3 1.00xl0 -2

B3* 125 25 2.15x10-2 2.98x10-3 9.9x10-4 3.98x10-3

DI 12 22 1.41x10-3 1.68x10-4 6.1x10-4 2.27x10-4

DI 13 25 1.77x10-3 2.28x10"4 6.1x10-4 2.71x10-4
El 123 32 2.72x10-1 2.50x10-2 #.6x10-2 5.05x10-2

E1 1234 47 1.46x10-1 1.43x10-2 2.2x10=2 7.36x10=4

E1 12345 32 9.71x10-3 2.16x10-4 5.9x10-4 4.41x10-4
El 12346 18 2.16xi0 -3 8.83xi0 -4 5.9x10 -4 5-52x10-4

D3 1245 17 4.72x10 -2 8.62x10 -3 5.8x10-3 8.18x10-3

Study No. 1:

AI 124 20 7.23x10 -3 7.63x10 -4 l.Sx10 -3 1.54xl 0-3

AI 1234 16 2.34x10 -3 6.55x10 -4 l.lxl0 -4 9-10x10 -4

BIR** 14 39 2.88x10 -2 2.02x10 -3 5.1x10 -4 2.98xl 0-3

BIR** 145 44 7.91x10 -3 8.68xi0 -4 3.8x10 -4 4.80xi0 -4

A3 1256 16 2.90x10 -2 6.54x10 -3 1.0xl0 =2 1.85 x10-2

B3 1245 14 6.74xi0 -3 1.52xi0 -3 7.8x10 -4 2.44xi0-3

**Corrected Data Base for BI
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The third forecast is a crude estimate somewhat related to Cox's model proposed in
reference [ I ] which assumes that the stages are independent and exponentially
distributed. Although these assumptions are known to be analytically fals% they are
approximately true as demonstrated empirically in Sections 4.7 and 4.8 with the
reservations already noted. The forecasts are linear least squares regression
estimates based on regressing the log of the unconditional stage probabilities existing
at the time of the forecast on the number of errors corrected and forecasting the
next stage.

The table indicates that in every case the average upper bound is a true upper bound
although somewhat conservative as expected, In all but four cases, the minimum of
the upper bounds underestimated the estimated parameter even with modest sample
sizes, The regression estimator was less consistent giving a somewhat closer
estimate than the average but without the safety margin, In one cas% I_19node 12349
all of the estimates were high due to the substantial change in character of the error
mix of the next error,

Table 5.3.3-2 provides forecasts of the same parameters based on another method of
forecasting. From the estimates of the specific error probabilities in Table 4.1-1 and
the estimate of the first stage probability (which estimates l-po) , the total rate for
the remaining parameters at a node can be estimated. That is, by subtracting from
one the sum of Po plus the probabilities of the errors associated with the nod% an
estimate of the rate of the errors remaining is obtained. In applicable cases this
estimate was improved by subtracting estimates of the joint probability when the
intersection was observed in the data. Adjustments for three-way intersections were
also made when observed. The last column in this table is an estimate of the
remaining parameter based on all of the errors observed downstream from the node
but unobserved prior to the node. This column offers another check on the validity of
the forecasts in both tables_ but to a degree is correlated with the node estimate.
This is not the case with the data from the next spacing.

At times the estimates in this table had to be computed by omitting data from highly
probable errors. The questionable importance of these errors has previously been
discussed in Section 4. When they are used in this context at these sample sizes_ a
negative estimate sometimes occurs. By omitting these errors, valid estimates can
often be obtained. This was not the case for the nodes for El omitted from Table
5.3.3-2. None of these nodes were estimable based on this method as all estimates
were negative. Comparable estimates for the nodes of study Ill have not been
computed.

Table 5.3.3-3 compares the regression estimator and the error probability forecast
with a 95% confidence interval on the rate associated with the next spacing. 53% of
the regression forecasts lie within the corresponding confidence intervals and 67% of
the forecasts based on the error probabilities. All of the average upper bounds were
above the upper confidence limit. Since the forecasts are also random variables_ the
sampling variation in the forecast contributes to the forecasting error_ but no
attempt has been made to compensate for this effect.
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Table 5.3.3=2

FORECASTS OF THE (K + 1)ST PARAMETER CONDITIONED

ON A SPECIFIC K'TH NODE

BASED ON ERROR PROBABILITY ESTIMATES

Observed

Next Spacing Error Prob.

Prog. Node Forecast Estimate Estimate

Current Study:

A3* 127 6.59x10 -3 l. 00xl0 -2 1.31x10 -2

B3* 125 1.98xi0 -3 3.98x10 -3 2.70x10 -3

D 1 12 1.23x10 -4 2.27x10 -4 2.67x10 -4

D 1 13 1.07x10 -4 2.7 lxl0 -4 2.54x10 -4

El 123 1.40x10 -2 5.05x10 -2 2.82x10 -2

D3 1245 5.37x10 -3 8.18x10 -3 8.72xl 0-3
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Table 5.3.3-3

NEXT NODE RATE FORECASTS COMPARED TO

9596 CONFIDENCE INTERVALS ON

THE OBSERVED RATE

Forecasts Confidence Limits

Program Node Regression Error Prob. Lower Upper

Current Study:

A3* 127 5.4x10 =3 6.6x10 =3 3.60x10 -3 1.57x10 -2

133" 125 9.9x10 -3 2.0x10 -3 1.87x10 -3 5.69x10 -3

DI 12 6.1x10 -3 1.2x10 -4 1.0Ixl0 -4 3.31x10 -4

D 1 13 6.1xl 0-3 1.1xl0 -# 1.27x 10-4 3.87x 10-4

E1 123 4.6x 10-2 1.4x 10-2 2.62x 10-2 6.94x 10-2

El 1234 2.2x10 -2 4.33x10 -4 9.61xi0 -4

El 12345 5.9x10 -4 2.29x10 -4 6.06x10 -4

El 12346 5.9x10 -4 2.21x10 -4 8.35x10 -4

D3 1245 5.8x10 -3 5.4x10 -3 3.17x10 -3 1.25x10 -2

Study No. 1:

A1 124 l.Sx 10-3 6.51x 10-4 2.29xi 0-3

AI 1234 l.lxl0 -4 3.41xI0 -4 1.41x10-3

BIR** 14 5.1x10 -4 1.66x10 -3 3.99x10 -3

BIR** 145 3.8x10 -4 2.77x10 -4 6.32x10 -4

A3 1256 1.0x 10-2 6.93x 10-3 2.86x 10-2

B3 1245 7.8x10 -4 8.42x10 -4 3.87x10 -3

**Corrected Data Base for BI
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6.0 CONCLUSIONS

This document reportson the second of two studiesinvestigatingissuesassociated
with the software debugging process,by means of replicatedsoftware experiments.
The currentstudydiffersfrom the previousstudyprimarilywith regardto the factors
or experimentaltreatments exploredin the design. While the data has been used to
provide independent verificationof some of the issuesof the firststudy,such as
l)the wide range of probabilitieswith which errorsoccur,2)the linearityof the log
stagefailureratesas a functionof the number of errorscorrected,and 3)the degree
to which interfailuretime is exponential,ithas alsobeen used to suggestrelation-
shipsbetween the error structureof programs and such issuesas the impact of
programmer experience, the impact of a change in usage and the effect of
programming ina low levellanguage.

