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Finding lower confidence bounds for the quantiles of Weibull populations has received much 
attention in recent literature. An accurate procedure (based on solving a quadratic equation) is 

presented in (1.17). It is, in fact, more accurate than the currently available Monte Carlo 
tables. It extends to any location-scale family; this article shows that it is accurate for all 
members of the log gamma (K) family with ? < K < oo. The procedure is shown to work well 
for censored data. It also extends naturally to regression data. An even more accurate pro- 
cedure (an approximation to the Lawless conditional procedure, in which the "configurations" 
are replaced by an approximation of their expected values) is presented, in (3.1). It involves 
numerical integration, but the tables are independent of the data. It extends easily to the 
censored case. 

KEY WORDS: Tolerance bounds; Log gamma distribution; Censoring; Closed form ap- 
proximation; Tables for approximate conditional approximation. 

1. APPROXIMATE TOLERANCE BOUNDS FOR 
REGRESSION MODELS 

Let X1, ..., X. denote independent failure times on 
(0, oo), and define YX = log Xi (log failure time). Con- 
sider the general regression model 

Y = ~ + W/ + aci, 

1 < i < n, e1, ..., e, iid with df F, (1.1) 

where F has mean 0 and variance 1, /f is an unknown 
r x 1 parameter vector and Wi is a 1 x r vector of 
known covariates associated with the ith observation. 
We agree that 

-W,W -1 
D= Dn = 

n 

where W'- [W' *. W'] is r x n of rank r, (1.2) 

and 

each column of W is orthogonal to 1 = (1, ..., 1)'. 

(1.3) 

(The location-scale model is obtained as a special case 
by setting /f = 0.) For 0 < p < 1 we let 

F- l(p) 

taken under conditions W0 has pth quantile 

yp- = + Wo p + ae,. (1.5) 

The tolerance bound problem, which is our main con- 
cern in this article, is to find a lower confidence bound 
on yp. Lieberman and Miller (1963) solved this prob- 
lem for normal F, whereas McCool (1980) proposed a 
Monte Carlo solution for Weibull F. 

We suppose now that a2, ̂/, are invariant esti- 
mators of u, /f, a; that is, fi(aY + bl + Wc) = a,i(Y) 
+ b, #/(aY + bl + Wc) = a4(Y) + c, and 6(aY + b l 
+ Wc) = aJ(Y). Then 

the distribution of (fi - bt)/, (l/ - /3)/a, 6/a depends 
only on the distribution of ?, and not on ,, /f, a. (1.6) 

This invariance holds for the maximum likelihood 
estimates (MLE's). We also suppose (as is true for 
MLE's under regularity on F), that 

a -0 -01 raoo aol 0 

/n --- N 0 , 2 alo all 0 

[_ d _ 0J 0 a22Do 

(1.7) 
for some aij's depending on F (provided D, converges 
to some D). For 

(1.4) 

denote the pth quantile of E. Thus an observation 

g - (logf)', (1.8) 
the MLE's satisfy (1.7) with covariance matrix given 
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by (see Cox and Hinkley 1968) 

E(-1 - e2g'() - 2eg(e)) E(-g(e) - eg'(e)) 
-l 

a2 * E(-g'(()) 
0 0 

The natural estimate of the quantile yp under con- 
ditions Wo is 

Yp- i + Wo + ^ep. (1.10) 

0 
0 

[E(- g'())] -'D._ 
(1.9) 

approximating the noncentral t) that Z + tA is ap- 
proximately normal (the accuracy of this will be con- 
sidered later). This assumption leads [after solving the 
appropriate quadratic in t coming from (1.13)] to 

B nV - r - To + {E2A + z2(cov2 [A, Z] - var [A])}/n J 
1 + 2EA///n + (E2A - z2 var [A])/n 

+ //{ 
( n )1/2 T 5 + EA/n + Z2 cov [A, Z]/n } 

lPI\n -rl-2 \ l1 + 2EA//n + (E2A- z2 var [A])/nJ 

As our solution to the tolerance bound problem, we 
seek a constant B_ = B,(y, p, Wo, F), satisfying 

y = P(Yp- B, d/n < Yp) = P(/n(Y, 
- 

yp)/d < Bn). 

(1.11) 

The desired tolerance bound is then Yp - Bd//n. 
We have phrased our problem in terms of determining 
Bn, since it is asymptotically stable; that is, B. con- 
verges to some B. in (- oo, oc). We use standardized 
rv's e in the hope that Bn will turn out to be reasonably 
stable across various distributions. 

To find B, we rewrite (1.11) as 

P p(//- 
(i - ) + Wo(f - uPi) 

- 
asB 

nCW nB - 
p(1.12) 

(1.12) 

= P(Z + tA <_ /n(b -t)), 

where 

5 = p,/zo, T2 = all + a22 WoDWo, 

t = ((n - r- )/n)2(p- Bn/n)/ro, 

A = n112{[(n/(n- r - 1))1/2/] -1}, 

and 

Z = /n(( - H) + Wo(/- -)/(TTo). 

