LN w7 0

| Vs

@ https://ntrs.nasa.gov/search.jsp?R=19840021433 2020-07-22T04:27:28+00:00Z

NS CH=1122 1
NASA Contractor Report 172378
™ ;:": Q?EECE
ST sl AT
L k::/‘ z—\- > -
e o NAS A—CR—17237 8
o1 10 LE cassal ya0t . 19840021433 ,
1 —

e

———

Software Reliability: Additional Investigations
Into Modeling with Replicated Experiments

P. M. Nagel, F. W. Scholz and J. A. Skrivan

Boeing Computer Services
Space and Military Applications Division
Seattle, Washington 98124

Contract No. NAS1-16481
June 1984

LIBRARY 66
NASA LBAARY 627V

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

21 £ 1684

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

SOFTWARE RELIABILITY: ADDITIONAL INVESTIGATIONS
INTO MODELING WITH REPLICATED EXPERIMENTS

Prepared Under Contract NASI-16481

By
P. M. Nagel

F. W. Scholz
J. A. Skrivan

Boeing Computer Services
Systems Division
Seattle, Washington 98124

For

National Aeronautics and Space Administration

June 1984

a4
N&H— 29522

1.0

2.0

3‘0

CONTENTS

SUMMARY AND INTRODUCTION

1.1 SUMMARY
1.2 INTRODUCTION

EXPERIMENT

2.1 TEST FRAMEWORK
2.2 DESIGN FACTORS
2.3 DATA RECORD

EXPERIMENT DATA COLLECTION

.l INTRODUCTION
.2 PROGRAMMER DESCRIPTIONS
.3 PROBLEM #1

W W W

.l Background
.2 Usage Distribution
.3 Error Descriptions

W W W
W W W

3.3.3.1 Subject Program A3*
3.3.3.2 Subject Program B3*
3.3.4 Run Results

3.3.4.1 Subject Program A3*
3.3.4.2 Subject Program B3*
3.4 PROBLEM {2

Background

.4. 1
4.2 Error Descriptions

3
3.

3.4.2.1 Subject Program C3
3.4.2.2 Subject Program D3

3.4.3 Run Results

3.4.3.1 Subject Program C3
3.4.3.2 Subject Program D3

3.5 PROBLEM #3

3.5.1 Background
3.5.2 Error Descriptions

Page

o p—

~N = & W w

0o NN

11
12

13

13
13

13

13
16

17
13

19

S 19

19
19

19
19

iii

4.0

5.0

iv

CONTENTS (Continued)

3.5.2.1 Subject Program D1
3.5.2.2 Subject Program El
3.5.3 Run Results

3.5.3.1 Subject Program Dl
3.5.3.2 Subject Program El

3.6 PROBLEM i4

Background
Specifications
Test Cases

Usage Distribution
Correct Version
Error Descriptions
Run Results

N
NN -
Yaourwn -

DATA ANALYSIS

ERROR PROBABILITIES

STAGE PROBABILITIES

EFFECT OF USAGE DISTRIBUTION ON ERROR RATE
EFFECT OF EXPERIENCE ON ERROR RATE

EFFECT OF LANGUAGE ON ERROR DETECTION
EFFECT OF PROBLEM TYPE ON ERROR STRUCTURE
EXPONENTIAL ASSUMPTION AND TIME BETWEEN
SOFTWARE FAILURES

4.8 DEPENDENCE OF STAGE LIFE LENGTH ON TOTAL
LIFE AND ADJACENT LIFE

FEFEEEFs
NN EWN -

ANALYTIC CONSIDERATIONS

5.1 MULTINOMIAL MODEL
5.2 EXPONENTIAL MODEL
5.2.1 General Model
5.2.2 Specific Results

2.2.1 N=2

2.2.2 N=3

2.2.3 Distribution of the Rate Parameter
Given the Number of Errors Corrected

U \n

Page

22
22

23

23
23

23

23
23
23
23
27
27
27

29

29
29

39
39

47

52

57

57
60

60
62

62
63
65

CONTENTS (Continued)

Page

5.3 THE TRADITIONAL EXPERIMENT: MODELS AND METHODS 69

OF PREDICTION

5.3.1 Multinomial Case 69

5.3.2 Exponential Case 72

5.3.3 Forecasting 76

6.0 CONCLUSIONS g1

REFERENCES &3
APPENDIX A: SOFTWARE ERROR CATEGORIES A-1
APPENDIX B: PROBLEM #4 SPECIFICATIONS B-1
APPENDIX C: PROBLEM #4 TEST CASES C-1
APPENDIX D: EXPERIMENT DATA FOR SUBJECT PROGRAM A3* D-1
APPENDIX E: EXPERIMENT DATA FOR SUBJECT PROGRAM B3* E-1
APPENDIX F: EXPERIMENT DATA FOR SUBJECT PROGRAM C3 F-1
APPENDIX G: EXPERIMENT DATA FOR SUBJECT PROGRAM D3 G-1
APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM DI H-1
APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM E1 I-1
APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM D4 J-1
APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM E4 K-1

2.1-1
2.2-1
3.3.2-1
3.3.4.1-1
3.3.4.2-1
3.4.3.1-1
3.4.3.2-1
3.5.3.1-1
3.5.3.2-1
3.6.4-1
3.6.7-1

4.2-1

4.2-2

4.2-3

4.3-1

4.3-2

4.3-3

404"1

‘{'05’1

LIST OF FIGURES

Experiment Flow Diagram

Experimental Design Matrix

Usage Distribution for Latitude Coordinates
Trace of Runs for Subject Program A3*
Trace of Runs for Subject Program B3*
Trace of Runs for Subject Program C3
Trace of Runs for Subject Program D3
Trace of Runs for Subject Program DI
Trace of Runs for Subject Program El
Usage Distribution for Cluster Centers
Trace of Runs for Subject Programs D4 and E4

Estimated Error Rate as a Function of the Number of
Errors Corrected - Original Data Current Study

Estimated Error Rate as a Function of the Number of
Errors Corrected - Original Data Study No. 1

Estimated Error Rate as a Function of the Number of
Errors Corrected - Modified Origin

Estimated Stage Error Rate as a Function of the Number
of Errors Corrected

Comparing the Effect of Uniform and Non-Uniform Usage
Distributions on Error Probabilities

Comparing the Effect of Uniform and Non-Uniform Usage
Distributions on Stage Probabilities

Effect of Experience on Log Failure Rate as a Function
of the Number of Errors Corrected

Effect of Language/Experience on Log Failure Rate as a
Function of the Number of Errors Corrected

10
14
15
20
21
24
25
26
28

34

35

36

40

41

42

43

45

vii

LIST OF FIGURES (Continued)

Page
4.5.2 Effect of Language on the Performance of a Single 46
Programmer
4.7-1 Minus Log of Observed Survivor Function (Selected 48
Points) for Programs B3*, 1st Stage and C3, 2nd Stage
|
4.7-2 Minus Log of Observed Survivor Function (Selected 49
Points) for Program C3, 3rd and 4th Stages
4.7-3 Minus Log of Observed Survivor Function (Selected 50
Points) for Program D3, 3rd and 4th Stages
4.7-4 Minus Log of Observed Survivor Function (Selected 51

Points) for Program D3, 5th Stage

viii

4.1-1

4.2-1

4.3-1

4.3-2

R

4.8-1

4.8-2

5.3.3-1

5.3.3-2

5.3.3-3

LIST OF TABLES

Specific Error Probabilities - Ranked Estimates

Stage Probabilities as a Function of the Number of
Corrected Errors

Comparing the Effect of Uniform and Non-Uniform Usage
Distribution on Error Probabilities

Comparing the Effect of Uniform and Non-Uniform Usage
Distribution on Stage Probabilities

Recomputed Error Probabilities for Study No. 1 - Ranked
Estimates

Correlation between the Total Time to the ith Failure and
the Time to the Next Failure i + 1

Autocorrelation between Adjacent Stagesiandi + 1
Forecasts of the (K + 1) st Parameter Conditioned on a
Specific K'th Node with Independent Estimates of the

Parameter

Forecasts of the (K + 1) st Parameter Conditioned on a
Specific K'th Node Based on Error Probability Estimates

Next Node Rate Forecasts Compared to 95% Confidence
Intervals on Observed Rate

37

38

Uy

53

55

77

79

80

ix

1.0 SUMMARY AND INTRODUCTION

I.1 SUMMARY

This report documents the second of two studies performed by Boeing Computer
Services on modeling the process of software error detection from the results of
experiments specifically designed to complement this activity. The experiments
consist of simulations conducted on code prepared under controlled conditions and
executed with randomly selected inputs. Six codes were developed in the first study
and this study continues the experiment with six more. The code is initialized to an
original state and flexed with independently generated random inputs. Errors are
corrected as they are encountered until a stopping rule is satisfied. Replication is
introduced by repeating the entire process from initialization.

This experiment has confirmed several of the conclusions of the first study with
regard to the probabilistic diversity of error structure, linearity of the log stage
failure rate, and the nearly exponential character of the stage distribution.

The previous study explored the effects of programmer and problem as experimental
design factors on the error structure. The current study enlarges this set of factors
by varying the experience level of the programmer and the relative frequency or
usage of the program inputs. The use of FORTRAN is contrasted with the use of a
micro-based assembler language as another design factor. All of these factors, not
surprisingly, affected performance and some very tentative relational hypotheses are
suggested.

Although it can be demonstrated that stages are neither independent nor exponen-
tially distributed, empirical estimates show that the exponential assumption is nearly
valid for all but the extreme tails of the distribution. Empirical studies of the
dependence of a stage on its past indicate that some of the estimated correlations
are high and exhibit a curious periodicity. Except for the degree of dependence in
the stage probabilities, it still appears that Cox's proportional hazards model,
introduced in reference [1], approximates to a degree what is being observed.

An analytic framework for replicated and non-replicated (i.e., traditional) software
experiments is initiated in this study in order to present the results in a meaningful
context. A method of obtaining an upper bound on the error rate of the next error is
proposed. The method was validated empirically by comparing forecasts based on the
method with actual data. In all 14 cases the bound exceeded the observed parameter,
albeit somewhat conservatively. Two other forecasting methods are proposed. One
based on a crude approximation to the proportional hazards model proved to be in the
neighborhood of the estimated parameter, as measured by a 95% confidence interval,
53% of the time. The other subtracted the observed error probability and the
program's success rate from one to estimate the remaining error rate. This method
generally underestimated the observed parameter but was within the interval 67% of
the time.

1.2 INTRODUCTION

Software reliability forecasting continues to be an elusive problem. Many models
have been introduced in the literature, most of them without a clear statement of the

mathematical and statistical foundations that motivated the model and most of them
without data validation. Many statements have stressed the need for realism in data
collection and modeling. Unfortunately by enforcing realism, particularly in data
collection, control is sacrificed, i.e., so many variables are influencing quality that it
is difficult to identify the drivers causing change. Risk assessment has been confused
with software management goals and testing has been confused with debugging.

This experiment and the previous companion study documented in reference [1]}
represent an attempt to wed experimental results and a modeling framework. The
study has four primary goals:

a. To produce quality data on software error detection with controlled
experiments,

b. To model the exact nature of the experiment as carefully as possible,
bowing to mathematical expediency only when necessary and after as much
empirical evaluation as possible,

c. To experimentally verify some of the more popular assumptions regarding
the process of error detection, and

d. To provide measures of the impact of various environmental factors on
software quality by varying them as design factors in the experiment.

The previous study defines an experimental framework with all of the controls
thought necessary for quality data. This experiment does not try to investigate all of
the issues that influence the software error structure but concentrates only on those
that are related to problems with fixed specifications and with code prepared by a
single programmer. An error is carefully defined in terms of a detector or criteria
establishing correctness, and the probability of detection is governed completely by
the set of inputs producing incorrectness and the probability distribution controlling
the usage of the input set.

Little software reliability growth modeling has been based on feedback gained from
controlled experiments. This is particularly relevant in forecasting the future
behavior of a program that necessarily depends on a model of the error removal
process. Since programming is a human endeavor, without a behavior model only
controlled experiments can provide this knowledge. The empirical studies reported on
in this document suggest that there is a commonality in the methods employed by
programmers to achieve their professional goals and that the accuracy of the
performance is related to some of the characteristics of the human producer.
Overall these studies also suggest that the error structure of software is a
forecastable process.

The remainder of the report is in six sections. Section 2.0 briefly reviews the
features of the overall experiment and describes the experimental factors explored in
the current study. Section 3.0 provides some operational detail of conducting the
experiment with a description of the programmers and problems used and the data
collected. In Section 4.0, descriptive statistics of the data observed in this study are
presented and compared with the previous work. Analytic results are discussed in
Section 5.0, together with an empirical study on forecasts. The conclusions of the
study are summarized in Section 6.0.

-

2.0 EXPERIMENT

Details of the replicated experiments that form the core of the experimental results
obtained in this study and its predecessor are contained in reference [1] and
therefore this section only describes the broad framework of the experiment. The
experiments are simulations performed on software written to support a given
problem specification by a programmer with designated qualifications. Both the
qualifications of the programmer and the specification of the problems are selected
with a predetermined experimental set of factors in mind.

2.1 TEST FRAMEWORK

The simulations are initiated by generating random input according to a distribution
called the usage distribution defined as part of the original problem specification.
The problems for this and the earlier study were selected from problems that had
been previously programmed and had been in use for some time. The output of this
seasoned program, executed with identical inputs to the program on test, is used as a
comparator to determine the correctness of the new program. Complementing this
error detection mechanism is the error detection capability of the operating system
itself used as a companion detector.

Once correctness according to the detectors used has been established, new inputs
are generated independently and the process repeated. If for some execution an error
is indicated, the error is recorded together with the number of executions since the
last error, and then corrected.

The simulation begins with the program in its initial state. This state is reached
when the program successfully complies and correctly executes a number of
predetermined test cases. These tests are defined as the static tests for a given
specification and the program must pass these static tests as well as successfully
execute the input causing failure before simulation can be reinitiated. Once
reinitiated, the process is repeated error by error until a predetermined stopping rule
is satisfied. Termination in this study occurs when an error is detected that is too
costly to fix or an upper bound on the number of samples is reached, whichever comes
first.

Traditional tests on software force the experimenter to forecast the future from a
single manifestation of the error process, that is, a single series of program
executions, with the errors corrected in a single order. In order to provide statistical
replication of this process, in this experiment once the stopping rule is satisfied for a
particular program run the program is reinitiated to its original state and the process,
i.e., a new run is repeated. The experimental flow for each run is exactly the same
except for the consequences of using different random numbers. Each run has the
opportunity then, of generating different random errors in different orders with
different life lengths between errors. Fifty runs are simulated for each experimental
treatment examined.

Two concepts associated with this sampling are defined: program stage and program

state. Since errors can be recognized from run to run, they are identified as
encountered with an error number. This number is recorded as part of the data base

when the error shows up in the sampling. A program stage at a particular point in the
sampling refers to the number of errors that have been corrected since sampling
began for that run. A program state is a listing of errors by number that have been
detected and corrected since the run was initiated.

Figure 2.1-1 illustrates the overall flow of this experiment for a given code.

2.2 DESIGN FACTORS

The test framework introduced in the previous section was used in the first study to
explore several combinations of problem specification and programmer. This study
continues this investigation by exploring new features. These features are combined
with old features and new data is combined with old data in order to investigate many
new issues.

The experiments conducted are summarized in Figure 2.2-1. A factorial design of
two programmers (A and B) each programming from three separate problem specifi-
cations (1, 2 and 3) formed the nucleus of the first study. To this have been added
three programmers (C, D and E) and one new problem specification (4). From the
resulting 5 x 4 array only those combinations indicated were selected for coding.

Programmers C and D are highly experienced programmers each with a strong
background in technical programming extending over several years as opposed to the
relative inexperience of programmers A and B. Programmer E has little more work
experience than B, but is considered a senior programmer in terms of job
performance and the quality of the experience. In coding problem #4, program design
skills are emphasized more than the combined analysis/design skills called for in
coding the other three problems. Programs A3 and B3 have been rerun with a
different usage distribution. Programmers C and D reprogrammed problem #3 in the
28000 assembler language of the ONYX micro computer. FORTRAN is the language
common to all of the other programs written for this study. Programmers D and E
each programmed problem #1 and the new problein in FORTRAN.

It was the intent of the original design, that programmer C would assume the role
subsequently played by programmer E. Unfortunately, though not discovered until
nearly the end of the coding of C3, this programmer was undergoing a difficult period
of personal stress. As this condition was influencing the quality of the work being
performed, a substitution was necessary for the remaining work in the design. The
data for C3, though it is included in this report for consistency, should be considered
with some caution, particularly when compared across treatments in the design.

2.3 DATA RECORD

For each test condition, i.e., programmer-problem combination, and for each run, the
number of executions until failure for each stage is recorded together with the error
number of the error causing failure. In some cases, when a clock with sufficient
sensitivity was available for the machine in use at the time, the total time between
failures of the program was also recorded. The total data base recorded for this
experiment is presented in Appendices D through K.

PROBLEM .| PROGRAMMER |———| CODE
SPECIFICATION <

Repeat K Times

- - e e s)
o E ; ¥ Y Y
'I;" -Sr STATE STATE STATE
| Y 1 2 N
—*L —> c —>| pyNAMIC [DYNAMIC [" ®| DYNAMIC
> x DETECTORS DETECTORS DETECTORS
£ £ ; ; ;
E :
5 :
¥
DEBUG t.-cciveecnnas v y
.............................. y

Figure 2.1-1. Experiment Flow Diagram.

“p330QO0T

Program

1 2 3 4
A1/F A2/F A3/F
A3*/F
B1/F B2/F B3/F
B3*/F
C3/A
D1/F D3/A D4/F
E1/F E4/F

Figure 2.2-1. Experimental Design Matrix.