Although the number of subjectswas necessarilylow due to time and monetary
constraints,the experimentalevidence suggeststhe followingvery tentativeconclu-
sions:

I. Changes in usage change the detectionratesof some individualerrorsbut
impact the stageprobabilitieswith a recognizablepattern.

2. The use of a higher-order language by an inexperienced programmer is
somewhat similar to a low-level language in the hands of an experienced
professional.

3. The slope of the linear log stage probability function is distributed over a
fairly narrow range over many different test treatments. The effect of
experience is primarily to change the intercept rather than the slope.

Out of need to explain and compute summary estimates of the observations, an
analytic framework was developed. This framework has proved valuable in explaining
the results of replication as well as in explaining the traditional software experiment.

Although it can be demonstrated relative to this framework that stages are neither
independent nor exponentially distributed, empirical estimates show that the expo-
nential assumption is nearly valid for all but the extreme tails of the distribution.
Empirical studies of the nature of the dependence of a stage on its past indicate that
some of the estimated correlations are high and demonstrate a curious periodicity.

Except for the degree of dependence in the stage probabilities, it still appears that
Cox's model approximates to a degree what is being observed. Additionally the slopes
of the log stage probabilities are somewhat similar varying in data experiments from
.5 to 1.5 except for two of the problem specifications that appeared to be too simple
for error propagation.

A method of forecasting an upper bound on the rate of the next spacing has been
developed. Numerical forecasts have been made, conditioned on nodes in the network
of error states for several programs of both studies. These are compared to
estimates of rate actually observed. Both estimates are improved due to replication
and the bound, though conservative, appears useful. Other forecasting methods are

gl



compared, one based on a somewhat quick and dirty application of Cox's model
appears to be in the neighborhood of the correct answer about 50% of the time9 the
others based on estimates of the specific error probabilities is in the neighborhood
nearly 70% of the time for the cases examined.

This study has concentrated on theory developed simultaneously with experimental
verification. The two together have led to a synergism of ideas that has strengthened
both. Much work remains if the process is to be understood_ building the analytic
foundation has only just begun, understanding forecasting in this context is in its
infancy and compensating for external factors has only been suggested with a bare
minimum of subjects.

Unfortunately this study has created more issues for investigation than it has
explained. It has, however, demonstrated the power of replication. Replication has
provided the stability necessary for comparing test treatments and in testing the
efficiency of new estimators. Whether this method of keeping books will be useful in
its own right in providing better information with which to forecast the future
requires further study.
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APPENDIX A- SOFTWARE ERROR CATEGORIES

From Brown and Buchanan [2 ]

A000 COMPUTATIONAL ERRORS

AI00 Incorrect operand in equation
A200 Incorrect use of parenthesis
A300 Sign convention error
A400 Units or data conversion error

AS00 Computation produces an over/under flow
A600 Incorrect/inaccurate equation used
A700 Precision loss due to mixed mode

A800 Missing computation
A900 Rounding or truncation error

B000 LOGIC ERRORS

B100 Incorrect operandin logical expression
B200 Logic activities out of sequence
B300 Wrong variable being checked
B400 Missing logic or condition tests
BSO0 Too many/few statements in loop
B600 Loop iterated incorrect number of times

(including endless loop)
B700 Duplicate logic

C000 DATA INPUT ERRORS

CI00 Invalid input read from correct data file
C200 Input read from incorrect data file
C300 Incorrect input format
C400 Incorrect format statement referenced
C500 End of file encountered prematurely
C600 End of file missing

D000 DATA HANDLING ERRORS

D050 Data file not rewound before reading
DI00 Data initialization not done

-- D200 Data initialization done improperly
D300 Variable used as a flag or index not set properly
D400 Variable referred to by the wrong name
D500 Bit manipulation done incorrectly
D600 Incorrect variable type
DT00 Data packing/unpacking error
D800 Sort error
Dg00 Subscripting error
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APPENDIX A: SOFTWARE ERROR CATEGORIES (Continued)

E000 DATA OUTPUT ERRORS

El00 Data written on wrong file
E200 Data written according to the wrong format statement
E300 Data written in wrong format
E400 Data written with wrong carriage control
ES00 Incomplete or missing output
E600 Output field size too small
E700 Line count or page eject problem
ES00 Output garbled or misleading

F000 INTERFACE ERRORS

F100 Wrong subroutine called
F200 Call to subroutine not made or made in wrong place
F300 Subroutine arguments not consistent in type, units, order, etc.
F400 Subroutine called is nonexistent
FS00 Software/data base interface error
F600 Software/user interface error
F700 Software/software interface error

G000 DATA DEFINITION ERRORS

GI00 Data not properly defined/dimensioned
G200 Data referenced out of bounds
G300 Data being referenced at incorrect location
G400 Data pointers not incremented properly

H000 DATA BASE ERRORS

HI00 Data not initialized in data base
H200 Data initialized to incorrect value
H300 Data units are incorrect

I000 OPERATION ERRORS

I100 Operating system error (vendor supplied)
I200 Hardware error
I300 Operator error
Ig00 Test execution error
I500 User misunderstanding/error
I600 Configuration control error
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APPENDIX A" SOFTWARE ERROR CATEGORIES (Continued)

3000 OTHER

3100 Time limit exceeded

3200 Core storage limit exceeded
3300 Output line limit exceeded
3400 Compilation error
3500 Code or design inefficient/not necessary
3600 User/programmer requested enhancement
3700 Design nonresponsive to requirements
2800 Code delivery or redelivery
3900 Software not compatible with project standards

K000 DOCUMENTATION ERRORS

K100 User manual
K200 Interface specification
K300 Design specification
K400 Requirements specification
K_00 Test documentation

X0000 PROBLEM REPORT RE3ECTION

X0001 No problem
X0002 Void/withdrawn
X0003 Out of scope - not part of approved design
X0004 Duplicates another problem report
X0005 Deferred
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APPENDIX B
PROBLEM #4 SPECIFICATIONS

1.0 CONSTRUCTION OF MINIMAL SPANNING TREE

Given n 2-dimensional coordinates (nodes)

(Xi, Yi), i = 1,2,=,n I < n < 25

Problem Connect the nodes to construct a network of direct node=to=node branches

having the smallest possible total length (sum of the branch lengths). This network is
called the Minimal Spanning Tree (MST).