We will assume (as did Jennett and Welch 1939 in 

by using the seemingly safe approximations 

EZ = 0 and var [Z]-1. (1.15) 

Adding the less obvious approximations 

EA - 0, var [A] -aoo, and cov [A, Z] - ao1/To 

(1.16) 

reduces (1.14) to 

B= Z( n-r-1 

2 {(+z 2 ao, + E' aoo) + + + (a l - aoo T2)/n} 1/2 

1 - z aoo/n 

+ n{p{ 

(1.13) 
There is one special case on which we wish to focus 

our method. Let G denote a gamma (K) random vari- 
able (rv) with density xK- 1e- /F(K) for x > 0 so that 
L = log G has the log gamma (K) density exp (Ky 
- eY)/F(K). Let e = (L - EL)/v/var [L], and let F 

denote the df of e. The cumulant generating function 
of L is 

log E(exp (tL)) = log (F(t + K)/F(K)) for t > -K 

(1.18) 

Table 1. Characteristics of the Standardized Log Gamma ( K) Densities 

Standard 
Shape Mean Deviation Skewness Kurtosis Median Mode 

K E(L) = (K) a(L) = '(K) 7(L) = 7,(e) 72(L) =72(e) m(L) m(L) 

.5 -1.963510 2.22144 -1.53514 4.00000 -1.481 -.693 
1.0 -.577216 1.28255 -1.13955 2.40001 -.367 .000 
2.0 .422784 .80308 -.78025 1.18754 .518 .693 
4.0 1.256117 .53275 -.52934 .55695 1.301 1.386 

16.0 2.741013 .25396 -.25385 .12886 2.752 2.773 
o0 oo .00000 .00000 .00000 oo oc 
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Figure 1. Graphs of the Standardized Log Gamma (k) Density Functions, fk. 

Thus we now specialize to the case 

EL = *f(K) and var [L] = I'(K), (1.19) 

where t/ is the digamma function /(x) (d/dx) log 
r(x). Moreover, (coefficient of skewness) = 7y = 

f"(K)/[f'(K)]312, (coefficient of kurtosis) 72 = 

?'"(K)/[0'(K)]2, and the mode is log K. [Of course, 
when K = 1 the rv L = log G is an extreme value rv; 
moreover, the original observed X, is Weibull (bi, c) 
with b, = exp (,u + i - ao(K)//(K)), c = 

V/I'(K)/a, and density cxC-'b-c exp (-(x/bj)C) for 
x > 0. The limiting case K = oo corresponds to Y = 
log Xi having a normal distribution. See Prentice 1974 
for a discussion.] See Table 1 for characteristics of the 
distribution of L. 

Y = w + 1W4 + mi, 

1 <i<n, l, ...,, iidFK, (1.20) 

where FK denotes the standardized log gamma (K) 
distribution. The densities fK of FK are shown in 
Figure 1, and the standardized df's FK themselves are 
shown on normal probability paper in Figure 2. The 
elements aj =_ aij(K) of the matrix of (1.7) and (1.9) are 
given in Table 2. The rule 

approximate the Bn of (1.11) by (1.17) (1.21) 

constitutes our proposed solution number one of the 
tolerance-bound problem. Tables 2 and 3 make it 
tractable to perform (1.21) for standardized log 
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Figure 2. Graphs of the Standardized Log Gamma 
Paper. 

gamma (K) error rv's and MLE estimators. (A some- 
what similar procedure was proposed by Bain and 
Engelhardt 1981; however, it is less accurate and is 
asymptotically incorrect.) 

2. CENSORING 

This approach to finding confidence bounds can 
be extended to location-scale models in which type 
II censoring has occurred. In this situation the ml 
smallest and m2 largest of the ordered log lifetimes 
Y,n < . .< Y:n have not been observed. Thus the log 
likelihood is 

l(a, v) = m1 log F Yn:+1 )- l 

+m1og 1 F Y:n n-m2-> 

+ E log f ) 
i=ml+l a 

n! 
-(n - ml - m2) log + log ! (2.1) 

ml !m2! 

When F is regular, the MLE's /i and a again satisfy 
[recall (1.7)] 

- 
- - 

0 2 do00 do0-1 
-/1n 

N 
0 

a 
dol d l 

-N 
0 2 aoo aol) (2.2) 

=_0_ _ao, all _ 

.50 .60 .70 .80 .90 .95 

(k) Distribution Functions, Fk, on Normal Probability 

as n-- oo, where 

g (log f)', h1 (log F)', 

h (log (1 - F))', 

and [with e =- (Y - i)/o] 

dll = -- Eh'l(:ml + l) 
n 

(2.3) 

m2 Eh2(:n- m2) 
n 

1 n-m2 
-- 

Eg(n.:i), 
n/ i=ml+l 

do = - ml 
E[hl(En:ml + 1) + En:ml + lh'l(n:ml + 1)] n 

-- 
E[h2(n:n_m2) + ?n:n-m2 h2(?n:n-m2)] 

1 n-m2 -- E E[g(En.:i) + En:g( )], 
n i=ml+l 

(2.4) 

(2.5) 