Study #1

A1,B1
A2,B2
A3,B3

Study #2

A3*,B3*
C3,D3
D1, E1
D4, E4

Desigh Conditions

F = FORTRAN

A = 728000 Assembler

* = Different Usage
Distribution

3.0 EXPERIMENT DATA COLLECTION

3.1 INTRODUCTION

The gathering of statistics on the failure detection/error correction process involves
embedding the subject programs in a software-test environment. The overhead
programs of the experiment as well as operational details are fully described in
reference [1].

In the current study, the DEC VAX/VMS System was extensively used for 3 of the 4
problems. The remaining problem was run on the ONYX Microcomputer, a Z8000-
based system with the UNIXTM operating system. Z8000 Assembly Language was
used in this latter problem and FORTRAN was used in the other problems.

This chapter and the referenced appendices present the data-collection results of the
experiment. Also included is a brief description of the programmers' backgrounds.

There are four parallel sections (3.3, 3.4, 3.5, and 3.6) corresponding to the four
problems of the experiment. Each of these sections together with corresponding
appendices and material in reference [1] where appropriate, gives background
information on the problem specifications and correct version, descriptions of test
cases and the usage distribution of the experiment runs.

A tabulation of software errors is given for each subject program. The identified
errors are categorized using the categories in reference [2]. These categories are
given in Appendix A.

UNIX is a trademark of the Bell Laboratories.
3.2 PROGRAMMER DESCRIPTIONS

Programs from five programmers (labeled A, B, C, D, and E) have been used in the
current study. Programmers A and B were also involved in the previous work (1l.

Programmer A received a B.S. degree in Computer Science in 1979, and joined BCS in
June 1979 as a programmer. The principal job of this programmer has been to
support and enhance a geometry package used to design wing and body configurations.
Past experience in the field of computer science has emphasized structured software
design, development and languages, including FORTRAN, Pascal, ALGOL, SNOBOL
and COBOL.

Programmer B received a B.S. degree in Computer Science in 1975, and joined BCS in
January 1976 as a programmer. B has worked on nuclear-waste engineering and
radiation-monitoring problems, using FORTRAN on a variety of machines. Later
assignments have involved integration testing on the AWACS program using JOVIAL
language, and conversion of a missile-simulation program and graphics package from
and IBM machine to the VAX/VMS system.

Programmer C received a B.S. in Physics in 1967 and a Ph.D in Astronomy in 1979
and has had extensive experience in both scientific and systems work. Scientific

applications have included submarine avionics and navigation algorithms. The
experience in systems work has involved executive systems, I/0 interfaces and real-
time data acquisition. C is familiar with CDC, DEC and IBM mainframes plus
FORTRAN, CMS-2 and a variety of assembly languages.

Programmer D graduated in 1962 with a B.S. in Mathematics and in 1964 with an M.S.
in Math and currently has over 20 years experience in systems and software
development. This experience has included participation in large-scale applications
scientific software development and extensive research in software validation and
verification technology. D is familiar with a variety of host mainframes, FORTRAN,
PASCAL and assembly languages.

Programmer E received a B.S. degree in Computer Science in 1979 and joined BCS
shortly thereafter as a software engineer. Assignments have included design and
development of a variety of software tools, including graphics software, Data
Manipulation Language precompiler, PL/l dynamic analyzer, HAL/S static and
dynamic analyzer, and a state-of-the-art symbolic execution tool for HAL/S.
Language proficiencies include Pascal, FORTRAN and Basic, and a working knowl-
edge of HAL/S, Lisp, SNOBOL, Simula and APL. E has worked on CDC and DEC
mainframes.

E was chosen to participate in the study as a senior programmer, based not on years
of experience alone, but more importantly on versatility; E has had much more
experience with a variety of languages compared to programmers A and B. In
addition, E's applications have also been more varied than those of A and B, ranging
from scientific programming to compiler construction. However, maturity based on
years of experience is also a part of one's seniority, which E is still increasing.
Consequently, the study findings with regard to the effects of seniority may be
clouded by the difficult question of what constitutes seniority in computer
programming.

3.3 PROBLEM #1

3.3.1 Background

The problem used in Problem #3 of reference [1] was used in the present study to
consider the effects of a different usage distribution. That program involved earth-
satellite calculations for which programmers A and B designed, coded and tested
their individual programs, A3 and B3, respectively. Those same programs were used
in the present study but with another usage distribution of the input data. They are
labelled A3* and B3*, respectively, to differentiate findings. See reference [1] for
program specifications, test cases, and a description of the correct version.

3.3.2 Usage Distribution

Three latitude-longitude coordinates on the Earth are required inputs, as well as an
angle between 0° and 180°. In the previous study, the distribution for the
latitude-longitude coordinates was uniform over the sphere, but rounded to the
nearest 5° in both latitude and longitude. The distribution for the angle was uniform
between 0° and 180° with no rounding.

The distribution for the three latitude-longitude coordinates has been changed to
allow more latitudes at or near the equator. Figure 3.3.2-1 illustrates the triangular
distribution centered at the equator (0° latitude) used for latitudes. Longitude
coordinates are still uniform over the sphere, and both latitude and longitude
coordinates are rounded to the nearest 50. The continuous curve in Figure 3.3.2-1
approximates the discrete curve resulting from latitude rounding. The distribution
for the angle remains uniform between 00 and 180° with no rounding.

3.3.3 Error Descriptions

The same errors occurring for B3* and all errors but No. 5 in A3* in reference [1]
were also detected and corrected in the present study. Subject program A3* had ten
software failures, for which six errors were corrected. Subject program B3* had
seven different software failures for which five software errors were corrected.

(Note that in sections 4.5.6 and 4.5.7 of reference [1], the descriptions of A3 and B3
are transposed.)

A P(X)
.05
Approximation
/ to Discrete Function
025 —+
[| o [|
-90 ° 45 ° 0 45 ° 90 °
Latitude

Figure 3.3.2-1. Usage Distribution for Latitude Coordinates.

10

3.3.3.1 Subject Program A3*

ERROR

NUMBER

1

10

CLASSIFICATION
CODE

A800

A600°

A900

A600

A900

A600

A600

A600

A600

A600

DESCRIPTION

The determination of the sign of the azimuth
was not done.

The algorithm to determine the order of the
two intersection points was incorrect.

The argument for arccos was greater than 1.0
or less than -1.0.

The algorithm to determine intersections
failed to find a correct intersection point.

The argument for arcsin and/or arccos was
greater than 1.0 or less than -1.0.

The sign of the calculated azimuth was
incorrect, when the magnitude of the azimuth
is pi.

Determination of colinearity of two coor-
dinates and the center of the earth was
incorrect.

There was an accuracy failure in some output
item (relative error >1%).

There was division by zero when determining
intersections.

The azimuth was incorrectly calculated as 0,
when the correct value was pi.

11

3.3.3.2 Subject Program B3*

ERROR
NUMBER

12

1

CLASSIFICATION
CODE

A600

A800

A900

A600

A600

A600

A600

DESCRIPTION

The determination of the sign of the azimuth
was incorrect.

There were uninitialized variables when cross-
product calculations were bypassed under
certain conditions.

The argument for arccos was greater than 1.0
or less than -1.0.

The algorithm to determine intersections
calculated the wrong point of intersection.

The azimuth was incorrectly calculated when
the path went through either the north or
south pole.

The algorithm for calculating intersections
failed to determine the correct number of
intersections.

There was an accuracy failure in some output
item (relative error > 1%).

3.3.4 Run Results
3.3.4.1 Subject Program A3¥

Figure 3.3.4.1-1 presents the results of the experiment for subject program A3*.
This figure, as well as those for the remaining programs (3.3.4.2-1, 3.4.3.1-1, 3.4.3.2-
1, 3.5.3.1-1, 3.5.3.2-1, and 3.6.7-1), traces the 50 runs for the particular program.

The figure is composed of levels, or stages, of program states, where each stage is
defined by the number of errors detected. Beginning with state 0, the occurring
program states and their frequencies are shown for the 50 runs. The encircled
number(s) represent a program state, in particular, the error numbers of the
corrected errors. For example, 12 is a given subject program with errors #1 and #2
corrected. A subject program at state 0 is identified with 0 following the program
name and dash, e.g., A3*-0. The directed line segments represent the random walk
of the subject program going from one state to another, i.e., having one or more
errors corrected. The number to the left of this line segment is the number of runs
experiencing that particular change in state.

For example, using Figure 3.3.4.1-1 and beginning with state 0 (A3*-0), 47 of the runs
experienced error #1 first and errors #2, #7 and #9 were initially experienced by a
single run each. As shown in the table to the right of the figure, these 50 runs
required a total of 187 input cases for the first error%s) to occur.

From these states the runs continue to another stage. Note that not all 50 runs
continue through all stages, because some errors detected are not corrected. In
general, the number of input cases per run required to detect errors increases as the
stage increases.

Because of the complexity of the figure, multiple failures on the same case are not
indicated in the figure, (as was included in similar figures in reference [1]), but
instead the trace follows the error numbers of the multiple failure in sequence.

3.3.4.2 Subject Program B3¥

Figure 3.3.4.2-1 illustrates the result of the software failure/error correction process
for B3*. Similiarly to Figure 3.3.4.1-1, multiple failures on the same case are not
shown in Figure 3.3.4.2-1.

3.4 PROBLEM #2

3.4.1 Background

The program for Problem #3 of reference [1] served as the basis for Problem #2 of
this study to consider the effects of computer language. Programmers C and D
designed and coded their respective programs in Z8000 Assembly Language based on
the program specifications from the first study. The subject programs are labelled
C3 and D3, respectively. The same test cases and usage distribution from that study
were used again. See reference [1] for program specifications, test cases, usage
distribution, and a description of the correct version.

13

Wi

ERRORS RUNS TOTAL

DETECTED . CASES

1 50 187

2 49 1521

3 45 1667

4 30 2086

FODED || -

EXPLANATION

a = error #10

Figure 3.3.4.1-1." Trace of Runs for Subject Program A3*.

ERRORS RUNS TOTAL
DETECTED CASES
1 50 127
2 50 2459
3 46 4852
4 38 7137
5 20 6703
3
o) s |

Figure 3.3.4.2-1. Trace of Runs for Subject Program B3*.

3.4.2 Error Descriptions

During the experiment for Problem #2, subject program C3 had 13 software, all of
which were corrected. Subject program D3 had 15 failures with 13 corresponding
corrected software errors.

16

3.4.2.1 Subject Program C3

ERROR

NUMBER

1
2

10

11

12

13

CLASSIFICATION
CODE

A800

A600

A600

A600

A600

A600

A600

A800

A600

A800

A600

A600

A600

DESCRIPTION

There were spurious or missing intercepts.

The computed longitude of the intercept was
off by a factor of 2 pi.

The computed latitude of the intercept was
off by a factor of pi.

The algorithm to determine the order of the
two intercepts was incorrect.

The sign of the calculated azimuth was
incorrect when the magnitude of the azimuth
was pi.

An accuracy failure caused a refinement of
error No. 2.

The azimuth was incorrectly calculated when
the path went through either the North or
South Pole.

Intercepts were incorrectly calculated for
coincident or antipodal points.

A refinement of error No. 7 was necessary to
correctly calculate intercepts for North Pole
cases.

Intercept cases were incorrect when all three
points lay on a great circle.

A refinement of error No. 2 was necessary.

The computed longitude was close to 2 pi
instead of 0.

A further refinement of error No. 2 was
necessary.

17

3.4.2.2 Subject Program D3

ERROR
NUMBER

18

1

10
11

12
13
14

15

CLASSIFICATION

CODE

A600

A800

A600
A600

A600

A600

A600

A600

A600

A600

A600

A800
A600
A600

A600

DESCRIPTION

The determination of the sign of the azimuth
was incorrect.

The calculated intercepts were incorrect due
to inadequate checking of quadratic solutions.

The azimuth was incorrect by a multiple of pi.

Calculated intercepts were incorrect due to
wrong testing of point-solution angles.

The algorithm to determine the order of the
two intersection points was incorrect.

There was a division by zero when determining
intercepts.

The azimuth was incorrectly calculated when
the path went through either the North or
South Pole.

A refinement of error No. 6 was necessary.

An azimuth of -pi was calculated when the
correct value was +pi.

A refinement of error No. 8 was necessary.

There was an accuracy failure in some output
item (relative error > 1%).

A "tangent point" intercept was not detected.
A refinement of error No. 7 was necessary.

There was an incorrect intercept of (0, pi)
when 3 longitude coordinates were identical.

There was an incorrect intercept in which a
calculated longitude was 2 pi instead of pi.

3.4.3 Run Results
3.4.3.1 Subject Program C3

Figure 3.4.3.1-1 shows the results of the software failure/error correction process for
C3. Because of the complexity of the figure, multiple failures on the same case are
not shown, but instead the trace follows the error numbers of the multiple failure in
sequence.

3.4.3.2 Subject Program D3

Figure 3.4.3.2-1 shows the corresponding results of the experiment for program D3.
As was the case in Figure 3.4.3.1-1, multiple failures on the same case are not shown.

3.5 PROBLEM #3

3.5.1 Background

The program in Problem #1 of reference [1] served as the basis for Problem #3 of
the current study. The original program is a missile~tracking simulation described in
reference [2]. Two senior-level FORTRAN programmers, D and E, were given the
specifications of the program. They then designed, coded and tested their own
versions. Their programs are designated D1 and El with reference to Problem #1 of
the original study. See reference [1] for program specifications, test cases, usage
distribution and a description of the correct version.

3.5.2 Error Descriptions

In the course of the experiment for Problem #3, subject program D1 had 4 detected
software failures and corresponding corrected errors. Subject program El had 6
detected failures, for which there were 6 corresponding errors corrected.

19

0¢

12345
78b

SECECEece

EXPLANATION

a = error # 10
b = error # 11
¢ = error # 12
d = error #13

Figure 3.4.3.1-1. Trace of Runs for Subject Program C3.

ERRORS RUNS TOTAL
DETECTED CASES
1 50 112
2 50 86
3 50 89
a 50 198
5 50 4720
6 50 6763
'%5 7 50 12,459
8 33 24,804

@ ERRORS RUNS TOTAL
DETECTED CASES
35 1S
| (S o e |
1 3 1 1 1
2 50 106
3 50 1257
4 50 1742
5 50 5010
6 50 23,024
7 50 45,542
8 50 153,045
EXPLANATION
ta, = efror z :?
= error
¢ = error # 12 9 15 19,838
i d = error # 13
e = error # 14
f = error#15

Figure 3.4.3.2-1. Trace of Runs for Subject Program D3.

21

3.5.2.1 Subject Program D1

ERROR
NUMBER

1

CLASSIFICATION
CODE

A900

A900

A900

A900

3.5.2.2 Subject Program Ei

ERROR
NUMBER

22

1

CLASSIFICATION
CODE

A600

A600

A600

A600

A900

A600

DESCRIPTION

The argument for square root was a very small
negative number.,

The argument for arccos was greater than 1.0
or less than -1.0.

The argument for arccos was greater than 1.0
or less than -1.0.

The argument for square root was a very small
number.

DESCRIPTION

An incorrect equation was used to calculate
the area of a triangle.

An incorrect algorithm was used to calculate
the angles of a triangle.

An incorrect equation was used to calculate
the area of a triangle.

Wrong subscripts were used in the algorithm to
determine point coverage by a circle.

The argument for arccos was greater than 1.0
or less than -1.0.

There was a division by zero.

3.5.3 Run Results
3.5.3.1 Subject Program D1

Figure 3.5.3.1-1 presents the results of the software failure/error correction process
for DI.

3.5.3.2 Subject Program El

Figure 3.5.3.2-1 illustrates the results of the software failure/error correction
process for El.

3.6 PROBLEM #4

3.6.1 Background

Algorithms of the Association for Computing Machinery (ACM) are a collection of
published and extensively tested routines used primarily for scientific applications.
Algorithm 479, A Minimal Spanning Tree Clustering Method [3], was chosen as the
correct version for Problem #4%. This FORTRAN subroutine determines cluster-
membership of two-dimensional coordinates based on several cluster-description
parameters. Programmers D and E designed and coded programs D4 and E#4,
respectively, to test against this correct version.

3.6.2 Specifications

Cluster-membership determination is based on first constructing a minimal spanning
tree connecting all of the input two-dimensional coordinates. Dijkstra [4] presents
an efficient algorithm for this construction. Zahn [5] then uses this spanning tree to
determine cluster membership. Specifications were provided to the programmers,
based on these latter two references. The complete specifications for Problem ##4
are presented in Appendix B.

3.6.3 Test Cases

Two test cases were used to bring both subject programs D4 and E4 to state 0. The
test cases and corresponding correct output are presented in Appendix C.

3.6.4 Usage Distribution

The usage distribution was designed to simulate randomly occurring clusters ("shotgun
shots") each with a random number of points ("pellets").

The coordinates of the points are generated for each input case in the following
manner: :

1. Pick n, the number of clusters, uniformly in (1, 2, 3,4, 5].

2. For each cluster, choose a center from the distribution shown in Figure
3-6.4‘10

23

@ ERRORS | RUNS | TOTAL
DECECTED CASES

1 50 | 38,126

2 50 | 88,243

3 50 | 147,941

Figure 3.5.3.1-1. Trace of Runs for Subject Program D1.

24

| ERRORS | RUNS | TOTAL
. DECECTED CASES
1
1
9 | \
‘ ‘ @ 1 | 50| 65
17
1 ,
OO ORO RN M
| . 1
° 124 -\ Q 3 50 497
1 14 2
4 50 794
5 50 | 65,507
6 50 {109,512

Figure 3.5.3.2-1. Trace of Runs for Subject Program E1.

25

-20

-10

10

Y

20

20 —

P(A) = 75%, uniformly distributed within A

P(B) = 25%, uniformly distributed within B

Figure 3.6.4-1. Usage Distribution for Cluster Centers.