Algorithm

The branches are subdivided into three sets:

I. Branches which are definitely assigned to the network under construction,

II. Branches from which the next branch to be added to set I will be selected.

III. The remaining branches (rejected or not yet considered).

The nodesaresubdividedintotwo sets:

A. Nodes connected to the branches of set I.

B. The remaining nodes (one and only one branch of set II will lead to each of
these nodes).

We start the construction by choosing node 1 as the only member of set A, and by
placing all branches that end in this node in set II. To start with, set I is empty.
From then onward, we perform the following two steps repeatedly.

Step 1. The shortest branch of set II is removed from this set and added to set I. As
a result, one node is transferred from set B to set A.

Step2. Consider the branches leading from the node, which have just been
transferred to set A, to all the nodes which are still in set B. If the branch
under consideration is equal to or longer than the corresponding branch (i.e.,
the branch with the same node) in set II,it isrejected;if it is shorter,it
replacesthe correspondingbranch insetII,and the latterisrejected.

Let i represent node i and ij represent the branch from node i to node j. Then, for
example, assume set I = (12), set II = (13, 14, 15), A = (I, 2), and B = (3, #, 5), after
Step I when node 2 was added to set A. We then compare 23 with 13, 24 with 14, and
25 with 15 and replace in set II any shorter corresponding branch.

B=I



2.0 DETERMINATION OF CLUSTER MEMBERSHIP

Problem Given a Minimal Spanning Tree) and parameters f) s and d) calculate the
number of clusters among the n nodes and the cluster membership of each node.

Algorithm

Clusters are determined by separations of the nodes, We detect inherent separations
in the data by deleting branches from the MST which are significantly longer than
nearby branches• Such a branch is called inconsistent. (We will say a node P is
nearby node Q if P is connected to Q by a path in the MST containing d or fewer
branches,) The criteria to determine an inconsistent branch are; (1) the branch's
length is more than f times the average length of nearby branches_ and (2) its length
is more than s standard deviations larger than the average of the lengths of nearby
branches (standard deviation computed on the lengths of nearby branches)•

Deleting the inconsistent branch(es) breaks the MST into several connected subnet-
works• The points of each connected subnetwork are the members of a cluster,

Two FORTRAN subroutines are required; NETWRK and KLUSTR.

3.0 DESCRIPTION OF SUBROUTINE NETWORK

Communication

SUBROUTINE NETWRK (N)NODE)DIST)NBR)
INTEGER N) NBR(1)
REAL NODE(2)25)) DIST(25)25)

Input

N, number of nodes, I < N < 25
NODE(1)i)) X coordinat-e of node i•
NODE(2)i)) Y coordinate of node i.

DIST(i)j)) distance from node i to node j•
DIST(i)i) -=0. for all i.

NBR(1) = i) the node number

NBR(2) -- m) the number of neighbors of node i in the minimum=total=length
network, (A neighbor is any node connected to node i with a
single branch.)

NBR(3) = il) the node number of the first neighbor of node i•

NBR(2+m) = im) the node number of the mth neighbor of node i.

B=2



Note: i1_ i2_ • • ._ im shall appear in ascending order.

" Repeat this set for all nodes_ going in ascending node number order. The
subscript of NBR increases with all entries.

Example of NBR for N = 3.

2

NBR(1) = I Node number I

NBR(2) = 2 2 neighbors of node I
NBR(3) = 2 Neighbor node number
NBR(4) = 3 Neighbor node number
NBR(5) = 2 Node number 2

NBR(6) = I I neighbor of node 2
NBR(7) = I Neighbor node number
NBR(8) = 3 Node number 3

NBR(9) I I neighbor of node 3
NBR(10 = I Neighbor node number

_.0 DESCRIPTION OF SUBROUTINE KLUSTR

Communication

SUBROUTINE KLUSTR(N,NODE)F,S,D,DIST)NBR)C)CMEM)
INTEGER N,NBR(I),C,CMEM(N),D
REAL NODE(2)25)gDIST(25)25))FgS

Input

N, NODE same as in subroutine NETWRK
F) length factor to determine inconsistent branch
St standard deviation factor to determine inconsistent branch
Dr number of branches to define nearby branches I < D < N
DISTgNBR_ same as in subroutine NETWRK

Output

C_ number of clusters
CMEM(i), cluster number for node i I < CMEM(i) < C

Number the clusters in increasing order; i.e._ CMEM(1) = I, then CMEM(2) = I
if in same cluster or CMEM(2) -- 2 if in different cluster. Continue for all N
nodes.

B-3





APPENDIXC

PROBLEM#4 TESTCASES

1.0 Test Case 1

o Input

N = 5, F = 2.0, S = 1.5, D = 4

NODE(1,i)- 3.058 2.821 3.062 6.193 6.249

NODE(2,1_:-1.713 -2.054 -3.976 -5.418 -2.694

o Output
J

DIST(i,j): 1 2 3 4 5

1 0.0 0.42 2.26 4.85 3.34

2 0.42 0.0 1.94 4.76 3.49

i 3 2.26 1.94 0.0 3.45 3.44

4 4.85 4.76 3.45 0.0 2.72

5 3.34 3.49 3.44 2.72 0.0

NBR(I_: 1 2 2 5 2 2 1 3 3 1 2 4 1 5 5 2 1 4

C=1

CMEM(_" 1 1 1 1 1

2.0 Test Case 2

o Input

N = 10, F = 2.0, S = 1.5, D = 4

NODE (1,1_: -8.171 -6.485 -5.041 -5.146 -7.788
5.409 3.237 3.134 3.851 6.739

NODE(2,1]: 0.564 -2.392 3.136 -2.099 -0.850
5.707 4.787 2.333 4.745 4.830
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o Output

DIST(i,j):
J

1 2 3 4 5 6 7 8 9 10

1 0.0 3.40 4.05 4.03 1.47 14.52 12.16 11.44 12.73 15.51
2 3.40 0.0 5.71 1.37 2.20 14.39 12.09 10.72 12.56 15.07
3 4.05 5.71 0.0 5.24 4.84 10.76 8.44 8.21 9.04 11.90
4 4.03 1.37 5.24 0.0 2.92 13.13 10.85 9.39 11.30 13.76

1.47 2.02 4.84 2.92 0.0 14.74 12.38 11.38 12.91 15.60i 14.52 14.39 10.76 13.13 14.74 0.0 2.36 4.07 1.83 1.59
7 12.16 12.09 8.44 10.85 12.38 2.36 0.0 2.46 0.62 3.50
8 11.44 10.72 8.21 9.39 11.38 4.07 2.46 0.0 2.52 4.39
9 12.73 12.56 9.04 11.30 12.91 1.83 0.62 2.52 0.0 2.89

10 15.51 15.07 11.90 13.76 15.60 1.59 3.50 4.39 2.89 0.0

C=2

CMEM(i): 1 1 1 1 1 2 2 2 2 2
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APPENDIXD: EXPERIMENTDATA FORSUBJECTPROGRAMA3*

Explanation" Repetition No. Failure Case No. (Error No.)
Time to Failure in Elapsed CRU's

1. 2 (1) 6 (7) 12 (9)
1 4 9

2. 3 (1) 38 (4)
0 17

3. 5 (1) 56 (3) 55 (2) 18 (8)
3 30 27 8

4. 1 (1) 1 (2) 35 (3) 66 (8)
0 0 19 37

5. 2 (1) 61 (2) 39 (6) 23 (7) 172 (9)
1 28 17 12 93

6. 2 (l) 24 (4)
2 12

7. 1 (1) 4 (2) 61 (7) 121 (4)
l 1 32 66

8. 2 (l) 35 €2) 143 (8)
1 15 74

9. 4 (1) 32 (7) 5 (2) 65 (4)
2 18 2 34

10. 4 (1) 20 (2) 116 (7) 47 (8)
1 11 65 35

II. 2 (I) 23 (6) I (IO)
0 13 0

12. l (1) 26 (6,10_
0 12

13. 1 (1) 9 _7) 4 (2) 131 (41
0 5 1 65

14. l (1) 28 (7) 45 (2) 61 16} 26 (10)
[ 15 28 34 14

15. 1 (1) 34 (2) 12 (4)
1 16 3

16. 8 (1) 12 (3) 12 (7,9)
8 6 6

17. 8 (l) 3 (2) 39 (7) 126 (3,8)
3 2 25 63

18. 3 (1) 25 (2) 123 (7) 46 (3) 48 (6,10)
2 15 58 27 26

19. 8 (1) lll (2) 10 (6,10)
4 57 7

20. 1 (1) 30 (3_ 25 12) 25 (7) 40 (4)
l 14 13 12 22

o 21. 10 (1) 54 (7) 10 12) 242 (6) 331 (10)
5 27 3 128 191

22. 4 (1) 138 (2) 27 (6,10)
2 75 14

23. l (1) 23 (2_ 16 (7) 25 (6,10)
I I1 8 21

24. 9 (1,2) 56 (7) 305 (4)
6 31 179

25. 2 (I) 4 (6,10)
I 3
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APPENDIX D: EXPERIM_RT DATA FOR SUBJECTPROGRAM A3*

Explanation: Repetition No. Failure Case No. (Error No.)
Time to Failure in Elapsed CRU's

26. 5 (7) 8 (1) 40 (2) 100 (4)
3 3 25 54

27. 4 (1) 18 (4)
2 11

28. I (I) 55 12) 118 (4)
0 28 67

29. 4 (I) 5 (6,10)
1 3

30. 2 (I) 16 (2) 39 (9)
I 8 20

31. 11 (I) 6 (2) 134 (3) 42 (6,10)
8 5 63 20

32. 3 (1) 2 (2) 3 (9)
! 0 l

33. 2 (1) 124 (2,7) 178 (3) 19 (6)
0 70 87 10

34. 8 (1) 60 (3) 27 (4)
5 29 18

35. 2 (1) 18 (2) 78 (4)
0 4 37

36. 9 (2) 1 (1) 19 (7) 23 (6,10)
7 0 11 11

37. 2 (1) 39 (7) 2 (6) 18 (2) 70 (10)
0 16 l 11 39

38. 3 (l} 14 (6,10)
2 7

39. 8 (1) 44 (6) 88 (2) 18 110)
3 25 48 15

40. l (1) 2 (7) 55 (2) 149 (3) 81 (4)
l 1 33 92 42

41. 6 (1) 50 (4)
3 28

42. 11 19)
7

43. 1 (1) 29 (2) 31 (6) I10 (7,101
1 18 15 67

44. 6 (1) 22 (7) 13 (2) 41 (18)
4 ll 9 26

45. • 3 (1) 31 (2) 33 (4)
1 17 17

46. 3 (1) 8 (3) 3 (2) 55 (7) 45 (9)
3 4 0 32 25

47. 3 (1) 77 (2) 25 (8) .-
2 39 18

48. I (1) 44 (3) 19 (2) 9 (7) 132 (4)
0 28 13 5 67

49. 1 (1) 44 (3) 41 (7) 30 (4)
I 28 30 14

50. 1 (1) 7 (2) 53 (7) 12 (8)
0 3 29 7
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APPENDIXE: EXPERIMENTDATA FORSUBJECTPROGRAMB3*

Explanation: Repetition No. Failure CaseNo. (Error No.)
Time to Failure in ElapsedCRU's

_" 1. 1 (1) 63 (2) 104 (4) 16 (7)
0 28 49 8

2. 10 (1) 129 (2) 153 (4) 77 (7)
5 53 69 35

3. 7 (1) 71 (5) 18 (2) 183 (7)
3 36 11 72

4. I (1) 34 (4,5) 44 (2) 1147 (7)
0 14 18 483

5. 1 (1) 15 (2) 72 (4) 181 (5) 357 (7)
0 6 31 83 L69

6. 2 (1) 45 (2) 32 (7)
l 22 17

7. 2 (l) 122 (5) 48 (7)
1 50 22

8. 5 (1) 106 (5) 97 (2) 237 (4) 1097 (7)
2 47 39 lO0 472

9. 1 (1) 74 (5) 223 (2) 3 (4) 98 (7)
0 30 88 1 49

10. 2 (1) 26 (2) 28 (5) 274 (7)
L 12 10 126

11. 3 (l) 210 (2) 312 (5) 325 (6)
2 93 l'33 150

12. 1 (l) 11 (5) 16 (2) 76 (4) 455 (7)
0 3 6 36 L88

13. I (l) 17 (2) 25 (5) 303 (4) 259 (7)
0 7 12 130 119

14. 6 (1) 55 (2) 149 (4) 57 (7)
1 24 60 21

15. 2 (1) 16 (2) 28 (4) 149 (5) 226 (7)
0 9 12 68 99

16. 9 (1) 6 (2) 38 (7)
5 2 18

17. I (1) 5 (2,7)
0 3

18. 2 (l) II (2,41) 14 (5) 134 (7)
1 6 7 60

19. 4 (1) 12 (2) 295 (5) 363 (7)
2 7 L33 148

20. I (1) 27 (5) 40 (2) 442 (7)
0 15 17 191

21. 1 (1) 14 (5) 52 (2) 633 (4) 419 (7)
l 5 25 268 187

4"