26

3. For each center, choose a radius R, uniformly in [1,5].
4., Pick m, the number of points for each cluster, uniformly in [1,2,3,4,5 1.

5. Calculate the spherical coordinates (r,8) for each point in one cluster, for r
uniform in {O,R] and @ uniform in [0,27].

6. Calculate rectangular coordinates for all points from the spherical
coordinates. '

In this way, each input case has from 1 to 25 2-dimensional coordinates representing
from 1-5 clusters.

The same cluster parameters (F,S and D) used in the test cases were part of the input
cases described herein.

3.6.5 Correct Version

Correctness of the output was determined by composing the subject program's output
with that from ACM Algorithm 479 [3].

3.6.6 Error Descriptions

In the course of the experiment for Problem #4, both subject programs D4 and E4 had
only one detected software failure, both of which were corrected.

The software error (Classification Code A800) in program D& was the lack of
provision to handle the special case of only one point in the input data.

Program E4 software error (Classification Code A600) was the use of incorrect
subscripts in calculating the standard deviation of nearby branches.

3.6.7 Run Results

The results of the software failure detection/error correction process for both
subject programs D4 and E4, are shown in Figure 3.6.7-1.

27

ERRORS RUNS TOTAL
DECECTED CASES

7]
o

1 50 1519

25,000

OO

ERRORS RUNS TOTAL
DECECTED CASES

wn
o

1 50 285

22,000

O—O

Figui'e 3.6.7-1. Trace of Runs for Subject Programs D4 and E4.

4.0 DATA ANALYSIS

The data obtained in this test has been used to explore a number of possible
relationships. Some of them are motivated by the need to measure and evaluate a
few of the more popular assumptions regarding the probabilistic failure structure of
software. Some of them are motivated by new theoretical results. Some of them are
motivated by an interest in determining if programmers display any similarity in the
errors made or, more significantly, in the rate at which their errors are detected.

The first study demonstrated that errors are distributed with widely varying failure
probabilities and that the logarithms of these probabilities show a nearly linear
decrease when plotted as a function of the number of errors corrected. These results
are re-explored in the current study as well as several other issues associated with
the design of this experiment.

4.1 ERROR PROBABILITIES

One of the major concerns of the original project at the time it was first proposed
was a concern that the models of the day made the assumption that errors embedded
in a particular code are identically distributed regardless of the mechanism guiding
their identification and withdrawal. In reference [1], Table 5.2-1, experimental
evidence was offered that seriously negates this assumption by every one of the six
codes developed for that project.

The same is true of the current project. Estimates of the error probability for each
of the errors discovered during simulation for a given code are summarized in
Table 4.1-1. The estimates are computed for the i'th error by
A r.
P = !
TTTi

where rj is the actual number of occurrences of the error in the 50 runs and TTTj is
the total time on test function. TTT; is the sum of all the life lengths of the
particular error measured from time 0, with the simulation in its initial state, to the
time of occurrence of the error if it did so, or to the time the simulation was
terminated for the run if it did not.

The table indicates a behavior very similar to that observed in the first study. In
every situation a wide range of probabilities are observed. In one case, the range
extends from 5x10-! to 6x10-6.

4.2 STAGE PROBABILITIES

The probability for the i'th stage has several interpretations depending on the
conditional information contained in the previous i-1 stages available to the
researcher. The ramifications of this remark will be discussed more completely in
Section 5.0, but in this section the stage probability of interest will be considered to
be conditional on the number of errors corrected prior to the initiation of the stage.
Table 4.2-1 gives estimates for the stage probabilities for the experiments conducted

29

TABLE &4.1-1

SPECIFIC ERROR PROBABILITIES - RANKED ESTIMATES

Error Error

Prog. Error No. of Prob. Per Prog. Error No. of Prob. Per
No. Failures Execution No. Failures Execution
A3* 1 49 2.50x10-1 p3* 1 50 3.85x10-1
2 36 1.63x10-2 2 A 1.26x10-2
7 25 7.05x10-3 5 35 4.74x10-3
6 18 3.23x10-3 7 45 1.99x10-3
4 18 2.80x10-3 4 25 1.79x10-3
10 16 2.49x10-3 6 2.21x10-4
3 13 2.31x10-3 3 1.42x10-4%

8 8 1.25x10-3

9 7 1.09x10-3

5 Did Not Occur

C3 1 50 3.29x10-1 D3 1 50 4.67x10-1
3 50 2.25x10-1 2 50 3.38x10-1
2 50 1.77x10-1 4 50 2.75x10-2
4 50 1.14x10-1 3 50 7.70x10-3
5 44 4.04x10-3 5 50 7.04x10-3
7 42 2.79x10-3 7 43 6.54x10-4
6 40 1.94x10-3 10 46 2.85x10-4
9 30 4.76x10-4 8 34 1.74x10"4
8 19 4.02x10-% 6 28 1.69x10-%
11 15 2.27x10-4 6 2.44x10"2
10 7.57x10-2 11 3 1.20x10-2
13 3.03x10-9 12 2 8.01x10-6
12 1.52x10-2 13 1 4.01x10-6
14 1 4.01x10-6
15 1 4.01x10-6

30

TABLE &.1-1 (Continued)
SPECIFIC ERROR PROBABILITIES - RANKED ESTIMATES

Error Error
Prog. Error No. of Prob. Per Prog. Error No. of Prob. Per
No. Failures Execution No. Failures Execution
DI 1 50 9.37x10-4% El 2 50 4.59x10-1
2 49 2.71x10-% 1 50 4.42x10-1
3 50 2.67x10-4 3 50 6.4:1x10-2
4 1 3.44x10-6 4 50 3.30x10-2
5 50 5.04x10-%
6 49 3.51x10°4
7 1 5.81x10-6
D4 1 50 3.29x10-2 E4 1 50 1.75x10-1
2%% 0 <3.77x10°2 2% % 0 <4.48x10-9

** No second error encountered in 25,000(D4) and 22,000(E#4) additional runs.

31

TABLE 4.2-1
STAGE PROBABILITIES AS A FUNCTION OF THE NUMBER OF CORRECTED ERRORS

No. of Stage No of Stage
Prog. Corrected Prob.Per |InP|l Prog. Corrected Prob Per lin PI
Errors Execution Errors Execution
A3* 0 2.67x10-1 1.32 B3* 0 3.94x10-1 0,93
1 3.20x10-2 3.4 1 2.03x10-2 3,90
2 2.45x10-2 3.71 2 9.31x10-3 4.68
3 1.41x10-2 4,27 3 4.79x10-3 5.34
4 1.16x10-2 445 4 2.98x10-3 5.81
5 2.08x10-2 3.87 5 2.18x10-3 6.13
C3 0 y46x10-1 0.81 D3 0 7.04x10-1 0.35
1 3.76x10-1 0.98 1 4.07x10-1 0.90
2 2.84x10-1 1.26 2 3.97x10-2 3,23
3 2.02x10-1 1.60 3 2.45x10-2 3,71
4 1.06x10-2 4,55 4 9.78x10-3 4.63
5 6.12x10-3 5.10 5 2.17x10-3 6.13
6 3.54x10-3 5.64 6 1.10x10-3 .81
7 1.32x10-3 6.63 7 3.27x10-% 8.03
8 8.72x10-3 7.05 8 7.56x10"% 7.19
D1 0 1.31x10-3 .64 El 0 7.69x10-1 0.26
1 8.95x10-% 7.02 1 5.62x10-1 0.58
2 2.53x10-% 8.28 2 t.01x10-1 2.30
3 6.14x10-2 2.79
4 7.63x10°% 7.18
5 4.75x10°% 7.65
D4 0 3.29x10-2 3.41 El 0 1.75x10-1 174
1** <4,00x10-7 L** <4.54x10-2

*% No second error encountered.

32

for this study and is comparable to Table 5.3-1 of reference [1]. The entry for line i
of this table estimates the conditional probability that a random execution of the
program indicated will result in an error given that i-1 errors have been corrected.
This probability has averaged out all of the effects due to state, that is, all of the
effects due to the particular set of errors corrected and their order of correction.
Since these effects do exert a random influence on this conditional probability, the
actual probability is a random variable and the estimates in this table represent the
rate associated with the mean number of executions to failure for the i'th stage. The
first stage is based on the program in its initial state as defined by the static
detectors, with all of the program's remaining errors intact.

Figure 4.2-1 is a graph of these probabilities as a function of the number of errors
corrected for the programs of this study. For comparison, Figure 4.2-2 is a graph of
the results obtained in the first study. More detailed comparisons will be made in
later sections, but it is notable that for all their diversity the graphs of this
experiment are strikingly similar to those of the previous study and exhibit a similar
degree of linearity.

One of the more difficult problems in modeling from these graphs involves the
definition of the origin on the horizontal axis. The reason for this difficulty is that
highly probable errors indicate programs that are not well checked out. Although
minimum codes are screened by the initial static program tests, the actual state of
the program at this time is not controlled and is, among other variables, a function of
the time spent in the programming activity or the rate at which programming is
conducted. The most interesting feature of these graphs is their slope, particularly
at maturity, and too many of the early, highly probable errors remaining in the codes,
can exert undue influence.

Reference [1] discusses this problem in some detail and introduces an ad hoc
definition of the initial error state as minlln Pj|>1.0 where P; is the i'th stage
probability. A more interesting definition might involve sliding the graphs horizon-
tally, so that the pairwise vertical distances between observed points is optimal in
some sense. Since this seemed beyond the intent of the study at this time, the data
of Figure 4.2-1 was replotted in Figure 4.2-3 using the definition of reference [1].

The advantages of using this definition of origin in reference [1] seemed minimal at
best and these results seem to confirm it.

4.3 EFFECT OF USAGE DISTRIBUTION ON ERROR RATE

One of the issues of interest in this experiment was a ‘comparison of the effect of
using two quite different usage distributions on error detection. The hypothesis had
been proposed that the more uniformly inputs are selected the more linear the graph
of the log rate parameter. Of the specifications described in reference [1],

problem 3 had the most uniform requirement on input usage and therefore was
selected as a candidate for exploring this hypothesis.

Two new experiments were run: one based on the code labelled A3 of reference [1]

and the other on code B3. The new non-uniformly weighted usage distribution is
described in Section 3. Tables 4.3-1 and 4.3-2 compare the results of the four

33

34

| LN (STAGE PROBABILITY) |

10 T T T

NUMBER OF ERRORS CORRECTED

Figure 4.2-1. Estimated Error Rate as a Function of the Number
of Errors Corrected -- Original Data Current Study.

| LN (STAGE PROBABILITY) |

10 Y T Y

Al
B1
A
B2
A3
B3

4 bvoenaao

e

NUMBER OF ERRORS CORRECTED

Figure 4.2-2. Estimated Error Rate as a Function of the Number
of Errors Corrected -- Original Data Study No. L

35

36

| LN (STAGE PROBABILITY) |

10 T T T

NUMBER OF ERRORS CORRECTED

Figure 4.2-3. Estimated Error Rate as a Function of the Number
of Errors Corrected -- Modified Origin.

TABLE 4.3-1

COMPARING THE EFFECT OF UNIFORM AND NON-UNIFORM

Uniform (Study #1)

USAGE DISTRIBUTION ON ERROR PROBABILITIES

Non Uniform (Current Study)

Error Error
Program Error Prob. Per Program Error Prob. per
Execution |ln Pl Execution |ln P|

A3 1 2.37x10-1 1.4 A3* 1 2.50x10-1 1.39
2 1.78x10-2 4,03 2 1.63x10-2 4.12

3 2.51x10-3 5.99 3 2.31x10-3 6.07

4 2.37x10-3 6.04 4 2.80x10-3 5.88

5 1.03x10-2 4,58 5% % 1.56x10-% 8.77

6 1.16x10-2 4.6 6 3.23x10-3 5.73

7 4.08x10-3 5.50 7 7.05x10-3 4.95

8 1.38x10-3 6.59 1.25x10-3 6.69

9 1.97x10-% 8.53 1.09x10-3 6.82

10 3.15x10-3 5.76 10 2.49x10-3 5,99

** DID NOT OCCUR

B3 1 3.29x10-1 1.11 B3* 1 3.85x10-1 0.95
2 8.13x10-2 2.51 2 1.26x10-2 4.37

3 3.08x10-% 8.04 3 1.42x10-% 8.86

4 1.53x10-3 6.48 4 1.79x10-3 6.32

5 4.55x10-3 5.39 5 . 4.74x10-3 5.35

6 3.84x10-% 7.86 6 2.21x10-% 8.42

7 1.75x10-3 6.35 7 1.99x10-3 6.22

37

TABLE 4.3-2

COMPARING THE EFFECT OF UNIFORM AND NON-UNIFORM
USAGE DISTRIBUTION ON STAGE PROBABILITIES

Uniform (Study #1)

Non-Uniform (Current Study)

No. of Stage No. of Stage
Program Corrected Prob. Per |lnP| Program Corrected ProbPer |InPl|
Errors Execution Errors Execution
A3 0 2.49x10-1 1.39 A3* 0 2.67x10-1 1.32

1 5.38x10-2 2.92 1 3.20x10-2 3.44
2 3.52x10-2 3.35 2 2.45x10-2 3,71
3 2.69x10-2 3.62 3 1.41x10-2 4,27
4 2.30x10-2 3.77 4 1.16x10-2 4.45
5 1.29x10-2 4.35 5 2.08x10-2 3.87

B3 0 3.65x10-1 1.0l B3* 0 3.94x10-1 0.93
1 1.04x10-1 2.27 1 2.03x10-2 3.90
2 1.02x10-1 4.58 2 9.31x10-3 4.68
3 4.68x10-3 5.36 3 4.79x10-3 5.34
4 2.41x10-3 6.03 4 2.98x10-3 5.81
5 1.24x10-3 6.69 5 2.18x10-3 6.13

38

experiments on the error probabilities and on the stage probabilities respectively and
Figure 4.3-1 plots the stage probabilities for all four as a function of the number of
errors corrected. Figures 4#.3-2 and 4.3-3 pair the results of the two experiments by
error number and by stage.

Figure 4.3-1 indicates that a drastic change in usage distribution seems to alter the
detection process but in ways that maintain the basic patterns of detection. Figure
4.3-2 indicates that some of the error probabilities are severely altered by a change
in usage, but that these differences average into the stage probabilities and have a
less pronounced impact. There does not seem to be a great deal of support for the
hypothesis referred to earlier but it is extremely premature to make any kind of
judgment at this time.

4.4 EFFECT OF EXPERIENCE ON ERROR RATE

Experience was a deliberate design factor of this experiment, and the four codes
written for problem #1 can be compared in order to partially understand the effect of
this variable. Programmer D is a very mature programmer with over 20 years of
experience. B and E are professional programmers, each with about five years of
experience, but programmer E has had a richer, more varied exposure to computer
science which manifested itself in a more sophisticated, more structured coding style
for problem #1. Programmer A is the most junior of the group.

Figure 4.4-1 compares the four programs Al, Bl, D1 and El using stage probability as
a function of the number of errors corrected. As there were some errors in the
published table for Al, and Bl has been recalculated according to the suggestion of
reference [1], page 53, the recomputed values of both the individual error probabili-
ties and the stage probabilities for these programs are given in Table 4.4-1.

The graphs are somewhat surprising in that except for the position of the crossing at
zero, the slopes of the linear tendency in all cases are fairly similar and show no
particular difference as a function of experience. Since D is by far the most
experienced of the four programmers, it would seem that this experience greatly
affects the initial zero crossing but affects the remaining structure only slightly.

4.5 EFFECT OF LANGUAGE ON ERROR DETECTION

Since reasonably efficient assembler-level programmers are usually found only in
experienced professionals, these two factors are confounded in the next comparison.
It is expected, however, that the effect due to language will far outweigh the effect
of experience particularly in light of the results of the previous section. It will be
assumed therefore that the observed differences are due to language alone and leave
the subtleties of interaction to other researchers.

Figure 4.5-1 makes this comparison as before in terms of the stage probabilities. All
of the four programmers are coding problem 3 with the junior level programmers A
and B writing in FORTRAN and the senior programmers C and D writing in the
assembler language for the ONYX Microcomputer. Figure 4.5-2 compares the same
assembler language program of programmer D to another program by D written in

~ FORTRAN for another problem.

39

40

| LN (STAGE PROBABILITY) |

10 T T T

A3
A3X
B3
B3x

8 vO0oo

e
-
-

NUMBER OF ERRORS CORRECTED

Figure 4.3-1. Estimated Stage Error Rate as a Function
of the No. of Errors Corrected.

(NON-UNIFORM)

| LN (ERROR PROBABILITY) |

10 T T Y T
i y
8 [. .
6t .
4 . —
o A3
o B3
- — -EXACT PREDICTOR
2t N
/Z,
0 } . } J
) ‘ e 4 8 8 10

LN (ERROR PROBABILITY) (UNIFORM)

Figure 4.3-2. Comparing the Effect of Uniform and Non-uniform
Usage Distributions on Error Probabilities.

41

42

(NON-UNIFORM)

| LN (STAGE PROBABILITY) I

8 T —T T
Vd
V.
’
/
/
6 4 -
4 [. -
o A3
a B3
— - ~—EXACT PREDICTOR
et -
0 } -+ 1
") e 4 6 8
LN (STAGE PROBABILITY) (UNIFORM)

Figure 4.3-3. Comparing the Effect of Uniform and Non-uniform

Usage Distributions on Stage Probabilities.

| LN (STAGE PROBABILITY) |

10

Al
B1
D1
El

4 bO 0

Figure 4.4-1. E

NUMBER OF ERRORS CORRECTED

ffect of Experience on Log Failure Rate
as a Functon of the No. of Errors Corrected.