22. 7 (l) 39 (2) 144 (5) 404 (6)
2 17 66 181

23. 3 (2) 1 (1) 185 (5) 1 (6)
l 0 79 l

24. l (1) 52 (2) 16 (5) 135 (7)
0 22 7 62

25. I (1) 37 (2) 51 (5) 36 (4) 40 (7)
0 21 23 14 16
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APPENDIXE: EXPERIMENTDATA FORSUBJECTPROGRAMB3*

Explanation" Repetition No. Failure CaseNo. (Error No.)
Time to Failure in Elapsed CRU's

26. 3 (1) 40 (2,4) 34 (7) _
1 17 15

27. 4 (1) 33 (2) 44 (7)
l 17 19

28. 1 (1) 1 (2) 185 (6)
l 0 82

29. 1 (1) 25 (7)
1 11

30. 3 (1) 114 (7)
1 48

31. 3 (1) 194 (2) 283 (5) 458 (4) 41 (7)
2 86 132 204 2O

32. I (1) 108 (2) 210 (4) 41 (7)
0 42 84 25

33. I (1) 80 (2) 336 (5) 161 (7)
0 34 L37 71

34. 5 (1) 66 (5) l14 (2) 56 (4) 268 (7)
3 30 54 22 117

35. 2 (2) 2 (1) 70 (4) 216 (5) 215 (7)
L 0 30 97 99

36. 2 (1) 57 (5) 42 (2) 35 (4) 256 {3) 582 (7)
t 25 19 15 113 266

37. I (1) 18 (2) 23 14) 20 (5) 351 (7)
I 7 9 8 160

38. 2 (1) 52 (5) 188 (2,4) 302 (6)
1 18 92 130

39. 2 (I) 24 (7)
[ 9

40. I (1) 28 (7)
0 12

41. L (1) 16 (2) 2 (5) 42 (7)
1 7 0 18

42. 2 (l) 64 (2) 72 (5) 28 (4) 20 (7)
1 27 34 12 12

43. 3 (1) 25 (5) 5 (7)
l 13 2

44. 2 (1) 36 (2) 182 (5) 124 (4) 419 _3) 667 (7)
0 18 79 56 193 269

45. 2 (1) 31 (2) 137 (5) 954 (7)
1 15 65 407

46. 4 (1) 122 (2) 628 (3,5) 208 (4) 124 (7)
2 52 285 98 58

47. 2 (1) 14 (2) 48 (5) 71 (4) 391 (7) "
2 5 21 29 178

48. 1 (1) 18 (2) 60 (5) 177 {7)
• 1 8 27 75 "

49. 1 (1) 61 (2) 79 (7)
l 27 36

50. 2 (1) 32 (5) L8 (2) 767 (7)
0 17 9 343
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APPENDIXF: EXPERIMENTDATA FORSUBJECTPROGRAMC3

Explanation: Repetition No. Failure Case No. (Error No.)

_' 1. 2 (3) 2 (1) 1 (2) 6 (4) 33 (5) 131 (6)
248 (9) 636 (7)

2. 3 (1) 2 (2,3) 3 (4) 97 (5) 143 (6,7) 2079 (8)
1050 (10)

3. 1 (3) 1 (1) 11 (2,4) 354 (6,7) 2 (9)
4. 4 (1,2,3,4) 73 (5,6,7) 189 (9)
5. 4 (1,2) 4 (6) 1 (3,4) 33 (5) 264 (9) 66 (7)
6. 2 (2,3,5) 2 (l,4) 215 (6) 12 (7) 151 (11)
7. 1 (1) 2 (2,3) 1 (4) 101 (5) 462 (6,7) 910 (8)

5263 (11)
8. 1 (2) l (3) 4 (1) 2 (4) 96 (6) 24 (10)

10 (9)
9. 2 (1) 5 (2,4) 4 (3) 66 (7) 228 (5) 69 (6)

240 (8) 674 (11)
10. 1 (1,4) 3 (2,3) 120 (5) 319 (6) 62 (11)
II. 2 (2,3) 4 (1,4) 124 (8) 33 (5) 2 (6,7) 1213 (9)
12. 1 (1,3) 14 (4) 1 (2) 521 (6,7) 86 (5) 104 (9)
13. 6 (3) 2 (2) 2 (1) 21 (4) 69 (6) 35 (7)

28 (8) 128 (5) 440! (11)
14. 5 (1) 3 (2,3) 7 _4) 75 (7) 144 (9) 41 (5)
15. 1 (1,4) I (2,3) 4 (6,7) 58 (5) 159 (8) 332 (9)
16. 6 (1,2,3,4) 42 _7) 87 (5) 207 (6) 286 (9)
17. 4 (1) 2 (2,3,4) 195 (7) 183 (5) 1019 (11)
18. 3 (I} 3 (2,3) 26 (4) 67 (5) 137 (7) 54 (6)

669 (8) 60 €9_
19. I (3) 1 Ill 4 (2_ 12 (4) 5 (7) 15l (5)

559 (6) 778 19)
20. 4 (1) 2 (2,3) 2 (4) 74 (5,6) 644 (9) 43 (7)
21. 3 (1,2,3,4) 88 (5) 348 (7) 4 (6) 643 (8) 22 (11)
22. 4 (5) 3 (l) 3 (2,4) l (3) 73 (9) 1077 (7)
23. 1 (1) 7 (2,3) 12 (41 89 (7) 65 (5) 281 (6)

696 (9)
24. 4 (3) 4 (1) 4 (2) 9 (4) 1 (7) 116 (6)

195 (5) 1563 (11)
25. 1 (1) 3 (2,3) 3 (4) 12 (7) 346 (lI) 93 (8)
26. 4 (1) 2 (2) 4 (3) 4 (4) 31 (5) 89 (6,7)

385 (8) 493 (9)
27. 1 (3) I (1) 2 (7) I (2) 1 (4) 65 (5)

1116 (6) 4160 (10)
28. 1 (1) 6 (3,4) 6 (2) 129 (7) 455 (5) 261 (11)
29. 1 (1,2,3) 1 (4) 98 (5) 109 (6,8) 144 (7) 27 (9)
30. 3 (2,3) I (1) 9 (4) 305 (5) 91 (6,7) 18ll (13)
31. 3 (2,3) 5 (I) l (4) 2 (5) 69 (12) 207 (9)
32. 1 (1) 4 (3) 7 (2) 4 (4) 13 (6,7) 659 (5)

891 (9)
33. I (1,3,4) 8 (2) 5 (6) 85 (5) 377 (I0)
34. 3 (1,3,4) 4 (5) 2 (2) 9 (8) 107 (6,7) 510 (9)
35. 1 (1) 3 (2,3) 8 (4) 129 (7) 117 (6) 64 (5)

2535 (9)
36. 1 (1) 4 (2,3,4) 96 (5) 65 (9) 902 (11)
37. 3 (1,3,4) 4 (2) 176 (6,7) 463 (5) 1140 (8) 356 (9)

F-l



APPENDIXF: EXPERIMENTDATA FORSUBJECTPROGRAMC3

Explanation" Repetition No. Failure Case No. (Error No.)

38. 1 (1,2,3,4) 48 (5) 200 (6,10) _-
39. 1 (1,2) 2 (3) 8 (4) 194 (7) 123 (5) 584 (9)
40. I (1,3) 7 (2) 2 (4) 201 (5) 512 (6,7) 599 (8)

2687 (9)
41. 3 (1) 4 (2,4) 12 (3) 222 (8) 97 (5) 292 (7)

636 (11)
42. 1 (1,3) 4 (2,4) 411 (6) 58 (8) 144 (11)
43. 4 (1) 9 (3,4) I (2) 48 (5) 26 (6) 168 (7)

12 (8) 39 (9)
44. l (1,2,3,4) ll 171 173 (5) 571 (6) 628 (9)
45. 2 (1,4) 1 (3_ 2 (2) 5l (7) 496 (5_ 539 (6,8)

82 (9_
46. 1 (1,2,3) 5 _4) 22 (6) 53 (7) 404 (5) 1102 19)
47. l (2) 5 (3_ 1 (1,4) 39 16,7) 109 (11)
48. I (1,2,3,4) 92 (5,6} 164 (7) 1021 (13)
49. 4 (3) I _1,2) 5 (4) 59 (6,7) 46 i111
50. I (1) 4 (2,3) I (4) 28 (5) 598 19} 267 (8)
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APPENDIX G: EXPERIMENT DATA FOR SUBJECTPROGRAM D3

Explanation: Repetition No. Failure CaseNo. (Error No.)

1. 1 (1) 3 (2) 26 (4,5) 72 (7) 51 (3) 1039 (6)
16 (8) 1898 (10)

2. I (1) 3 (2) 45 (4) 10 (5) 257 (3) 112 (6)
6 (8) 1032 (10)

3. 2 (1,2) 23 (4) 115 (5) 500 (3) 111 (7) 1969 (10)
9887 (14)

4. l (1) 10 (2) 5 (3) 16 (4) 69 (5) 1059 (8)
909 (10) 256 (7)

5. 3 (2) 2 (1,4) 45 (3,6) 96 (5) 461 (8) 129 (7)
4O4 (10)

6. I (1) l (2) 29 (4) 16 (5) 100 (3) 2052 (8)
1081 (7_ 1025 (10)

7. I (1,2) 23 (4) 8 (5) t7 (3} 83 (7) 4140 (6)
8842 (8) 2120 (10)

8. 1 (1) l (2) 55 (4) 75 (5) 17 (7) 33 (3)
929 (8) 597 (10)

9. 3 (1,2) 62 (4) 116 (5) 147 (3) 472 (7) 255l (8)
4353 (10)

10. 1 (1) 4 (3) 1 (2) 88 (6) 20 (4) 40 (5)
372 (8) 940 (10)

II. I (1) 1 (2) 24 (4) 3 (3) 129 (7) 255 (5)
3514 (10) 12613 (12)

[2. 1 (1,2) 58 (4) 36 (5) 105 (3) 777 (6) 83 (7)
238O (10)

13. 1 (l) 4 (2) 13 (4) 37 (7) 43 (5) 6 (3)
435 (6) 789 (10)

14. 2 (1,2) 5 (4) 5 (5) 17 (3) 175 (6) 323 (7)
3865 (9)

15. 1 (2) l (1) 1 (3) 44 (4,5) 698 (7) 210 (8)
462 (10)

16. 2 (1,2) 36 (4) 112 (3) 57 (5) 348 (6) 857 (7)
248 (8) 440 (10)

17. 1 (l) 3 (2) 82 (4,5) 220 (3) 227 (6) 898 (7)
4906 (8) 310 (10)

18. 1 (1,2) 4 (4) 25 (5) 179 (7) 46 (3) 634 (6)
2261 (8) 2947 (10)

19. I (I) 2 (2) 24 (4) 23 (3) 237 (7) 132 (5)
866 (10) 27273 (11)

- 20. 3 (1) 4 (2) 13 (5) 17 (4) 65 (3) 1165 (6)
70 (8) 1236 (10)

21. 2 (1,2) 50 (4,5) 62 (7) 64 (3) 89 (8) 2504 (10)
22. [ (1) 1 (2) 1 (3) 26 (4) [09 (5) 137 (7)

5662 (8) 2359 (10)
23. 1 (l) 3 (2) 20 (4,5) 9 (3) 2285 (6) 171 (10)

5491 (12)
24. 2 (2_ 3 (1) 26 (4,5) 164 (3) 434 (7) 1040 (8)

289O (10)
25. I (1) 3 (2) 24 (4) 21 (3) 3 (5) 375 (7)

108 (6) 445 (8) 330 (9)
26. 3 (2) 2 (l) 14 (4,5) 210 (3) 390 (7) 412 (6)

308 (8) 2162 (10)
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APPENDIX G: EXPERIMENT DATA FOR SUBJECTPROGRAM D3

Explanation" Repetition No. Failure CaseNo. (Error No.)