43

Table 4.4-1

RECOMPUTED ERROR PROBABILITIES FOR
STUDY NO. I - RANKED ESTIMATES

Error Error
Prog. Error No. of Prob. Per Prog. Error No. of Prob. per
No. Failures Execution No. Failures Execution
Al 1 50 8.20x10-1 Bl 1 50 1.52x10-1
2 50 9.84x10-2 4 50 6.89x10-3
4 30 1.22x10-3 5 46 2.38x10-3
3 26 8.04x10-% 6 25 2.23x10-4
5 23 4.16x107% 8 11 1.07x10-%
6 22 3.81x10-% 7 12 9.84x10-9
8 14 2.42x10-% 9 3 2.68x10°2

10 5 8.66x10~2

7 1 1.73x10-2

9 1 1.73x10-2

RECOMPUTED STAGE PROBABILITIES
STUDY #1
No. of Stage No. of Stage
Prog. Corrected Prob. Per |InP| Prog. Corrected ProbPer |[In Pl
Errors Execution Errors Execution

Al 0 " 9.80x10-1 0.02 Bl 0 1.52x10-1 1.88
1 1.07x10-1 2,24 1 8.80x10-3 4.73
2 2,65x10-3 5.93 2 3.48x10-3 5.66
3 2.04x10-3 6.19 3 4.99x10-% 7.60
4 9.96x10"% 6.91 4 5.21x10-% 7.56

5° 6.05x10-% 7.41

44

| LN (STAGE PROBABILITY) |

ie

Figure 4.5-1

NUMBER OF ERRORS CORRECTED

. Effect of Language / Experience on Log Failure Rate
as a Function of the No. of Errors Corrected.

45

46

I LN (STAGE PROBABILITY) I

10 T T T

NUMBER OF ERRORS CORRECTED

Figure 4.5-2. Effect of Language on the Performance
of a Single Programmer.

The graphs in Figure 4.5-2 suggest that assembler language, as expected, has a strong
effect on the failure structure of software. Those in Figure 4.5-1 suggest that it is
equivalent to several years of experience. That is, the performance of an experi-
enced programmer writing in a low-level language is little different in terms of error
structure from a novice programmer writing in FORTRAN. When comparing the
performance of a single programmer using high- and low-level languages, the
differences are even greater but primarily one of zero crossing rather than slope.
The surprising result in all of these charts is that slope varies so little across widely
varying conditions.

4.6 EFFECT OF PROBLEM TYPE ON ERROR STRUCTURE

Program &4 was selected to emphasize a still different process in program develop-
ment. Programs 1, 2 and 3 were selected, somewhat naively, as problems offering
enough challenge to the programmer to cause errors, without being so difficult that
programming would take weeks of effort. In thinking about the task of scientific
programming, however, it seems that there are at least two broad categories
depending on the nature of the problem, one primarily involving analysis and the
other primarily involving program design, and that all programs represent some mix
of these two. Problems 1, 2 and 3 place most of their emphasis on analysis and little
on design so a 4th problem was selected with design in mind. Unfortunately, the
problem selected offered little challenge to experienced programmers and only a
single error was detected for each programmer in the more than 47,000 executions
conducted to date. See Table 4#.2-1 for a summary of this data.

4.7 EXPONENTIAL ASSUMPTION AND TIME BETWEEN SOFTWARE FAILURES

In Section 5.0 of this document, analytical results are presented that show that the
unconditional times between failures under a very general model of software failure
are not exponentially distributed nor are they mutually independent. This has
particular impact on the analysis of the data of this experiment since the
consequence of this result means that the distribution of time to next failure, that is
the distribution of stage failure, is not exponential and is in fact dependent on the
history observed to that stage.

The unsuitability of the exponential assumption was known at the time of the first
study and a result was presented in reference [1] that showed for a special case that
the distribution of the time to next failure was an exponential mixture with
decreasing failure rate. Since an exponential mixture distribution is still monotone
decreasing everywhere, an exponential approximation to the mixture might be
reasonable. This has been explored for several stages and programs in terms of the
cumulative distribution of the observed data plotted as if it were exponentially
distributed. That is, if the data set is exponential the log of the survivor function
plotted against the ordered observations should approximate a straight line. The
survivor function in the case of noncensored data is defined as

R(t(i)) =1-1i/n

Log survivor functions for several program-stage combinations have been plotted in
Figures 4.7-1 through &.7-4.

47

| LN (SURVIVOR FUNCTION) |

| LN (SURVIVOR FUNCTION) |

PROGRAM B3*

1st Stage

1 2 3 4 $ ¢ ? 9 10

PROGRAM C3

2nd Stage

2 4 [] 1@ 12 14 16

TIME

Figure 4.7-1. Minus Log of Observed Survivor Function (Selected Points)

48

for Program B3*, 1st Stage and Program C3, 2nd Stage.

4]

PROGRAM C3

T P

3rd Stage

aaa lia g e

e P

-

| LN (SURVIVOR FUNCTION) |

PROGRAM C3

4th Stage

| LN (SURVIVOR FUNCTION) |

TIME

Figure 4.7-2. Minus Log of Observed Survivor Function (Selected Points)
for Program C3, 3rd and 4th Stages.

49

50

| LN (SURVIVOR FUNCTION) |

Figure 4.7-3. Minus Log of Observed Survivor Function (Selected Points)
for Program D3, 3rd and 4th Stages.

4]
o PROGRAM D3
] 3rd Stage
.-
t 'E
. _r T I M T T MM 1 MRS RO T
[] 20 40 (1] " 100 120 140 160
TIME
Z - PROGRAM D3
o :
Y 4th Stage
-
u.
(- 2 7]
o]
2]
S]
z -
) 1
w ']
2
|
°—-| 1 T T T T T T T T ™ T M MAAAAAMANE |
[] (1] 100 15¢ 200 250 30e 56 400 450 see $Se [{]] (11}
TIME

= PROGRAM D3

5th Stage //

| LN (SURVIVOR FUNCTION) |

[] se 100 158 200 2se 300 3se 400 450 S0 111] (11}

TIME

Figure 4.7-4. Minus Log of Observed Survivor Function (Selected Points)
for Program D3, 5th Stage.

The thing to note in these graphs and similar ones given in reference [1] is that
although a straight line appears to be a reasonable approximation to the log survivor
function, in every case, a "best fitting" straight line using some reasonable optimiza-
tion criteria would underrun the data in the upper tail. That is, in every case, for
some large t and for some optimum A

-In (1-F(t) > At for t2t
where F(t) is the cumulative distribution function of the program's life in a given
stage. This implies that

e~ M>1LF() for t2 1

which suggests that F has a smaller right-hand tail than the "best" exponential. Thus
the exponential defined in this way does not provide a conservative approximation to
the mixture distribution since it weights too heavily the longer times between errors,
for a given stage.

51

ey T T v T T T T T TV~ \AA2 000aRSASAE RAAAAASAAS AAAAAMAAS RARAAASASS

4.8 DEPENDENCE OF STAGE LIFE LENGTH ON TOTAL LIFE AND ADJACENT
LIFE

In order to measure the degree of the dependence between stages to determine if this
is an important factor, it was felt that the nature of the effect would be
strengthened if it were considered on a cumulative life length basis rather than
between stages. That is, the total life of the program up to the beginning of i'th
stage should govern the life of the i'th stage more than the life of any of the
preceding stages. The expectation was that the correlation between the total life up
to the i'th stage would be negatively correlated with the life of the i'th stage but only
mildly. Long lives before i would tend to support short lives after i and vice versa
but because of the mixing of the order of withdrawal, the correlation would not be
strong. Table 4.8-1 gives the observed correlation between the total time to the i'th
failure and the time to the next failure i+1 where time is measured in numbers of
executions. For this computation multiple errors are treated as single errors as the
emphasis here is on the observed spacings and their relative size, not the number of
errors.

There is some tendency for these values to cycle: starting low, increasing,
decreasing and increasing again with some variation in cycle length, but the expected
negative correlation is nowhere substantiated. Not only are the correlations
generally positive but are, in some cases, large as well as positive. The reasons for
this are not at all clear but may have something to do with the probability

distribution of the original errors and the relative likelihoods of the order in which
they are removed.

Cox's proportional hazards model, introduced in reference [1] assumes that the time
between shocks is independent. Theoretical results presented in Section 5.0 demon-
strate that under very general conditions the spacings for software are dependent. It

was therefore hoped that the nature of the dependence would be negligible which
does not appear to be the case.

Correlations of adjacent spacings are given in Table 4.8-2. Generally the values are
small and positive but some are significantly greater than .5. It is not known if this
effect lessens as the length of the spacing increases as more errors are corrected.
The tendency to pulse is also in this data although not as pronounced as ‘in Table
“.8-1. Correlations between the j'th and (j+2)nd spacing have also been computed.
They are generally smaller and again predominately positive. These facts generally
imply that the size of the dependence between the spacings is not a negligible factor.

52

Table 4.8-1
CORRELATION BETWEEN THE TOTAL TIME TO THE ith FAILURE AND THE
TIME TO THE NEXT FAILURE | + 1

Current Study

Program i S.S. Corr Program i S.S. Corr
A3* 1 49 A2 B3* 1 50 .26
2 41 21 2 45 53

3 26 - .26 3 37 -.027

4 9 .65 4 17 -.065
C3 1 50 .009 D3 1 50 21
2 50 50 2 50 48

3 48 30 3 50 45

4 47 40 4 50 035

b 35 .01 5 50 015

6 18 49 6 49 59

7 9 61 7 36 012

8 8 -.27

Dl 1 50 015 El 1 50 024
2 49 - .042 2 50 .19

3 50 030

4 50 -.15

5 35 047

53

Table 4.8-1 (Continued)
CORRELATION BETWEEN THE TOTAL TIME TO THE ith FAILURE AND THE
TIME TO THE NEXT FAILURE i + 1

Study #1
Program i S.S. Corr Program i S.S. Corr
Al 1 50 -.035 Bl 1 50 -.009
2 49 -.054 2 50 .05
3 34 -.24 3 46 43
4 17 -.16
A3 1 -.012 B3 1 50 -.062
2 25 2 50 .22
3 28 3 36 -.14
4 33 4 17 -.14

54

Table 4.8-2
AUTOCORRELATION BETWEEN ADJACENT STAGES
i AND i+l

Current Study

Program i S.S. Corr Program i S.S. Corr
A3* 1 49 12 B3* 1 50 .26
2 41 19 2 45 33
3 26 -.22 3 37 -.022
4 9 67 4 17 A5
C3 1 50 .0087 D3 1 50 21
2 50 50 2 50 47
3 48 24 3 50 46
4 47 .28 4 50 0022
> 35 -.040 5 50 -.040
6 18 35 6 49 49
7 9 73 7 36 059
8 8 -.21
D1 1 50 015 El L 50 024
2 49 -.073 2 50 214
3 50 -.055
4 50 =15
5 35 046

55

Program
Al

A3

56

= W N -

Table 4.8-2 (Continued)
AUTOCORRELATION BETWEEN ADJACENT STAGES
(i AND (i+1))

Study #1

S.S. Corr Program i S.S. Corr
50 -.035 Bl 1 50 -.0086
49 -.054 ‘ 2 50 042
34 -.239 3 44 .23
17 109
49 073 B3 1 50 -.062
45 21 2 50 -.011
36 164 3 34 -.18
25 159 4 14 -.087

b 4 A4

5.0 ANALYTIC CONSIDERATIONS

At the time the first study was conceived, the fact that replication would have its
own statistical framework that would differ from those which had become popular for
the traditional problem, was not completely considered. As the requirement for a
deeper understanding of the process grew, so did the need for a consistent theoretical
foundation. This section introduces the modeling advances achieved to date. They
are by no means complete and many important problems remain to be solved.

The software reliability problem is equivalent to the problem of a not quite perfect
hardware design released before all the bugs are removed to let experience perfect
the design. It is assumed that there are some number of bugs in the design and that
each bug has a certain probability or average rate with which it is detected. Its time
to detection, measured in some convenient unit, is a random variable. The bugs,
then, compete for detection and are removed as discovered. The ordered detection
times form the basic observations. The following paragraphs formalize this process.

The section begins by discussing the general problem from two points of view:
discrete and continuous, and a theorem is proved that gives a sufficient condition
under which they can be treated as equivalent processes. These results are then
particularized to the problem of forecasting the future from a given state. The
results in this section have a direct bearing on the replicated experiment.

5.1 MULTINOMIAL MODEL

In the following, a probabilistic model or framework is presented within which the
process of software debugging may be analyzed and understood. The model is by no
means a perfect reflection of reality but it is a step towards capturing some of the
very basic aspects of a software debugging experience. In particular, it can provide a
general model within which the appropriateness of certain modeling assumptions
made by other researchers in a more or less ad hoc fashion can be evaluated.

It is assumed that the generic piece of software manipulates a certain set of inputs,
taken from a space A of possible inputs, and either successfully computes the desired
output or not. In the latter case, the used inputs have resulted in the detection of a
bug. Thus, the input space A is viewed as partitioned into mutually disjoint sets

A=AgUAIU...UAN (AjNAj = 0 i#),

where input from Ag results in the successful execution of the software program and
input from Aj (i=1, ..., N) results in the detection of bug i in the program.

At this point, the possibility that multiple bugs may be found for certain inputs is
excluded. This model deficiency may be dealt with at a later stage after the
ramifications of the current model have been fully understood.

Each execution of the program constitutes a multinomial trial, the outcome of which
can be characterized by the "cell" A; (i=0, 1, ..., N) in which the input was chosen.

57

A probability structure is imposed by considering a usage probability distribution over
the input space A. Let po, p], ..., PN be the respective probabilities that the input
will be chosen in Ay, A}, ..., AN, With pg + pP] + .. + PN = 1. The probabilities p;
confound the "size" and location of the sets Aj with the usage frequency distribution
over A.

The program debugging sequence consists of repeatedly exercising the program with
various inputs and observing whether the program executes properly or whether a bug
has been uncovered. In the latter case, the program is repaired with respect to this
particular bug and the debugging sequence is continued. The repair of the program
with respect to bug i amounts to joining the partition set Aj to the set Ag.

At this point, a further strong model assumption is made, namely that the individual
multinomial trials are independent. In some contexts this assumption may be quite
realistic whereas in other contexts successive usages of the program may use inputs
which are highly correlated. Relaxation of this independence assumption may be
pursued after the independence model is well understood.

Some useful notation for describing the debugging experience is now introduced.

Let Xjt =1 if the tth trial results in input choice from cell Aj,
i=0,..,N.
=0 otherwise

Xot + X1t + eee + XNt = 1
P(Xjt = 1).= 1 - P(Xjt = 0) = pj t=1,2,3, . .
Let Yj=min {t: Xjt=1} i=1,2,.,N,

i.e., Yj represents the waiting time (counted in number of trials) to the first
detection of bug i.

In the process of debugging, Y1, Y2, ... are not actually observed since the "model
label" of the bug is not known when it is found. All that is known is that a new bug
has been detected (since all previously detected bugs have been corrected) and its
occurrence time,

Thus, what is really observed after having found the kth bug are the first k order
statistics Y(1) ... Y(k)of Yy, ..., YN. Since the joint distribution of (Y(1), vep Y(k))
derives from that of (Y(]), ..., Y(N)) the latter will be studied first.

Some more notation will be useful. Let 7= (my, ..., 7N) denote a permutation of
(1, ..., N) and let PN denote the set of all N! such permutations. Further let

N
Ai(‘IT)= Z p‘n'j’i: l, «iy N
j=i

58

and note that Ay(m) = | - po for all 7 € PN. Let Q be the random vector in Py
consisting of the bug labels in the order in which the bugs are uncovered, i.e., if
Q= then 7 is the model label of the first bug uncovered, etc. Further, let
Dj = Y(i) - Y(i-1)s i = 1, «eey N, (Y(o) = 0) denote the spacings between the bugs.

Then for integers dj > 1 and 7 € PN,

P(Q = m,Dj=dj,izl, ..., N)

1l

=

~<
3

1}
o

]

Z

N N diol
= I pi IT (1-Aj(7)™ (1)

i=1 i=1

N d.-1
= w(m) T A(a)1- A7)

i=1

N
where w(m)= 7 (pi/Ai(7)).
i=1

Summing (1) over dj 2 1, i =1, ..., N gives P(Q = 7) = w(7) and thus

N .
P(Dj = djyi=1, ey N/Q=m)= [T Aj(m)i- Ay(m)divL, (2)
i=1

The marginal distribution of Dy, ..., DN (and hence of Y(}) < ... < Y(N)) is given by

N dj-1
3 wia) 7 Ayl)i- A7) (3)
7 € PN i=1

p(Di =dj, i=1, .., N)

Z P(Q= m)P(Dj=dj,i=1, .., N/Q= ™).
7€ PN

59

As seen from (2) the spacings Dy, ..., Dy are conditionally (given Q = 7) independent
geometric random variables with decreasing ‘'success probabilities"
Ay(m)> Aa(m) > ...>An(7). Unconditionally, as seen by (3), the spacings D2, «., DN
are neither independent nor geometrically distributed. However, D is independent
of (D2, .., DN), since A|(m)=1-p, is independent of = . = Also, Dj has
unconditionally a geometric distribution with "success probability" A{(7) = 1-po.

Ultimately, only the first k (k<N) bugs in the debugging sequence are observed which
is equivalent to knowing the first k spacings Dy, ..., Dk. Their joint density is
obtainable from (3) as

k di-1
> wim) ;1 A)(1- Ay(w)) (4)
mTE _EN i=1

p(Di = di’ i = l’ sooy k)

Y PQ=m)P(Dj=dji=1,.,k/Q=m),
7€ PN

it

where

. k | d;-1
P(Dj=dj, i=lyeee, k/Q=m) =7 Af(m)1 - Ag(m) ' . (5)
i=1

5.2 EXPONENTIAL MODEL

The discrete nature of program executions and the nature of the error withdrawal
process (except for intersecting errors) makes the multinomial model a natural one
for formulating the software reliability problem. Many models in use, however,
model the process, for convenience, with independent exponential random variables
with decreasing failure rate. In this section, results similar to those of the previous
section are obtained.