27. 1 (1) 2 (2) 32 (4) 24 (5) 133 (7) 213 (3) =_
292 (6) 1532 (8) 1771 (10)

28. I (1) I (2) 24 (4) 93 (3) 118 (5) 833 (7)
462 (8) 758 (10)

29. I (1) 3 (4) 5 (2) 73 (5) 130 (3) 393 (6)
361 (7) 8285 (8) 622 (10)

30. I (2) 3 (1) 52 (4) 26 (3) 115 (5) 707 (6)
22 (7) 1855 (8) 1252 (10)

31. 1 (2) ! (1) 15 (5) 60 (4) 114 (3) 135 (6)
110 (8) 38 (10)

32. 1 (1) 4 (2) 2 (4) 55 (5) 77 (3) 1007 (8)
89 (10) 391 (13)

33. I (1,2) 5 (4) 89 (7) 173 (3) 351 (5) 80 {6)
765 (8) 4801 (10)

34. l (1) 3 (2) 17 (3) 2 (4,5) 543 (10) 4171 (7)
4262 (ll_

35. 1 (I) 6 (2) I (5) 44 (4) 28 (3) 771 (9)
862 (8) 2292 (10)

36. I (2) 10 (1) 104 (3,6) 39 (4) 113 (5) 1058 (10)
622 (7)

37. I (1) 2 (2) 41 (3) 12 (4,5) 258 {7) 120 (8_
32O7 (lO_

38. 1 (2) I (1) 56 (4) 98 (3) 91 (5) 949 (7)
455 {I0) 9328 (15)

;39. l (2) 2 (1) I (4) 8 (5) 120 (3) 2232 (7)
42 (6) 137 (8) 444 (lOt

40. 3 (2) I (l) 57 (4) 29 (3) 272 (10) 254 (5)
1281 (7) 5914 (9)

41. I (2) 2 (4) 1 (l) 7 (6) 34 (5) 35 (3)
1717 (9) 714 (7)

42. l (If 2 (2) 55 (3) 25 (4) 87 (7) 172 (5D
143 (8) 1382 (10)

43. 3 (2) I (1) 11 (4) 25 (3) 88 (5) 344 (7)
614 (6) 675 (8) 294 (10)

44. 2 (2) 4 (1) 23 (4) 98 (6) 81 (3) 89 (5)
1057 (8) 3549 (7) 43 (10)

45. 1 (1,2) 6 (4) 17 (3) 215 (7) 186 (5) 1061 (6)
1789 (10)

46. 3 (2) I (1) 26 (4) 18 (3) 123 (81 13 (5) .
1088 (7) 710 (10)

47. 2 (1) 3 (2) 5 (4) 8 (3) 3 (5) 743 (6)
199 (7) 2477 (10)

48. I (1,2) 16 (4) 8 (3) 84 (5) 648 (6) 86 (7)
62 (11)

49. 1 (2) I (l) 25 (4) 22 (3) 70 (5) 335 (lO}
1037 (7) 4270 (9)

50. 1 (1) 2 (2) 13 (4) 63 (8) 7 (3) 77 (5)
306 (10) 924 (7)
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APPENDIXH" EXPERIMENTDATA FORSUBJECTPROGRAMD1

Explanation" Repetition No. Failure Case No. (Error No.)

1. 349 (2) 71 (1) 2091 (3)
2. 2852 (3) 879 (1) 7692 (2)
3. 507 (2) 1342 (1) 1668 (3)
4. 435 (1) 51 (3) 10 (4)
5. 605 (1) 812 (3) 2015 (2)
6. 300 (1) 2098 (2) 429 (3)
7. 611 (1) 85 (2) 17170 (3}
8. 364 (1) 12 (3) 7399 (2)
9. 212 (2) 653 (3) 513 (1)

lO. 279 (1) 854 (2) 9283 (3)
II. 270 (1) 728 (2) 2653 (3)
12. 59 (1) 364 (2) 4697 (3)
13. 418 (2) 227 (l) 2751 _3)
14. 1317 (1.2) 8152 (3)
15. :379 (1) 3049 _2) 4795 (3)
16. 462 (l) 5949 (2_ 515 (3)
17. 128 (3) 2376 (l) 411 (2)
18. 1206 (1} 89 (3_ 4964 (2)
19. 3501 (1) 1:345 (3) 5341 (2)
20. 719 {3} 18 {1) 131 {2}
21. 423 (3) 1112 (1) 77;} (2}
22. 657 {1) 2180 (2) 4659 (3)
23. 702 (I) 81 (2) 950 13)
24. 1353 (3) 213 (l) 10629 €2)
25. 1201 (1) "3140 t2_ 9277 {,3_
26. 2;396 (l) 1087 (2) 797 (3)
27. 1496 (l) 934 (3; 1599 (2)
28. 4;33 11) 1671 (3) 2265 (2)
29. 588 (2) 4 (3) 234 (1)
30. 150 (l) 1359 (2) 1126 (3)
31. 33 (3) 130 (1) 5651 (2)
32. 50 (1) 247 (3) 1854 (2)
33. 1290 (1) 305 (2) 4230 (3)
34. 2274 (1) 1301 (2) 168 (3)
35. 1601 (1) 63 (2) 11952 (3)
36. 1319 (1) 1941 (3) 2663 121
37. 1553 (3) 982 (1) 527 (2)
38. 12 (1) 685 (2) 3244 (3)
39. 1851 (1) 828 (3) 1541 (2)
40. 346 (I) 1696 (3) 9764 (2)
41. 132 (2) 1313 (1) 12957 (3)
42. 301 (3) 1469 (1) 3025 !2)
43. 43 (1) 510 (2) 646 13)
44. 615 (3) 12 (I) 540 12)
45. 4 (1) 2066 (3) 11732 (2}
46. 66 (3) 1781 (l) 4864 (2)
47. 504 (3) 1623 (1) 3480 12)
48. 297 (I) 189 (3) 2653 (2)
49. 280 (1) 4384 (3) 48l (2)
50. 1183 (2) 270 (1) 980 (3)
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APPENDIXI: EXPERIMENTDATA FORSUBJECTPROGRAME1

Explanation: Repetition No. Failure Case No. (Error No.)