5.2.1 General Model

Let Z1, ..., ZN be independent exponential random variables with respective failure
rates Aj = pj, i= l,...,, N, i.e., the joint density of Z = (Z1, ..., ZN) is

N D7
IN(Z]y e ZN) = [T pie ~ PIAL Z{>0, izl,e., N
i=1
Here Z; is interpreted as the waiting time to the first occurrence of bug i. Note that
here the waiting times for the individual bugs are assumed to be independent whereas
in the discrete model the waiting times are by assumption dependent since they are
based on a sequence of multinomial trials.

Let Z(1), ..., Z(N) denote the order statistics of Zj,..,ZN and by
Dj = Z(j) - Z(i-1), (Z(0)=0) denote the spacings between these order statistics. Fur-

60

ther, let 5 denote the random N-vector of bug labels in the order in which they are

uncovered, i.e.,
Q= mePNiff Z(j)=Zg;i=1,u, N

The joint density of D = Dy, ..., DN) and Q is given by

N i
gN(d7) = [T Py, expl- Py, 2. dp
i=1 j=1
N
= w(m) g7 Aj(m)exp(- Aj(7)dy) ,d; >0i=1,..,N
i=1
N N
where Aj(7) = 3 p,.and w(m)= JT (pj/ Aj(7)) as before.
i i=1

Again, it can be seen that P(Q=) = w(7) and that the joint density of D is:

N
hn(d) = >, wim) 1 Ay(7) exp(- Aj(7)dy)
7€ PN i=1

whereas the conditional density of D given Q=nis:

N
gn@d/m)= 7 Ai(m) expl- Ay(m)dy),
' i=1

(6)

@)

i.e., conditionally, given 6 = 7, the spacings are independent exponentially distribu-
ted with decreasing failure rates Aj(7) > ...>Ag(7). However, unconditionally only

D; and (D, ..., DN) are independent and only

| is exponentially distributed. D2,

<.y D are dependent and not exponentially distributed. By integrating out the

61

remaining d variables from (6), the unconditional distribution of dj is obtained as

h'j,N(di) = 2, wim) Aj (7) exp (- Aj(ﬂ’)dj) (8
7€ PN

i.e., an exponential mixture. This distribution is the general case of the marginal
distribution of the second spacing for N = 3 given in reference (1).

5.2.2 Specific Results

The results of Section 5.2.1 have been particularized for the cases N=2 and N=3. This
section gives the joint distribution for the spacings for these N's, and the marginal
distributions of the spacings as a function of the number of errors corrected. Also
included are the results of a Bayesian inquiry into the nature of the distribution of
the parameter for these N's given the number of errors corrected. The results are
applicable to a general prior but are confined to N=2, 3. The extension to a general N
has been completed but is not included in this report.

5.2.2.1 N=2

Let A| and A2 be the failure rate of the two errors and let t] and t be the times of
occurrence for each error respectively. Then the two possible orderings are 7 = (1,2)
and 7 = (2,1) and from w(7) in (1) one obtains

P(m = (1,2)) = P(tls tz) =)\1/()\ 1+)\2)
and
P(7m =(2,1)) = A/(A1+A2) .

Thus using (6) the joint density of dj and d3 is

- 1 -(A; +A)d -Ad
hzwlﬂzL'XfTX;(A1+xzk 177271 A, e 77272

A2 (A, +A)d -\, d
:)\1_+.)_2()\1+)\2)e 1 2 1)\1e 172

62

Note that dj is independent of dp. By integrating over dj, the marginal distribution
of the second spacing is

A A -Ad -Ad
)= 172 {e 1% "2 2]
2

h2, 2 MprA

which is the exponential mixture distribution characteristic of the marginal spacings.

5.2.2.2 N=3

For this case define A = (A1, Ay, A3), t = (t], t2, t3) and note that since there are
six permutations of three numbers, there are six #'s. From w(#) in (1) one again
obtains

P(m =(rrl, n

2 ”3»=P(t”. <t_ <t_)

= A A (A + A XA + A + A,)
Mg My Wy Wy T, Ty

63

Therefore, again by (6), the joint distribution is the exponential product mixture:

5 |
z Aidl[-(Ay+ ,\3)d2(- A 4d, -Ade)
hyld), dysdg)= Ay Ay Age =l € e te

S(A +Ad, [- Ads - And
1 32(e 13+e 33)

+€

e + €

+€

As before by integrating over di and d3 the marginal distribution of the second
spacing is obtained as:

-()\2+)\3)d2 -()\1+)\3)d2

]
h2,3(d2)=[)\1()\2+)&3)e +)L2()\1+/\3)e

- ()\1 +)tz)dz]

+)\3()\1+>\2)e ./(X1+)\2+ /\3)

which agrees with the exponential mixture distribution given in reference (1).

64

The distribution of the third spacing can be found in similar fashion:

- Ayd; - A3
.)\1)\Z(A+B) Ay e + N)\3(C+B) Aye
h 4y.(d,) = >
3373 ABD CBD
- A\,
) Ay)\3(A +C) A e

ACD

where A= A+ Ag
B=)\2+)\3
C-=)\1+)\2

D=)\1 +)\2 + 7\3 .
1
As expected, h 3 3 is also an exponential mixture.

5.2.2.3 Distribution of the Rate Parameter Given the Number of Errors Corrected

Littlewood [6] gives a Bayesian analysis of the prediction problem for the traditional
software experiment, i.e., where forecasting is based on a single series of observed
spacings. In that reference, he derives the posterior distribution of the parameter of
the time to next error detection conditioning, not only on the number of errors
corrected, but also on the total life, T, of the program observed to that time. The
gamma prior on the failure rate of the individual bugs transforms into a gamma
posterior for the failure rate of the time to next detection. The parameters of the
posterior gamma reflect not only the fewer numbers of remaining bugs in the
program but also the change in the scale parameter of the gamma by an amount equal
to the observed life. This has a reciprocal effect on the standard deviation of the
parameter. Thus the distribution of the posterior is shifting closer to zero for two
reasons: one, there are numerically fewer parameters, and two, by living, the
program tells the observer to bet on those that are smaller and smaller. That is with
age comes rigidity. There is still a third effect causing the shift toward zero in that
by observing the order statistics of the process the errors are being removed roughly
in the order of decreasing failure rate. This section quantifies this effect for some
special cases and suggests a general conjecture.

In the context of the replicated experiment, it is interesting to know what is
happening to the distribution of the parameter of the next spacing as a function of
the number of errors corrected keeping in mind that the distribution of the spacing is
not exponential with a single parameter, but an exponential mixture with several
parameter possibilities. The cases for N=2 and N=3 have been examined and density
functions for a general prior have been obtained.

65

The general conjecture on the effect of the "ordered" removal of failure rates is as
follows:

For the j'th spacing if GN.j+] is the probability distribution function for the sum of
N-j+1 independent, identically distributed parameters with Bayesian prior density g,

then the posterior distribution GjN of the actual failure rate of the j'th spacing
satisfies

Gj,N (x) > GN-j+1(x) for all x
Proof: (For N=2 second spacing and N=3, second and third spacings).

In the following assume that the failure rates A|,..., AN represent a random sample
from some distribution with density g(x). Given A j the conditional distribution of the
time to failure Z; for bug i is exponential with failure rate Aj. The Zj,..., Z are
assumed to be independent as in Section 5.2.1. The following analysis concentrates
on N=2 and N=3, the general case being a conjecture at this point.

For the second spacing for N=2, let A be the parameter remaining after the first
error has been corrected, i.e.

A=)\1 if Z2 < Z1
=)\2 if Zl< Z2
Then
P(A £ x) = P()‘IS X, ZZ< Zl)+P()\2S x,Zl< 2'2)
= 2P(A,< x,2,< Z,),

where the second equality follows from symmetry considerations.

Further
POA <9 = 2B, o PES Z,| Ap M)
X o0)\l (.
= 2 —_— A)\
5 ox T A, 8LA) gl Z)d)‘ld)‘z
= G2,2 (x).

66

The marginal density of the remaining parameter)\ after one error has been
corrected, can then be obtained by differentiating:

@)
gz,z(x)=g(x)[2[7q‘£‘§ g()\l)d)\l].

The bracketed expression is the modifier of the original prior g due to the removal of
an error. The major question then is, "What is its effect"?

The intuitively appealing answer is that the distribution G2,2 of A is stochastically
smaller than G, the cumulative distribution of the original prior density g, i.e., the
distribution G2 7 is shifted toward zero or

G2 2 (x) > G(x) forall x>o.
b

To demonstrate this note that 82,2(x)/g(x) is strictly decreasing in x, i.e., the
monotone likelihood ratio property is satisfied. The stated result is thus a direct
consequence of Corollary 1, p. 67 or Theorem 2, p. 68 of Lehmann [7].

For the second spacing for N=3 let

X = A2+ XB ile< Zzandzl< 23

Al +)\3 if 22< Zl and Zz< Z3

=X1+l ifZ,<Z,andZ,< Z

2 3 1 3 2
Again
P(X £ x) = 3P(X2+ A3<x, 2,<Z,2< 23)
X o0 A
1 -
s3f[L gA)g,@dA dz =G, , .
00 Ap+ Ay

Here 8, is the convolution density of Al + AZ'

67

As before the density of G2 3 is
’

0. [3 [
) = g . 3[{ax (X d A
82,3 &2 [J Al +X 814 1
and
G2,3 (x) > G, (x) for all x > o,
where G2 is the cumulative distribution function of 8o
For the third spacing for N=3 let

A= A if Z and Z.< Z

| 3 |

2.< 4

=12 if2<22andZ<Z

1 3 2

3 if Zl< 23 and 22< 23.

As before

P(A < x) =3P(A3§x,Z <Z, Z,< Z

1< 23, 2% Z3)

X oo
A A, 1 1
=3 + gx)gx,)glx)dax, dx,dA

b/:[[ll'F)\2+ X3<)\2+ l3)\l+ l3> 1 2 3 1 2 3

=Gy 3()

with density

60 00

Xy A

ooll"lz‘*x + X)\1+x

638

Again one concludes that
G, 5 (xX) > G(x) for all x > o.
3,3

Although the above stochastic ordering pattern generalizes to any N and any spacing,
the proof was determined too late for inclusion in this document. Results of similar
spirit, but in a different setting, were obtained by Pledger and Proschan [8].

5.3 THE TRADITIONAL EXPERIMENT: MODELS AND METHODS OF PREDICTION

For the traditional software debugging experiment a single partial replicate is
observed, i.e., one series of spacings ending with the k'th observed bug. Forecasting
the future behavior of the program based on this information is then of major
interest. Based on the theory developed in Sections 5.1 and 5.2, multinomial and
exponential models are developed for this case and methods of forecasting are
suggested. The section ends with a discussion of the similarities of the two methods
of modeling and gives a sufficient condition under which the discrete case can be
approximated by its continuous analog.

5.3.1 Multinomial Case

Using the notation of Section 5.1 where it was assumed that the first k bugs are
observed, let Q = (Qy, ..., QN) be some permutation of the N integers 1 through N and
let Q* denote the (k-1)-vector consisting of the first k-1 components of Q. With the

usual convention that E = 0 when b < a, note that
a
N i-1
- =1- i=1, 2, « k
Ai(n) = jZ=ip7_‘_j-l Po glpnj y Ly soey

remain fixed as long as only my, .., mN vary while holding the _)Projection
m¥* =h(7m) = (Y, ey T k-)) fixed. Thus the notational convention Aj(zr*) = Aj(m)
for i< k poses no problems. Further let

E*N :{77'*:77'* = h(TT), T GBN}
and

wx(m*) =) w(m)=P(Q¥ = 7r¥) (9)
me PN
h(mr)=m*

69

Thus (4) and (5) may be rewritten as follows:

k dj-1
> wx(m*) IT Aj(r *)(1- A (o %)) (10)

m*e€ _F_”l{l i=1

P(D; = djy i=1, «eey k)

Z P(Q¥*= 7 *)P(Dj=dj, i=1, «., k/Q¥= m¥)

w*e P*
N
where
k di-1
PD; = diy =1, oy k1 Q¥= %) = 7 Milm LAl) (10
i=1

At this point, it is not yet clear whether formula (10) or (11) represents the most
appropriate basis for inference concerning the reliability of the software that is being
debugged. To this end the various aspects to this problem are reconsidered.

i) N, p1s - PN and p, represent unknown parameters which (in conjunction with

the independence assumption of the multinomial trials) describe the probabilis-
tic structure of the debugging process.

ii) Q* is an unobservable random label vector whose distribution is determined by
the quantities N, py, ..., pN, cf. (1) and (9).

iii) D]y «., DK are the spacings between the first k detected bugs.

Since only one (although unknown) realization of Q* € P*p pertains, just as only one
(unknown) set of parameter values N, pj, ..., pN pertains it would seem reasonable to
treat the unknown value 7 * of Q¥* as a parameter just like py, ..., pNy and N.

This then leads to

P(Dl = dl’ seey Dk = dk/N! P1s »=+s PN Q* = *)

K di-1
I A *)(1- Ay ®) ! (12)

i=1

70

as the appropriate basis for inference rather than

P(D = d{, «eey Dk = di/N, D1y eees PN)

k
- X W T g e Ay (13)
* i=l i i

T¥*e P

which averages over all possible realizations of Q*, namely the one that pertained
and all of those N(N-1)...(N-k+2)-1 which did not pertain in this particular data case.

Note that the form of the likelihood of dj, ..., dx as given in (12) presents certain
identifiability problems in that many different sets of parameters N(2Kk), Py, «« PN
and 7 * lead to the same set of parameters A| = A (7 *), ..., A = Ay(n *3. Since
the likelihood (12) depends on the unknown parameters only through Aj, ..., Ak it
seems natural to reparameterize (12) in terms of its natural identifiable parameters
A1 <.y Ai which satisfy the following constraint: Aj > .. > Ay.

With this problem reformulation, the parameter N has been eliminated, which was
unidentifiable anyway.

The objective of this inference is to learn something about Ay which presents an
upper bound for the error probability Ay, of the program after having observed d},
«sy dg. Inference concerning Ay,| cannot be made since A1 is not part of our
likelihood. But since Ay > Ay, | upperbounds on Ay will be useful conservative
upper bounds on Ay, 1.

The maximum likelihood estimates for Aj>... >Ay were derived out of context by

Barlow, et al., [9] p. 42, 43, and are equivalent to isotonic regression estimates of
Ay, «ey Ay The m.le.'s are

Ai =| max min ———— i=ly ey k (14)
I<s<i k2t2i t-s+l

In particular

A k -1
Ak (max > dj/(k-s+1) (15)

lSsSkj=S

min __kk;u
1<s<k
)

j=s dj

71

The distribution of Ak involves all k unknown parameters A| > .. > Ay. Further
work needs to be done to develop confidence upper bounds for Ay (and hence for
Ak+1)-

5.3.2 Exponential Case

The parallels with the preceding discrete model are obvious in spite of the fact that
the waiting times in the discrete case are dependent through the multinomial model
whereas in the continuous case they are assumed to be independent.

Again, only the first k (< N) spacings Dl, oeey Dk are observed. Their joint density
obtained from (6) is

k
hye,N (s eeey die) = > wxrnpg Aj(m %) exp (- Aj(7*)d;) (16)
T € _E*N i=1

using the same * notational convention as in (10). Condmonally, given Q¥ = 7 *, the
density of Dy, «y Dk is

k
8k,N (s ooy di/ *) = IT Aj(m *) exp(- Aj(7*)d}) . (17)
i=1

The same arguments can be made for preferring (17) over (16) as the basis for
inference. By reparametrizing as before, the identifiability problem is avoided, and
the following likelihood as a basis for inference concerning the natural identifiable
parameters is considered:

k

gk(dl, ooy di | 7 *) =_I'I Ai exp (- Ai di) (13)
1=

with Aj2 ... 2 A

The parallel between the two approaches is not accidental. It turns out that (18) and
(12) approximate each other quite well as demonstrated in the following.

Let Dj= ['5111 1 ([X] = greatest integer < X).

72

Then

p(Df= diy i=1y ve, k| 7 %) = P(dj-1 <

i=l

dj-1

1
Qx
-
1
=
X

Ay

with A‘f: 1- exp(—Ai), i=l, ey k.

Dj < djyizly e, k [7%)

k
IT exp (- Aj(dj-1))(1-exp(- A}))

(19)

Note that (19) and (12) are identical except for the use of Al vs. Aj. Further note
that A|—>0 implies that max [A. - A*|———>O which in turn 1mphes the local

approximation theorem: I<i<gk

. * .
|P(D; = dj, i=1, wey K) = PO, = dj, i=1, woey K) [—>0

foralldy 2 1,i=1, .., k.

It is of interest to see to what extent a global approximation is also possible. To this

end note that

*
Syp |P(D, -, DY) € A) - PAD

= X [PO; = dj, izl oy

where [x]" =xif x > 0

=0 else.

vy D) € A

+
k) - P(D} = dj, i=1, ey k)]

73

Further

P(DI = di, i=lyuusy K) - PD; = diy izl K)
j -1 k L 41 A’; 1-A’; d; -1
= I A (1-A. I A -\, -
2o aan I a-AD ! ey
Since
Nf1-A"\d-1 AY AT 1-A"\d-1
= - - H - - 1§ —
R W -4t - A
* -A
<1- i . l-e <A
A N
we have
2 [P(D; = djy i = 1, ooy K) - PODY= dy i, oy KWl < 2 A2 (20)
j=1
K

Hence, it appears that the global approximation depends on °‘,s'__:1 l\j, and not just on
A . This is somewhat disturbing, especially if k is large and it is not clear whether
the error bound (20) represents the best possible result.

Inference concerning A > ... > Ak based on the conditional likelihood (18) can again

proceed along the lines of Barlow, et al., [9] and was indeed proposed by Campbell
and Ott [10]. The m.l.e’sof A} > ...> Ay are

A t -1
Ai = (max min 5 dj/(t-s+1))
s<1 t>1 j=s

74

and in particular

Mx

AD

xx
—o

11

[7,]

~ . Kk-s+1

= min P 1)
DI
)=s

To obtain a crude upper confidence bound for A | note that

A/ A (f i A K fesen))
KAk = "X = I VIR
k 1
> (Tgxk ng Aj/(k-s+1)) = Ty

Note that the distribution of Ty is independent of all unknown parameters. Thus, the
distribution of T may be obtained through extensive simulations. Suppose tp,k is the
p percentile of the T distribution then ,

Y= P(Tg2t) 7)) < P(;\\k//\k 2 1.7,k
A
=P(A/t1- Yk 2 Ay

A
ie., Ap/ty. Y,k is a conservative 100 ¥ % upper confidence bound for Aj.

75

Another ad_hoc procedure would be to obtain (by simulation perhaps) the distribution
of

k Ak
rge;xk ’f:s Dj Ai _A_]_ [(k-s+1)

for a fixed set of ratios Ai/Aj;,j = 1, ..., k, where for lack of any other better choice
A/ N j would be substituted for Aj/A j- Having obtained this distribution, we again
proceed as above to obtain confidence bounds for A . The validity of such an
approach would need some testing, of course.

5.3.3 Forecasting

Forecasts of the rate for Ay, | from the observations through the k'th error have
been calculated using formula (21) as a function of selected program states or nodes
as illustrated in the graphs of Section 3. Nodes were selected that were far enough
down the structure to have relatively small rates of occurrence, and at the same time
to be on the path of a large number of runs. Final nodes were excluded from
consideration. These nodes were selected as interesting cases to forecast having
enough replication to stabilize both the forecast and the estimate of the parameter
being forecasted. Nodes were also selected from the data in reference [1].

Table 5.3.3-1 provides a list of the forecasts and the estimated parameter being
forecast for the nodes selected from both experiments. In calculating this table,
samples that had a multiple error leading directly to node entry or to an exit from
the node were omitted from the sample. In interpreting this table, two things should
be noted. There are many paths coming into a node, but there is only one parameter
of interest leaving the node, namely the sum of the failure rates of all the errors still
remaining in the program. It can be shown, in part from the distribution of dy
obtained by integration from (16), that the distribution of di conditioned on a set of
detected errors in any order rather than on a particular 7r*, is also exponential. This
conclusion relies heavily on the fact that Aj depends only on the sum of the failure of
the remaining errors and not on the order of the previous i - 1 detections. Thus, the
time to next program failure leaving a particular node is exponential. Since it is
exponential, the MLE estimator is the familiar number of failures over the total time
on test computed only over those paths leading to and from the selected node. These
computations appear in the last column of Table 5.3.3-1.

Replication is used in this table to improve the forecast. The first two of the three
forecast columns of Table 5.3.3-1 are based on the isotonic regression estimator of
equation (21). The first of these gives the average of the forecasts across all of the
replications for that node as an upper bound on the exiting failure rate. This is a
conservative estimate. Since each of the estimates represents an upper bound, it is
also tempting to use the min of the upper bounds as an estimate. This is the second
of the two forecasts given. Unfortunately, the minimum is a function of sample size
and gets smaller and smaller as the sample size increases. As this process is
understood more completely, some other statistic of these forecasts that
compensates for the effect of sample size, might prove to have better properties
than the average.

76

Table 5.3.3-1

FORECASTS OF THE (K + 1)ST PARAMETER CONDITIONED
ON A SPECIFIC K'TH NODE
WITH INDEPENDENT ESTIMATES OF THE PARAMETER

Forecasts Data Based
Program Node S. Size Avg. U.B. Min U.B. Regr Estimate
Current Study:
A3* 127 15 3.74x10-2 8.13x10-3 5.4x10-3 1.00x10-2
B3#* 125 25 2.15x10-2 2.98x10-3 9.9x10-% 3.98x10-3
DI 12 22 1.41x10-3 1.68x10-% 6.1x10-% 2.27x10-%
DI 13 25 1.77x10-3 2.28x10-% 6.1x10°% 2.71x107%
El 123 32 2.72x10-1 2.50x10-2 4.6x10-2 5.05x10-2
El 1234 47 1.46x10-1 1.43x10-2 2.2x10-2 7.36x10°%
El 12345 32 9.71x10-3 2.16x10-% 5.9x10~% &4.41x10-%
El 12346 18 2.16x10-3 8.83x10-% 5.9x10-% 5.52x10-%
D3 1245 17 4.72x10-2 8.62x10-3 5.8x10-3 8.18x10-3
Study No. 1:
Al 124 20 7.23x10-3 7.63x10-% 1.8x10-3 1.54x10-3
Al 1234 15 2.346x10-3 6.55x10-% 1.1x10-% 9.10x10-%
BIR** 14 39 2.88x10-2 2.02x10-3 5.1x10-% 2.98x10-3
BIR** 145 44 7.91x10-3 8.68x10-% 3.8x10-% 4.80x10-%
A3 1256 16 2.90x10-2 6.54x10-3 1.0x10-2 1.85x10-2
B3 1245 14 6.74x10-3 1.52x10-3 7.8x10"% 2.44x10-3

**Corrected Data Base for Bl

The third forecast is a crude estimate somewhat related to Cox's model proposed in
reference [1] which assumes that the stages are independent and exponentially
distributed. Although these assumptions are known to be analytically false, they are
approximately true as demonstrated empirically in Sections 4.7 and 4.8 with the
reservations already noted. The forecasts are linear least squares regression
estimates based on regressing the log of the unconditional stage probabilities existing
at the time of the forecast on the number of errors corrected and forecasting the
next stage.

The table indicates that in every case the average upper bound is a true upper bound
although somewhat conservative as expected. In all but four cases, the minimum of
the upper bounds underestimated the estimated parameter even with modest sample
sizes. The regression estimator was less consistent giving a somewhat closer
estimate than the average but without the safety margin. In one case, El, node 1234,
all of the estimates were high due to the substantial change in character of the error
mix of the next error.

Table 5.3.3-2 provides forecasts of the same parameters based on another method of
forecasting. From the estimates of the specific error probabilities in Table 4.1-1 and
the estimate of the first stage probability (which estimates 1-py), the total rate for
the remaining parameters at a node can be estimated. That is, by subtracting from
one the sum of py plus the probabilities of the errors associated with the node, an
estimate of the rate of the errors remaining is obtained. In applicable cases this
estimate was improved by subtracting estimates of the joint probability when the
intersection was observed in the data. Adjustments for three-way intersections were
also made when observed. The last column in this table is an estimate of the
remaining parameter based on all of the errors observed downstream from the node
but unobserved prior to the node. This column offers another check on the validity of
the forecasts in both tables, but to a degree is correlated with the node estimate.
This is not the case with the data from the next spacing.

At times the estimates in this table had to be computed by omitting data from highly
probable errors. The questionable importance of these errors has previously been
discussed in Section 4. When they are used in this context at these sample sizes, a
negative estimate sometimes occurs. By omitting these errors, valid estimates can
often be obtained. This was not the case for the nodes for El omitted from Table
5.3.3-2. None of these nodes were estimable based on this method as all estimates
were negative. Comparable estimates for the nodes of study #1 have not been
computed.

Table 5.3.3-3 compares the regression estimator and the error probability forecast
with a 95% confidence interval on the rate associated with the next spacing. 53% of
the regression forecasts lie within the corresponding confidence intervals and 67% of
the forecasts based on the error probabilities. All of the average upper bounds were
above the upper confidence limit. Since the forecasts are also random variables, the
sampling variation in the forecast contributes to the forecasting error, but no
attempt has been made to compensate for this effect.

78

Table 5.3.3-2

FORECASTS OF THE (K + 1)ST PARAMETER CONDITIONED

Prog.

Current Study:

A3*
B3*
DIl
Dl
El
D3

Node

127
125
12
13
123
1245

Forecast

6.59x10-3
1.98x10-3
1.23x10-4%
1.07x10-%
1.40x10-2
5.37x10-3

ON A SPECIFIC K'TH NODE
BASED ON ERROR PROBABILITY ESTIMATES

Next Spacing
Estimate

1.00x10-2
3.98x10-3
2.27x10-%
2.71x10-4
5.05x10-2
8.18x10-3

Error Prob.
Estimate

1.31x10-2
2.70x10-3
2.67x10-4%
2.54x10-4
2.82x10-2
8.72x10-3

79

Table 5.3.3-3

NEXT NODE RATE FORECASTS COMPARED TO
95% CONFIDENCE INTERVALS ON
THE OBSERVED RATE

Forecasts Confidence Limits
Program Node Regression Error Prob. Lower Upper
Current Study:
A3* 127 5.4x10-3 6.6x10-3 3.60x10-3 1.57x10-2
B3* 125 9.9x10-3 2.0x10-3 1.87x10-3 5.69x10-3
DI 12 6.1x10-3 1.2x10-% 1.01x10°% 3.31x10-4
DI 13 6.1x10-3 1.1x10-% 1.27x10°% 3.87x10°4
El 123 4.6x10-2 1.4x10-2 2.62x10-2 6.94x10-2
El 1234 2.2x10-2 4.33x10-% 9.61x10-4
El 12345 5.9x10-4 2.29x10-% 6.06x10-4
El 12346 5.9x10-4 2.21x10-4% 8.35x10-4
D3 1245 5.8x10-3 5.4x10-3 3.17x10-3 1.25x10-2
Study No. 1:
Al 124 1.8x10-3 6.51x10-% 2.29x10-3
Al 1234 1.1x10-4 3.41x10-4 1.41x10-3
BIR** 14 5.1x10-% 1.66x10-3 3.99x10-3
BIR** 145 3.8x10-4 2.77x10-% 6.32x10°4
A3 1256 1.0x10-2 6.93x10-3 2.86x10-2
B3 1245 7.8x10-% 8.42x107% 3.87x10-3

**Corrected Data Base for Bl

80

6.0 CONCLUSIONS

This document reports on the second of two studies investigating issues associated
with the software debugging process, by means of replicated software experiments.
The current study differs from the previous study primarily with regard to the factors
or experimental treatments explored in the design. While the data has been used to
provide independent verification of some of the issues of the first study, such as
1) the wide range of probabilities with which errors occur, 2) the linearity of the log
stage failure rates as a function of the number of errors corrected, and 3) the degree
to which interfailure time is exponential, it has also been used to suggest relation-
ships between the error structure of programs and such issues as the impact of
programmer experience, the impact of a change in usage and the effect of
programming in a low level language.

Although the number of subjects was necessarily low due to time and monetary
constraints, the experimental evidence suggests the following very tentative conclu-
sions:

1. Changes in usage change the detection rates of some individual errors but
_impact the stage probabilities with a recognizable pattern.

2. The use of a higher-order language by an inexperienced programmer is
somewhat similar to a low-level language in the hands of an experienced
professional.

3. The slope of the linear log stage probability function is distributed over a
fairly narrow range over many different test treatments. The effect of
experience is primarily to change the intercept rather than the slope.

Out of need to explain and compute summary estimates of the observations, an
analytic framework was developed. This framework has proved valuable in explaining
the results of replication as well as in explaining the traditional software experiment.

Although it can be demonstrated relative to this framework that stages are neither
independent nor exponentially distributed, empirical estimates show that the expo-
nential assumption is nearly valid for all but the extreme tails of the distribution.
Empirical studies of the nature of the dependence of a stage on its past indicate that
some of the estimated correlations are high and demonstrate a curious periodicity.

Except for the degree of dependence in the stage probabilities, it still appears that
Cox's model approximates to a degree what is being observed. Additionally the slopes
of the log stage probabilities are somewhat similar varying in data experiments from
.5 to 1.5 except for two of the problem specifications that appeared to be too simple
for error propagation.

A method of forecasting an upper bound on the rate of the next spacing has been
developed. Numerical forecasts have been made, conditioned on nodes in the network
of error states for several programs of both studies. These are compared to
estimates of rate actually observed. Both estimates are improved due to replication
and the bound, though conservative, appears useful. Other forecasting methods are

- 81

compared, one based on a somewhat quick and dirty application of Cox's model
appears to be in the neighborhood of the correct answer about 50% of the time, the
others based on estimates of the specific error probabilities is in the neighborhood
nearly 70% of the time for the cases examined.

This study has concentrated on theory developed simultaneously with experimental
verification. The two together have led to a synergism of ideas that has strengthened
both. Much work remains if the process is to be understood; building the analytic
foundation has only just begun, understanding forecasting in this context is in its
infancy and compensating for external factors has only been suggested with a bare
minimum of subjects.

Unfortunately this study has created more issues for investigation than it has
explained. It has, however, demonstrated the power of replication. Replication has
provided the stability necessary for comparing test treatments and in testing the
efficiency of new estimators. Whether this method of keeping books will be useful in
its own right in providing better information with which to forecast the future
requires further study.

82

2.

3.

4.

5.

10.

REFERENCES

Nagel, P. M. and Skrivan, J. A., "Software Reliability: Repetitive Run
Experimentation and Modeling," NASA CR-165836, 1982.

Brown, J. R. and Buchanan, H. N., "The Quantitative Measurement of Software
Safety and Reliability," TRW SDP 1776, TRW Systems Group, Redondo Beach,
California, 1973.

Page, R. L., "Algorithm 479 A Minimal Spanning Tree Clustering Method,"
Communications of the ACM, Vol. 17, No. 6, pp. 321-323, June 1974.

Dijkstra, E. W., "A Note on Two Problems in Connection with Graphs," Numer,
Math. 1, pp. 269-271, October 1959.

Zahn, C. T., "Graph-Theoretical Methods for Detecting and Describing Gestalt
Clusters," IEEE Transactions on Computers, Vol. C-20, No. 1, pp. 68-86,
January 1971.

Littlewood, Bev, "Stochastic Reliability-Growth: A Model for Fault-Removal in
Computer-Programs and Hardware-Designs," IEEE Transactions on Reliability,
Vol. TR-80-51, October 1981.

Lehmann, E. L., Testing Statistical Hypotheses, John Wiley & Sons, 1959.

Pledger, Gorden and Proschen, Frank, "Comparisons of Order Statistics and of
Spacings from Heterogeneous Distributions,” In: Optimizing Methods in
Statistics, J. S. Rustagi, Ed. Academic Press, New York 1971.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D., Statistical
Inference Under Order Restrictions, John Wiley and Sons, 1972.

Campbell, G. and Ott, K. O., "Statistical Evaluation of Major Human Errors
during the Development of New Technological Systems," Nuclear Science and
Engineering, 71, pp. 267-279, 1979.

83

A000

B0O0O

CO000

D000

Al00
A200
A300
A400
A500

" A600

A700
A800
A900

B100
B200
B300
B400
B500
B600

B700

C100
C200
C300
C400
C500
Ce600

D050
D100
D200
D300
D400
D500
D600
D700
D800
D900

APPENDIX A: SOFTWARE ERROR CATEGORIES

From Brown and Buchanan([2]

COMPUTATIONAL ERRORS

Incorrect operand in equation

Incorrect use of parenthesis

Sign convention error

Units or data conversion error
Computation produces an over/under flow
Incorrect/inaccurate equation used
Precision loss due to mixed mode

Missing computation

Rounding or truncation error

LOGIC ERRORS

Incorrect operand in logical expression
Logic activities out of sequence

Wrong variable being checked

Missing logic or condition tests

Too many/few statements in loop

Loop iterated incorrect number of times
(including endless loop)

Duplicate logic

DATA INPUT ERRORS

Invalid input read from correct data file
Input read from incorrect data file
Incorrect input format

Incorrect format statement referenced
End of file encountered prematurely
End of file missing

DATA HANDLING ERRORS

Data file not rewound before reading

Data initialization not done

Data initialization done improperly

Variable used as a flag or index not set properly
Variable referred to by the wrong name

Bit manipulation done incorrectly

Incorrect variable type

Data packing/unpacking error

Sort error

Subscripting error

E000

F000

G000

HO000

1000

APPENDIX A: SOFTWARE ERROR CATEGORIES (Continued)

E100
E200
E300
E400
E500
E600
E700
E300

F100
F200
F300
F400
F500
F600
F700

G100
G200
G300
G400

H100
H200
H300

1100
1200
1300
1400
1500
1600

DATA OUTPUT ERRORS

Data written on wrong file

Data written according to the wrong format statement
Data written in wrong format

Data written with wrong carriage control

Incomplete or missing output

Output field size too small

Line count or page eject problem

Output garbled or misleading

INTERFACE ERRORS

Wrong subroutine called

Call to subroutine not made or made in wrong place
Subroutine arguments not consistent in type, units, order, etc.
Subroutine called is nonexistent

Software/data base interface error

Software/user interface error

Software/software interface error

DATA DEFINITION ERRORS

Data not properly defined/dimensioned
Data referenced out of bounds

Data being referenced at incorrect location
Data pointers not incremented properly

DATA BASE ERRORS

Data not initialized in data base
Data initialized to incorrect value
Data units are incorrect

OPERATION ERRORS

Operating system error (vendor supplied)
Hardware error

Operator error

Test execution error

User misunderstanding/error
Configuration control error

APPENDIX A: SOFTWARE ERROR CATEGORIES (Continued)

Jooo OTHER
J100 Time limit exceeded
J200 Core storage limit exceeded
J300 Output line limit exceeded
J400 Compilation error
J500 Code or design inefficient/not necessary
J600 User/programmer requested enhancement
J700 Design nonresponsive to requirements
J800 Code delivery or redelivery
J900° Software not compatible with project standards
K000 DOCUMENTATION ERRORS
K100 User manual
K200 Interface specification
K300 Design specification
K400 Requirements specification
K500 Test documentation
X0000 PROBLEM REPORT REJECTION

X0001 No problem

X0002 Void/withdrawn

X0003 Out of scope - not part of approved design
X0004 Duplicates another problem report

X0005 Deferred

APPENDIX B
PROBLEM #4 SPECIFICATIONS
1.0 CONSTRUCTION OF MINIMAL SPANNING TREE
Given n 2-dimensional coordinates (nodes)
(Xi, Yi),i=1,2,-n 1<n<25
Problem Connect the nodes to construct a network of direct node-to-node branches

having the smallest possible total length (sum of the branch lengths). This network is
called the Minimal Spanning Tree (MST).