"_ 1. 2 (2,4) 4 (1) 3 (3) 376 (5) 939 (6)
2. 4 (2) 2 (3) 3 (1) 45 (4) 1045 (6) 4055 (5)
3. 1 (2) I (I) 48 (4) 1 (3) 2591 (5) 412 (7)
4. 1 (2,3) 1 (1) 21 (4) 1119 (6) 529 (5)
5. 2 (2) 2 (1) 5 (3) 9 (4) 2286 15) 2080 (6)
6. I (2) 1 (1) 13 (4) 11 (3) 1738 (5) 388 (6)
7. 1 (1) 2 (2) 7 (3) 38 (4) 822 (5) 5827 (6)
8. 1 (2) 2 (1) 3 (3) 16 (4) 33 (5) 4108 (6)
9. I (2) I (1) 9 (4) 12 (3) 543 (6) 3889 (5)

10. I (1) 4 121 12 (4) 3 (3) 1167 15) 5782 (6)
11. 1 (1) 1 (2) 35 13) 6 (4) 49 (5) 1212 (6)
12. I (2) 3 (1) 2 (4) 6 13) 2093 (6) 5507 (5)
13. I (1) 5 (2) 8 (3,4) 1369 (6) 373 (5)
14. I {1,2) 17 (3) 23 (4) 444 (5) 1895 (6)
15. 1 (2) 1 (1) 4 (3) 25 (5) 251 (4) 2989 (6)
16. 2 (2,4) I (1) 3 (3) 130 15) 349 (6)
17. 2 (1,2) 38 (3) 26 (4) 172 (6) 676 (5)
18. 2 (1) 1 (2) 3 (3) 15 (4) 4632 (5) 670 (6)
19. 1 (1,2) 22 (3) 6 (4) 1302 (5) 250 (6)
20. 2 (l} 2 (2} II (4} 23 (3) 1314 (5) 3130 16)
21. I (2) 3 [l) 3 (3) 7 (4) 762 (6) 261 [5)
22. 1 (1) 2 _21 ! (3) 3 (4) 629 (6) 5098 _5}
23. l (1) 2 [2) 40 (3) 18 (4) 846 (5) 1361 _6)
24. I (2) 1 (1) 20 (3) 7 (4) 1384 (5) 759 _6)
25. ! (1_ 3 (2_ 5 (3} 57 _41 3653 16) 1279 !5_
26. I (3,4J [ (1_ 2 (2) 397 (5) 3217 (6)
27. I (1,2) 6 (4) 45 (3_ 466 16) 1280 (5)
28. 3 (1) 2 (2) l (3) 22 (4) 2075 (5) 4811 (6)
29. 2 (2) I (1) 6 (3) 16 (4) 887 (5) 977 (6)
30. I (2) 2 (1) 8 (3) 3 (4) 1828 (5) 5086 (6)
31. l (1) I (2) 13 (4) 14 (3) 2057 (5) 1921 (6)
32. 1 (1) l (2) 3 (3) 17 (4) 3337 (6) 1014 (5)
33. 1 (1,2) ll (3) 9 (4) 134 (5) 3412 (6)
34. I (2) 1 (1) 12 (3,4) 2 (5) 298 (6)
35. I (2) 3 (1) 17 (3) 70 (4) 230 (5) 617 (6)
36. I (1) 5 (2) 15 (3) 12 (4) llO (6) 3723 (5)
37. 1 (2) 3 (1) 3 (3) 53 (4) 3765 (5) 11434 (6)
38. 1 (3) 1 (1) 1 (2) 26 (4) 1991 (5) 1022 (6)
39. 1 (2) 3 (1) ll (3) 8 (4) 985 (5) 522 (6)
40. l (2) 3 (1) 35 (3) 13 (4) 1136 (5) 3245 (6)
41. 1 (2) 1 (3) 2 (1) 28 (4) 173 (6) 123 (5)
42. 1 (1) I (2) lO (3) 2 (4) 4310 (6) 982 (5)
43. 1 (1,2) 13 (3) 14 (4) 725 (6) 2038 (5)
44. 3 (1) 1 (3) 2 (4) 1 (2) 1206 (5) 746 (6)
45. 2 (1,2) I (4) 1 (3) 429 (6) 1684 (5)
46. ! (1,2) 2 (4) 11 (3) 349 (6) 20 (5)
47. 1 (1) 2 (2) 5 (3) 6 (4) 2665 (5) 1525 (6)
48. l (1,2) I (4) 1 (3) 3056 (5) 1105 (6)
49. 1 (1) I (2) 2 (4) 23 (3) 1302 (5) 513 (6)
50. 1 (2) I (1) 1 (3) 13 (4) 1133 (6) 96 (5)
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APPENDIX J: EXPERIMENTDATA FORSUBJECTPROGRAM D4

Explanation" Repetition No. Failure CaseNo. (Error No.)

1. 19 (l) 26. 1 (1)

2. 53 (I) 27. 32 (1)

3. 46 (1) 28. 10 (l)

4. 39 (l) 29. 16 (1)

5. 9 (1) 30. 19 (11

6. 4 (l) ;31. 24 (1)

7. 15 (I) 32. 7 tl)

8. 223 (1) ;33. 6 (1)

9. 44 (1) 34. 80 (1)

tO. 13 (l) 35. 30 (1)

It. 5 (l) 36. 15 (1)

12. 37 (I) 37. 10 (1)

13. 27 (1) 38. 12 11)

14. 21 (1) 39. 20 tl)

15. 13 (l) 40. 27 (l)

16. 4 (1) 41. 31 (1)

17. 141 (1) 42. 77 (1)

18. 121 (1) 43. 10 (1)

19. 50 (1} 44. 34 (1)

20. 2 (1} 45. 26 (l)

21. 36 (1) 46. 29 (1)

22. 35 (l) 47. 3 (1)

23. ll (1) 48. 7 (1)

24. 15 (t) Note: 25,oooadditional cases 49. 1 (l)

25. 4 (t) were executed with no 50. 5 (1)
seconderrordetected.
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APPENDIXK: EXPERIMENTDATA FORSUBJECTPROGRAME4

Explanation" Repetition No. FailureCaseNo. (Error No.)

I. 6 (I) 26. 11 (I)

"- 2. 3 (I) 27. 2 (I)

3. It (I) 28. 4 (t)

4. I (I) 29. I (I)

5. I0 (I) 30. 2 11)

6. I (l) 3t. 8 _t)

7. 9 (l) 32. 32 (1)

8. 5 (1) 33. 4 (1)

9. 2 (1) 34. 9 (l)

to. 6 (t) 35. 4 (t)

tl. 5 (l) 36. 1 11)

12. 2 (1) 37. 16 (l)

13. 5 (l) 38. 7 (1}

14. 2 (1) 39. 4 11)

15. 3 (1) 40. 2 (l)

t6. 4 (t) 4t. 4 (t_

17. 14 (1) 42. I (1)

18. 14 (I) 43. 3 (1)

19. 9(1) 44. 4 11)

20. 3 (I) 45. I (1)

.: 21. 6 (1) 46. 1 (t)

22. l (1) 47. 2 (1)

23. 5 (l) 48. 17 (1)

24. 8 (l) Note: 22,000 additional cases 49. 2 _l)

25. 3 (t) were executed with no 50. 5 (t)
second error detected.
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