Algorithm

The branches are subdivided into three sets:

I. Branches which are definitely assigned to the network under construction.
II. Branches from which the next branch to be added to set I will be selected.
1. The remaining branches (rejected or not yet considered).

The nodes are subdivided into two sets:
A. Nodes connected to the branches of set I.

B. The remaining nodes (one and only one branch of set Il will lead to each of
these nodes).

We start the construction by choosing node 1 as the only member of set A, and by
placing all branches that end in this node in set II. To start with, set I is empty.
From then onward, we perform the following two steps repeatedly.

Step 1. The shortest branch of set II is removed from this set and added to set I. As
a result, one node is transferred from set B to set A.

Step 2. Consider the branches leading from the node, which have just been
transferred to set A, to all the nodes which are still in set B. If the branch
under consideration is equal to or longer than the corresponding branch (i.e.,
the branch with the same node) in set II, it is rejected; if it is shorter, it
replaces the corresponding branch in set II, and the latter is rejected.

Let i represent node i and ij represent the branch from node i to node j. Then, for
example, assume set I = (12), set Il = (13, 14, 15), A = (1, 2), and B = (3, 4, 5), after
Step 1 when node 2 was added to set A. We then compare 23 with 13, 24 with 14, and
25 with 15 and replace in set II any shorter corresponding branch.

B-1

2.0 DETERMINATION OF CLUSTER MEMBERSHIP

Problem Given a Minimal Spanning Tree, and parameters f, s and d, calculate the
number of clusters among the n nodes and the cluster membership of each node.

Algorithm

Clusters are determined by separations of the nodes. We detect inherent separations
in the data by deleting branches from the MST which are significantly longer than
nearby branches. Such a branch is called inconsistent. (We will say a node P is
nearby node Q if P is connected to Q by a path in the MST containing d or fewer
branches.) The criteria to determine an inconsistent branch are: (1) the branch's
length is more than f times the average length of nearby branches; and (2) its length
is more than s standard deviations larger than the average of the lengths of nearby
branches (standard deviation computed on the lengths of nearby branches).

Deleting the inconsistent branch(es) breaks the MST into several connected subnet-
works. The points of each connected subnetwork are the members of a cluster.

Two FORTRAN subroutines are required: NETWRK and KLUSTR.
3.0 DESCRIPTION OF SUBROUTINE NETWORK

Communication

SUBROUTINE NETWRK (N,NODE,DIST,NBR)
INTEGER N, NBR(1)
REAL NODE(2,25), DIST(25,25)

Input

N, number of nodes, 1 < N< 25
NODE(l,i), X coordinate of node i.
NODE(2,i), Y coordinate of node i.

Output

DIST(i,j), distance from node i to node j.
DIST(i,i) = 0. for all i.

NBR(1) = i, the node number

NBR(2) = m, the number of neighbors of node i in the minimum-total-length
network. (A neighbor is any node connected to node i with a
single branch.)

NBR(3) = i}, the node number of the first neighbor of node i.

NBR(2+m) = irp, the node number of the mth neighbor of node i.

Note: iy, ip, * * *, iy, shall appear in ascending order.

Repeat this set for all nodes, going in ascending node number order. The
subscript of NBR increases with all entries.

Example of NBR for N = 3.

2
1 3

NBR(1)= 1 Node number 1
NBR(2) = 2 2 neighbors of node 1
NBR(3) = 2 Neighbor node number
NBR(4) = 3 Neighbor node number
NBR(5) = 2 Node number 2
NBR(6)= 1 1 neighbor of node 2
NBR(7) = 1 Neighbor node number
NBR(8) = 3 Node number 3
NBR(9) = 1 1 neighbor of node 3

NBR(10= 1 Neighbor node number
4.0 DESCRIPTION OF SUBROUTINE KLUSTR

Communication

SUBROUTINE KLUSTR(N,NODE,F,S,D,DIST,NBR,C,CMEM)
INTEGER N,NBR(1),C,CMEM(N),D
REAL NODE(2,25),DIST(25,25),F,S

Input
N, NODE same as in subroutine NETWRK
F, length factor to determine inconsistent branch
S, standard deviation factor to determine inconsistent branch
D, number of branches to define nearby branches 1<D<N
DIST,NBR, same as in subroutine NETWRK

Output

C, number of clusters
CMEM(i), cluster number for nodei 1< CMEM(i)<C

Number the clusters in increasing order; i.e., CMEM(1) = 1, then CMEM(2) = 1
if in same cluster or CMEM(2) = 2 if in different cluster. Continue for all N
nodes.

1.0 Test Case 1

o Input

APPENDIX C
PROBLEM #4 TEST CASES

N=5F=20,5=15 D=4
NODE (1,i): 3.058
NODE (2,i): -1.713

o Output

DIST (i,j):

NBR (i):
C=1
CMEM (i):

2.0 Test Case 2

o Input

1 2

11

2

1

2.821
-2.054

vi B W N

—
——d

3.062
-3.976

0.0 042
042 0.0

2.26 1.94
4385 476
3.34 3.49

21 3 3

N=10,F=20,5S=15,D=4

NODE (1./):

NODE (2,i):

-8.171
5.409

0.564
5.707

-6.485
3.237

-2.392
4.787

-5.041
3.134

3.136
2.333

6.193.
-5.418

3
2.26
1.94
0.0
3.45
344

-5.146
3.851

-2.099
4.745

6.249
-2.694

4
4.85
4.76
3.45
0.0

2.72

4 1

5
3.34
3.49
3.44
2.72
0.0

55 21

-7.788
6.739

-0.850
4.830

4

o Output
DIST (i,):

1

0.0
3.40
4.05
4.03
1.47
14.52
12.16
11.44
12.73
15.51

ONOUVIAWN=

-—
ovw

NBR (i):

C=2
CMEM (i):

2

3.40
0.0
5.7
1.37
2.02
14.39
12.09
10.72
12.56
15.07

3

4.05
571
0.0
5.24
4.84
10.76
844
8.21
9.04
11.90

4

4.03
1.37
5.24
0.0
292
13.13
10.85
9.39
11.30
13.76

5

1.47
2.20
4.84
292
0.0
14.74
12.38
11.38
12.91
15.60

6 7

14.52 12.16
1439 12.09
10.76 8.44
13.13 10.85
14.74 12.38
0.0 2.36
236 0.0
4.07 246
183 0.62
1.59 3.50

123522453218
9 107 2 8 9 8 2 3 7

6 2

1

11

1 1

2 2

2 2 2

8 9

11.44 1273
10.72 12.56
821 9.04
939 11.30
11.38 12.91
407 1.83
246 062
00 252
252 00

439 289
41 25
9 2 6 7

10

15.51
15.07
11.90
13.76
15.60
1.59
3.50
4.39
2.89
0.0

2 1
10 1

2
6

|

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

APPENDIX D: EXPERIMENT DATA FOR SUBJECT PROGRAM A3*

Explanation: Repetition No.

NSO~ =N AR UND ==k ONWWWEREr = =D~ o N™RNAT N~ NN~ NDD=LO0ONOW=N

~ o~
[y p—
S N

(1)
(D
(n
(1)
(1)
(1
(1)
(1)
(D
(1)
(N
(N
(D
(1
(D
(1)
N
(1
(D
1)
(1)
(1,2)

(1)

38
17
56
30

61
28
24
12

35
15
32
18
20
11
23
13
26
12

28
15
34
16
12

25
15
111
57
30
14
54
27
138
5
23
11
56
31

(7 12
9
Gy
(3 35
27
(2) 35
19
(2) 39
17
(4)

(2) 61
32
2) 143
74
VA b
2
(2) 116
65
(6) 1
0

6,10
(N 4
|
N 45
28
(2) 12
3
3) 12
6
2) 39
25
2) 123
58
(2) 10
7
3 25
13
(7) 10
3
(2) 27
14
(2) 16
8
(7 305
179

(6,10)

Failure Case No. (Error No.)
Time to Failure in Elapsed CRU’s

9)

2)
3)

(6)

(7)
(8)
(2)
(7)

(1

4)
(7,9)
(7

)
6,10)
(2)

(2)
6,10)
(7

(4)

18

66
37
23
12

121
66

65
34
47
35

131
65
61
34

126
63
46
27

25
12
242
128

(8)

(8)

(D 172 (9)
93

(4)

(4)

(8)

(4)

(6) 26 (10)
14

3,8)

(3 48 (6,10
26

(D 40 (4)
22
(6) 331 (10
191

5 (6,10)

26.

27.

28.

29.

30.

31.

32,

33.

35.

36.

37.

38.

39.

40.

11.

42.

43.

45.

46.

47.

48.

49.

APPENDIX D: EXPERIMZNT DATA FOR SUEJECT PROGRAM A3*

Explanation: Repetition No.

O, O RNWWWrR W RS, Q= WOHmr ™ WERNWYIINITODNUNLONWR™ ™™ o= Nd&O0

o~
)
A

(1)
(1)
(1)
(D
§9)
(D
(1)
(D
(D
(2)
(D
(h
(n
(n
(D
9)
(1)
(N
(D
(1)
(1)
(D
(n

1)

8
.3
18
11
55
28

29
18
22
11
31
17

77
39
44
28
44
28

(1) 40
25
“)
(2) 118
67
(6,10)
(2) 39
20
(2 134
63
2) 3
1
(2,7 178
87
(3) 27
18
2) 78
37
(D 19
I
7 2
i
(6,100
6 88
48
(7N b5}
33
4)
(2) 31
15
(7N 13
9
(2) 33
17
3 3
0
(2) 25
18
3 19
13
(3) 41
30
(2) 33
29

Failure Case No. (Error No.)
Time to Failure in Elapsed CRU's

@)

4)

9
(3)
9)
(6}
4)
(4)
(7)

6)

(2)

(2)

(6)
(2)
(4)
(2)
(8)
{2)
(7N

(D

100
54

42
20

19
10

23
11
18
1t

18
15
149
92

110
67
41
26

12

(4)

6,10)

(6)

(6,10)

(2)

(1M

(R}

(7,100

(8)

v

(7

(4)

(8)

70 (10)
39

81 (4)
42

45 (9)
25

132 (4)
67

APPENDIX E: EXPERIMENT DATA FOR SUBJECT PROGRAM B3*

Failure Case No. (Error No.)
Time to Failure in Elapsed CRU's

Explanation: Repetition No.

9.
10.
11.
12.
13.

14.

16.
17.
18.
19.
20.
21.
22,
23.
24,

25.

1 (1) 63 (2) 104 (4) 16 (7)

0 28 49 8
10 (1) 129 (2) 153 (4) 77 (7)

5 53 69 35

7 (1) 71 (5) 18 (2) 183 (7

3 36 11 72

1 (1) 34 (4,5) 44 (2) 1147 (7)

0 14 18 483

1 (1) 15 (2) 72 4) 181 (5) 357 (7)
0 6 31 83 169

2 (1) 45 (2) 32 (7

1 22 17

2 (1) 122 (5) 48 (7)

1 50 22

5 1) 106 (5) 97 (2) 237 (4) 1097 (7)
2 47 39 100 472

1 (1) 74 (5) 223 (2) 3 4 98 (7)
0 30 88 1 49
2 26 (2) 28 (5) 274 (7)

1 12 10 126

3 (1) 210 (2) 312 (5) 325 (6)

2 93 133 150

1 (1) 11 3 16 (2) 76 (4) 455 (7
0 3 6 36 188

1 (D) 17 (2) 25 (5) 303 (4 259 (1)
0 7 12 130 119

6 (1) 35 (2) 149 (4) 57 (7)

1 24 60 21

2 (1) 16 (2) 28 (4) 149 (5) 226 (7)
0 9 12 68 99

9 (1) 6 (2) 38 (N

b 2 18

1 (1) 5 (2,7)

0 3

2 (D 11 (2,4) 14 (5) 134 (7)

1 6 7 60

4 (1) 12 (2) 295 (5) 363 (1)

2 7 133 148

1 () 27 (9) 40 (2) 442 (D)

0 15 17 191

L (1) 14 (5) 52 (2) 633 (4) 419 (7)
1 5 25 268 187

7 (D 39 (2) 144 (5) 404 (6)

2 17 66 181

3 (2 1 (1) 185 (5) 1 (6)

1 0 79 1

L (1) 32 (2) 16 (5) 135 (7)

0 22 7 62

1 (D 37 (2 51 (B) 36 4) 40 (7
0 21 23 14 16

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

30.

E-2

APPENDIX E: EXPERIMENT DATA FOR SUBJECT PROGRAM B3*

Explanation: Repefition No. Failure Case No. (Error No.)
Time to Failure in Elapsed CRU’s

SN == = NNNANONE W IN =D OOt D ™ O M 0 QoM L0 e = o= Q0

(1)
(2)
(1)
(1)
(1)
(D
(1)
(1)
(D
(1)
(1
(N
(N
(1
()
(1)
(N

(2,4)
2)
2
(7N
(7)
(2)
(2)
(2)
(8)
(n
(5)
(2)
(8)
(7)
(7
(2)
2)
(5)
2)
(2)
(2)
(2)
(2)
(2)

(5)

34
15
44
19
185
82

283
132
210

336
137

‘114

34
70
30
42

23

188
92

(N
(7
(6)

458
204
41
25
161
71
56
22
216
97
35
15
20
8
302
130

142
18
28
12

124
56
954
407
208
98
71
29
177
75

767
343

4)
(D
(N
(4)
(5)
(4)
(3

(6)

(7)

(4)

4)
(7
(4
€]
(N

(7)

41
20

268
117
215

99
256
113
351
160

20
12

419
193

124

38
391
178

(7)

(7N
(7)
(3

(7)

3)

(7

(7

282 (7)
266

667 (7)
269

NggAa® N

®

10.
11.
12,
13.

14.
15.
16.
17.
18.

19.

20.
21.
22,
23.

24.

25.
26.

27.

28.
29.
30.
31.
32.

33.
34.
35.

36.
37.

2 3
248 (9)

31
1050 (10)
(3)
(1,2,3,4)
(1,2)
(2,3,5)
(n
(11)
(2)
9
D
8
(1,4)
2,3
(L,3)
(3)
8)
(L
(1,4)
(1,2,3,4)
(1)
(H
(8)
(3)
(6)
(n
(1,2,3,4)
(B)
(D
9)
3)
(61)
(1)
(n
(8)
(3)
(6)
4]
(1,2,3)
2,3
2,3)
1)
9)
(1,3,4)
(1,3,4)
(1)
2535 (9

1 ()

3 (1,3,4)

(31
]
S

—
G m U i D W RO~ QWA= U DR ™I O ™ W N & h

[\
S

[N

=]
[=2]

23]
1

[=1)
=3

o
©

]
[e]

[y
—
[
& -

®
©
—0 e 0O LD

— (=1}
Do et =]
R oWy

-
SWoN— W

o1

-3

we Brom—

S

1563

2
493

4160

L il = 2

W e O

Explanation: Repetition No.

() 1
(7
2,3) 3
(1) 11
(5,6,7) 189
® 1
(1,4) 215
2,3) 1
(3) 4
5 (2,4) 4
(1)
2,3) 120
1,4 124
) 1
(2) 2
(3) 4401
2,3 7
(2,3) 1
(7 87
(2,3, 4) 195
(2,3) 26
(9)
() 4
9)
(2,3) 2
(5) 348
(D 3
2,3) 12
(D 4
(11)
(2,3) 3
(2) 4
9)
() 2
(10)
3,4) 6
(4) 98
(n 9
(D 1
(3) 7
(2) 5
(3) 2
2,3) 8
(2,3,4) 96
(2) 176

Failure Case No. (Error No.)

2)
4)

(2,4)
9)
3,4
6
4)

(1)
3)

(5
8)
(2)
(1)
(11
t4)
6,7
(3)
(7N
(EY)

(2

4)
)
(2,4)
(4)

(2)

)
3

(7

(2
6))
)
@
(2)

6)
(2)
(4)

(9)
6,7

97

354

33
12
101

66

319
33
521
21

75
58
207

183
67

12

129
109
305

85

129

65
463

4)
6]
(6,7)

(9)
v))
(5)

(4)
(7

(6)
(5
(6,7
(4)

(D
(8
(6)
(5)
(5)

(4)

(5,6)
(6)
3)
(7

4)

(7
4)

(2)

(7
(6,8)
(6]
%)
(4)

(3)
(8)
)]

9
(5)

33

143

264
151
462

96

228

62

2
86
69

144
159
286
1019
137

5

644
643
73
65

346
31

1

455
144
91
69
13

377
107
117

902
1140

APPENDIX F: EXPERIMENT DATA FOR SUBJECT PROGRAM C3

6))

6,7)

9)

9
(11)
6,7)

(6)
(5

an
6,7
(%)
(6)

9
8
9)
(L
N

(N

9)
(8)
9
(3)

)]

(11)
(5)

(4)

6Y)
N
6,7)
(12)
6,7

(1M
(6,7
(6)

(1n
8

131

2079

66
910
24
69
1213
104
35

41
332

43

1077
281

116

93
89

261
27
1811
207
659

310
64

356

(6)

(8)

)]
(8)
(1m
(6)
(9)
(9
(7)
(5)
9
(6)
(5)
(N
(11)
(D
(6)
(6)

(8)
(6,7

(5)

(1
(9)
(13)
(9)
(5)

9
(3)

9)

38.
39.
40.

41.

42,
43.

44.
45.

46.
47.
48.
49.
50.

F-2

APPENDIX F: EXPERIMENT DATA FOR SUBJECT PROGRAM C3

Explanation: Repetition No.

1 1,2,3,4)
1 (L,2)

1 (1,3)
7(9)

3 ()
636 (11)
1 (1,3)

4 (D

2 (8)

1 (1,2,3,4)
2 (1,9)

2 (9
1 (1,2,3)
12

1 (1,2,3,4)
4 (3

1 (D

48
2
7

®)
3)
2)

(2,4)

2,4
3,4
9
(7
(3

4)
3)
(5,6)
(1,2)

4 (2,3)

200 (6,10)
8 4)
2 @

12 3)

411 (6)
1 2

173 ()
2 (2)

2 (6)
1 (1,4
164 (M
5 4)
1 @)

194
201

222

58
48

33
39
1021
39
28

7
(5)

(8)

(8
(6]

(6)
(N

(7
(6,7
(13)
(6,7)
(5)

Failure Case No. (Error No.)

123
512

97

144
26

628
196

104
109

16
598

®)
6,7

(5)

(11)
6)

(9
(5)
(3)
(11

(rn
9)

584
599

292

168

539

1102

9
(8)
(7)
(D
(6,8)

(9)

(8)

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22,

23.

24,

25.

26.

APPENDIX G: EXPERIMENT DATA FOR SUBJECT PROGRAM D3

Explanation:

9887

909

404

1081

8842

929

4353

372

3514

2380

435

3865

462

248

4906

2261

866

70

5662
9491
2890

108

308

1)
8)
(1
(8
(1,2)
(14)
(D
(10)
(2)
(10)
(D
(7
(1,2)
(8)
{n
(8)
(1,2)
(10
(D
(8
(N
(10
(1,2)
(1)
(D
(6)
(1,2)
9
(2)
(im
(L,2)
(8)
(D
(8)
(1,2)
8
(D
(1
D
(8)
(1,2)
(1)
)]
n
(12)
(2)
(10)
(n
(6)
(2)
(8)

Repetition No.

3
1898
3
1032
23

10
256
2

1
1025
23
2120
1
297
62

4

940

1
12613
28

4
789

-

9

1

36
440
3
310
4
2947
2
27273
4
1236
50

1
2359
3

3

3
445
2
2162

2)
10)
2)
(10)
4)

(2)
7
(1,4)

(2)
(10)
4)
(10)
2)
(10)
(4)

(3)
(1,
(2)
(12)
(4)

(2)
(10)
(4)

(1)

4)
(10)
(2)
(10
(4)
(1
2)
(1D
(2)
10
4,5)
(2)
(10
(2)

(1)

(2)
(8)
(D
(10)

26

45

115

24

36

13

112

82

25

24

20
26
24

330
14

4,5)
@)
(6]
3
3,6
(4)
5
(4)
(%)
2)
4@
(5)
@
(5)
3)
3
4,5)
(9

(4)

(4)
(9
4,5)

72

10

500

16

96

16

17

75

147

88

105

37

17

44

220

179

23

17

64
26

164

21

210

D
(8)
&)
4)
(5)
k5)
(3)
(5)
3)
(6)
3
(3)
(N
3
4,5)
(5)
(3)
(D
&)
(4)

@)
(4)

3)
(3
3)

(3)

Failure Case No. (Error No.)

51

257

111

69

461

100

83

17

472

20

129

777

43

175

698

348

227

46

237

65

89
109

2285

434

390

@
3)
7
)
8)
3)
Yh]
(7
Yl
4)

(N

(7N
6)
(6)
3
N
3)

®
%

(6)
(N
(5)

D

1039

112

1969

1059

129

2052

4140

33

2551

40

323
210
857
898
634
132
1165

2504
137

171
1040
375

412

(6)
(6)
(10)
(8)
(7
(8)
(6)
(3)
(8)
(5)
(5
(7
3
(7)
(8)
(7)
(D
(6)
)
(6)

(10)
(7

(10
(8)
(7

(6)

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49,

APPENDIX G: EXPERIMENT DATA FOR SUBJECT PROGRAM D3

Explanation:

292

462

361

22

110

89

765

4262

862

622

3207

455

42

1281

1717

143

614

1057

1789

1088

199

62

1037

306

(H
(6)
D
8
(1)
(7)
(2)
)]
(2)
(8)
(1)
(10)
(1,2)
(8)
(N
(1
(1)
(8)
(2)
(N
(1
(10)
(2
(10
(2)
(6)
(2)
(N
(2)
9
(n
(8
(2)
(6)
(2)
8
(1,2)
(10)
(2)
(7D
(D
(N
(1,2)
(1D
(2)
(N
(1
(10)

Repetition No.

2
1532
1
758
3
8285
3
1855
1

38

4
391
3
4801
3

6
2292
10

2

1
9328
2
137
1
5914
2
714
2
1382
1
675
4
3549
6

1
710
3
2477
16

1
4270
2
924

(2)
t)]
2)
(10)
4
(8
(1)
(8
(1)
am
(2)
(13
(4)
(10
2)

(2)
(10)
(D

(2)

(D
(15
(n
(8)
N
9)
4)
(7
(2)
(10
(1)
(8)
(N
(N
4)

N
(10)
(2)
(10)
4)

(1
9
(2)
(N

32
1771
24

~

b
622
52
1252
15
2
89
17
1
104
41
56

444
57

11
294
23
43
17

26

()]
(10)
(4)
(2)
(10)
4)
am
(5)
(4)
(N
(&)
(5)
(3,6)
3)
4)
4)
(L))
(4)
(N
3)
4)
(10)
4)
(10)
3)
1)
4)
3)
4)

4)

24

93

73

26

44

39

12

98

29

(%)
(3)
(8)
3
4)
(5)
(3
4,5)
CY)
(4)
4,5)

(3)

3)
(6)
4
(3)
(6)
(7
3)
3
(5)
(3

(8)

Failure Case No. (Error No.)

133

118

130

115

114

77

351

343

28

113

81

186

123

648

70

(7)
(6Y
3)
(5)
3
@)
(5)
10)
3
(5)
(7)
5
(3)
(10)
(5)
(7
(5)
(3)
(5)
(8
(5)
(6)
(5)

3

213
833
393
707
135
1005
80
4171
771
1058

120

2232
254
35
172
344
89
1061
13
743
86
335

77

3)
(7)
(6)
(6)
(6
(8)
(6)
N
9)
(L
(8)
(N
(7)
(5)
(3
(5)
(7
(5)
(6)
(5)
(6)
(7
(10

(5)

2.
3.
4.
5.
6.

8.

9.
10.
11,
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
29

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.
46.
47.
48.
49,
50.

APPENDIX H: EXPERIMENT DATA FOR SUBJECT PROGRAM D1

Explanation: Repetition No.

349
2852
507
435
605
300
611
364
212
279
270
39
118
T 1317
379
162
128
1206
3501
719
423
657
702
1353
1201
2396
1496
433
588
150
33
50
1290
2274
1601
1319
1553
12
1851
346
132
301
43
615
4

66
204
297
280
1183

(2)
(3)
(2)
(1)
(n
(1)
(1)
(1)
(2)
(1)
(n
(h
(2)
(1,2)
(88
(1)
3
n
(1)
3
3
(1)
n
3
H
(1)
(1
(n
(2)
(N
3)
(1)
(1)
(1)
(1)
1N
3
(1)
(1)
1)
(2)
3)
(1)
(3)
(1)
(B}]
3
(1
(1)
(2)

71
879
1342
51
812
2098
85
12
653
854
728
364
227
8152
3049
2949
2376
89
1345
18
1112
2180
81
213
3140
1087
934
1671

1359
130
247
305

1301

63

1941
982
685
828

1696

1313

1469
510

12

2066

1781

1623
189

4384
270

(D
(1)
(1)
&)
3)
2)
(2)
3)
3
(2)
(2)
(2)
(H
3
{2)
(2
(O
8]
3
(1
(nH
(2)
(2)
(H
{(2)
(2)
3
3
3)
(2)
n
3)
(2)
(2)
(2)
(3)
(1)
(2)
3
(3)
(1
(1
(2)
(O
3
(D
(1
(3)
3)
(D

2091
7692
1668
10
2015
429
17170
7399
513
9283
2653
4697
2751

4795
315
411

4964

5341
131
773

4659
950

10629

9297
797

1599

2265
234

1126

5651

1854

4230
168

11952

2663
3217

3244

1541

9764

12957

3025
646
240

11732

1864

3480

2653
181
980

Failure Case No. (Error No.)

3)
2
3)
4)
2)
3
3)
(2)
(n
3)
(3)
3
By}

(3
(3)
(2)
(2)
(2)
(2)
(2)
(3
(K}
{2)
(3
3
(2)
(2)
(1)
3
(2)
(2)
3)
(3)
3)
(2)
(2)
3)
(2)
(2)
(8]
(2)
(3
(2)
(2)
{2)
(2)
(2)
(2)
3)

L.
2,
3.
4.
5.
6.
7.

10.
1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
42,
43.
44.
45.
46.
47,
48.
49.
50.

APPENDIX I: EXPERIMENT DATA FOR SUBJECT PROGRAM E1

Explanation: Repetition No.

2

,—...,..,—p-mw.—p—p—p_.—,_p—.—._.—,.-,-—p_,—m“,__,....-._-,_.,_l\",—mwm,_,._,_.,_‘,—,_,_.—,_.,-‘N,_,._,h

2,4) 4
(2) 2
) 1
(2) 2
2) 1
(1 2
(2) 2
(2) 1
(1) 4
(1 1
(2) 3
(n 5
(1,2) 17
(2) 1
2,4) 1
(1,2) 38
(D 1
(1,2) 22
(0 2
(2) 3
(0 2
(n 2
(2) 1
(nH 3
(3,4 1
(1,2) 6
(n 2
(2) 1
(2) 2
1 1
(1) 1
(1,2) 11
(2) 1
(2) 3
1 5
(2) 3
&) 1
2) 3
(2) 3
(2) 1
(1 1
(1,2) 13
(1 1
(1,2) 1
(1,2) 2
(1 2
(1,2) 1
(1) 1
(2) 1

(1)
3
)]
(D
(1)
(D
2)
(n
(1
(2)
(2)
(D
(2)
3)
(¢0)
(N
3)
(2)
(3
(2)
8]
(2)
(2)
th
(2)
(h
4)
(2)
n
(D
(2
(2)
@
¢0)
(D
(2)
(1)

1 .

(1
(1)
(3)
(2)
(3)
(3)
(4)
(4)
(2)
(4)
(2)
(1)

Failure Case No. (Error No.)

3 @
3@
48 4)
21 4)
5 @
13 4)
7@
3 3
9 @
12 (4)
35 13)
2 (4)
8 3,4
23 4)
4 P
33
26 (4)
3 3
6 (4)
Il 4
3 3
L3
40 (D
20 (D
8]
(2)
3
3
3)
3)
(4)
3)
4)
(3,4)
3
3
6
(2)
3
3)
(n
3
4)
4)
3
3
3)
3)
4)
)

et

—
O wWwWES—WIo ut

et Pt et Cy r— P
—pn O N UL = NN

Ll S]

1369

376
45

1119

11
38
16
12

444
25
130
172
15
1302
23

18

a7
397
466
22
16

14
17
134

70
12
53
26

13
28

725

429
349

3056
23
13

6]
4)
3)
(6)
4)
3
(4)
4)
3
(B))
4)
(3
(6)
(5
5
(5)
6)
(4)
(5)
(8)]
(4)
(4)
(4)
4)
4)
(3)
(6)
4)
4)
4)
3)
(4)
(9)
(5)
4)
4)
(4)
4)
4)
(4)
4
(4)
(6)
(2)
6)
(6)
4)
(5)
(3)
4)

939
1045
2591

529
2286
1738

822

33

543

1167
49
2093

373
1895

251

349

676
4632

250
1314

762

629

846
1384
3653
3217
1280
2075

887
1828
2057
3337
3412

298

230

110
3765
1991

985
1136

173
4310
2038
1206
1684

20
2665
1105
1302
1133

(6)
©6)
(5)
(5)
(5)
%)
(5)
(5)
(6)
(5)
(5)
(6)
(5)
(6)
4)
(6)
(5)
(5)
(6)
(5)
(6)
6)
(5)
(5)
(6)
6)
(5
(5
(5)
(5)
(5)
(6)
6)
(6)
(5)
(6)
(5)
(6))
(5)
%)
6)
(6)
(5)
(5
(5)
(5)
()
(6)
%)
(6)

4055
412

2080

388
5827
4108
3889
3782
1212
3507

2989

670

3130
261
5098
1361
759
1279

1811

977
2086
1921
1014

617
3723
11434
1022
522
3245
123
982

746

1525

513
96

(5)
(7)

(6)
(6)
(6)
(6)
(5)
(6)
(6)
{5)

(6)

(6)

(6)
(3)
(3
(6)
(6)
13)

(6)
(6)
(6)
(6)

(5)

(6)
(3)
(6)
6)
(6)
(6)
(5)
(5)

(6)

(6)

(6)
(5

I-1

APPENDIX J: EXPERIMENT DATA FOR SUBJECT PROGRAM D4

Explanation: Repetition No. Failure Case No. (Error No.)

1. 19 (1 26. 1 (1)
2. 53 (1) 217. 32 (1)
3. 46 (1) 28. 10 (D
4. 39 (1) 29. 16 (1)
5 9 (1) 30. 19 (D
6. 4 (D 31. 24 (1)
1. 15 (1) 32. 7 (1)
8. 223 (1) 33. 6 (1)
9 14 (D 34. 80 (1)
10. 13 (D) 35. 30 (1)
1L 3 (D) 36. 15 (1)
12. 37 (1) 37. 10 (D
13. 27 (1) 38. 12 (D
14. 21 (1) 39. 20 (1
15. 13 (1) 10. 27 (1)
16. 4 (1) 11. 31 (D)
17. 141 (1) 12. 77 (1)
18. 121 (D 43. 10 (D
19. 50 (1) 4. 34 (1
20. 2 (1) 15. 26 (1)
21. 36 (1) 46. 29 (1)
22. 35 (1) 17. 3 (1)
23. 1t (D 48. 7(D
24, 15 (1) Note: 25,000 additional cases 49. 1 (1

were executed with no
second error detected.

25. 4 (1)

‘"

APPENDIX K: EXPERIMENT DATA FOR SUBJECT PROGRAM E4

Explanation: Repetition No. Failure Case No. (Error No.)

1. 6 (1) 26. 11 (1)
2. 3 (1) 27. 2 (1)
3. 11 (1) 28. 4 (1)
4, 1 (1) 29. 1 (1)
3. 10 (D 30. 2 (1)
6. 1 (D 31 8 (1)
1. 9 (1) 32. 32 (1)
8. 5 (1) 33. 4 (1)
9 2 (D 34. 9 (1)
10. 6 (1) 35. 4 (1)
11. 5 (1) 36. 1 (1)
12. 2 () 37. 16 (1
13. 3 (1) 38. 7 (1)
14. 2 (1) 39. 4 (1)
15 3 (1 10. 2 (1)
16. 4 (1) 11. 4 (D
17. 14 (1) 42. 1 (D
18. 14 (D) 43. 3 (D
19. 9-() 44, 4 (1
20. 3 (D 45. ()
21. 6 (1) 16. 1 (1)
22, L (D) 47. 2 (1)
23. 5 (1) 48. 17 (1)
24. 8 (1) Note: 22,000 additional cases 49. 2.
25. 3 (1) were executed with no 50. 5 (1)

second error detected.

. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-172378
4. Title and Subtitle) 5. Report Date
Software Reliability: Additional Investigati June 1984
oftware Reliability: itional Investigations . ization Cod
Into Modeling with Replicated Experiments 6. Performing Organization e
1. Author(s) 8. Performing Organization Report No.
.‘3‘ ?,: SN;,gcﬁlz BCS-40446
J. A. Skrivan 10. Work Unit No.
9. Performing Organization Name and Address
Boeing Computer Services Company 11. Contract or Grant No.
Space and Military Applications Division

P.O. Box 2434 NASI-16481

6
Seattle, WA 98124 13. Type of Report and Period Covered

12, Sponsoring Agency Name and Address Contractor
: 14, Sponsoring Agency Code

National Aeronautics and Space Administration ponsaring Agency
Washington, D.C. 20546

15. Supplementary Notes
Langley Technical Monitor: Gerard E. Migneauit

16. Abstract
This report documents the second of two studies on modeling the process of software error detection from
the results of experiments specifically designed for these studies. Experiments consist of simulations
conducted on code prepared under controlled conditions. Six separate codes were prepared and tested in
each of the two studies. Each code was initialized to an original state, then executed with independent
random inputs. Replication is introduced by repeating the entire process from initialization.
The current study enlarges on the previous one by exploring the effects of programmer experience level,
different program usage distributions, and programming languages. All these factors affect performance,
and some tentative relational hypotheses are presented.
An analytic framework for replicated and non-replicated (traditional) software experiments is presented.

* A method of obtaining an upper bound on the error rate of the next error is proposed. The method was

validated empirically by comparing forecasts with actual data. In all 14 cases the bound exceeded the
observed parameter, albeit somewhat conservatively. Two other forecasting methods are proposed and
compared to observed results.
Although it can be demonstrated relative to this framework that stages are neither independent nor
exponentially distributed, empirical estimates show that the exponential assumption is nearly valid for all
but the extreme tails of the distribution. Except for the dependence in the stage probabilities, it appears
that Cox's model approximates to a degree what is being observed.

17. Key Words (Suggested by Author(s})) 18. Distribution Statement
Software reliability, software errors, software Unclassitied - Unlimited
testing, reliability modelling, software
experimentation

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price’
Unclassified Unclassified 122

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev. 10-75)