Table 2. Characteristics of the Standardized 
Log Gamma (K) Densities 

K aoo ao all a22 

.5 .681477 -.613544 .957669 .405285 
1.0 .607927 -.473999 .977502 .607927 
2.0 .558701 -.347852 .991846 .775273 
4.0 .530422 -.248907 .997634 .880831 

16.0 .507768 -.124964 .999837 .969082 
oo .500000 .000000 1.000000 1.000000 

NOTE: The aj are required in (1.17). 
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Table 3. pth Quantiles of the Standardized Log Gamma (K) Densities 

Extreme 
Value: Normal: 

K =.5, K = 1.0, K 2.0, K = 4.0, K= 16.0, K = oo, 
p C= 1.414 C= 1.000 C=.707 C =.500 C .250 C =.000 

.0001 -7.51707 -6.73118 -5.82340 -5.10185 -4.32675 -3.71902 

.0005 -6.06807 -5.47615 -4.81401 -4.30074 -3.74462 -3.29053 

.0010 -5.44402 -4.93551 -4.37689 -3.94830 -2.48043 -3.09023 

.0050 -3.99501 -3.67907 -3.35088 -3.10335 -2.82417 -2.57583 

.0100 -3.37094 -3.13667 -2.90082 -2.72287 -2.51691 -2.32635 

.0250 -2.54586 -2.41631 -2.29210 -2.19627 -2.07816 -1.95996 

.0500 -1.92137 -1.86580 -1.81477 -1.77193 -1.71226 -1.64485 

.1000 -1.29554 -1.30455 -1.31277 -1.31299 -1.30295 -1.28155 

.2000 -.66427 -.71945 -.76692 -.79701 -.82451 -.84162 

.3000 -.28675 -.35376 -.41078 -.44963 -.49062 -.52440 

.4000 -.00929 -.07369 -.12863 -.16787 -.21252 -.25335 

.5000 .21732 .16428 .11833 .08378 .04176 .00000 

.6000 .41663 .38189 .35048 .32484 .29069 .25335 

.7000 .60408 .59479 .58387 .57175 .55130 .52440 

.8000 .79521 .82110 .83918 .84723 .84905 .84162 

.9000 1.01991 1.10035 1.16496 1.20717 1.24957 1.28155 

.9500 1.17771 1.30553 1.41215 1.48671 1.56994 1.64485 

.9750 1.29851 1.46781 1.61243 1.71733 1.84054 1.95996 

.9900 1.42372 1.64079 1.83056 1.97272 2.14704 2.32635 

.9950 1.50111 1.75011 1.97087 2.13933 2.35093 2.57583 

.9990 1.64419 1.95693 2.24143 2.46571 2.75953 3.09023 

.9995 1.69478 2.03149 2.34058 2.58698 2.91450 3.29053 

.9999 1.79500 2.18124 2.54223 2.83636 3.23859 3.71902 

NOTE: The values of quantiles sp = eK, are needed in 
C = 1/-K, as in Prentice (1974). 

and 

doo = - M1 
E[2En:ml + lhl(Sn:ml + 1)+ 42:ml + lhl(E:m, + 1)] 

- - E[2en-n- m2 h2(En:n-m2) + en:n -m2 h2(nn m2)] n 

n-m1l-m2 1 n-! 
2 

n-m -- - _ 1 EE[2n:i 9(en:i) - n:i ~ (En:i)]' n ni=ml+l 

(2.6) 

The values of the covariance matrix may be difficult to 

(1.17). This table is adapted from Harter (1964). Here 

compute for small n. For some special cases, however, 
under the assumptions ml/n-+ q1 and m2/n-- q2 as 
n - oo, the asymptotic covariance matrix can be com- 
puted from available information. Let F FK denote 
the df of e = (L - EL)/x/var [L] with L = log gamma 
(K) as in Section 1. Then for K = 1 (extreme value) 
and K = oo (normal), the asymptotic covariance 
matrices, obtained from Harter (1970), are given in 
Table 4. 

More generally, one can use the observed infor- 
mation by making simple modifications in the preced- 
ing formulas. In fact, this is probably preferable. 

Table 4. Asymptotic Covariance Matrix of the 
MLE's of Log Gamma Parameters 

K-= 1 K =oo 

q1 q2 aoo00 01 a11 aoo00 a01 a11 

.0 .0 .607927 -.473999 .977503 .500000 .000000 1.000000 

.0 .1 .767044 -.482759 .979312 .585925 .041136 1.020092 

.0 .2 .928191 -.456165 .984094 .688692 .106905 1.062323 

.0 .3 1.122447 -.392241 1.005537 .819749 .206568 1.138257 

.0 .4 1.372781 -.269610 1.066162 .994759 .359824 1.272656 

.0 .5 1.716182 -.042759 1.216920 1.241453 .605233 1.517094 

.1 .0 .654702 -.511948 1.008303 .702692 .000000 1.035011 

.1 .1 .842250 -.532192 1.011820 .847527 .071658 1.070615 

.1 .2 1.639534 -.513785 1.013933 1.041120 .187749 1.140391 

.1 .3 1.287741 -.454085 1.028702 1.315918 .379562 1.274494 

.1 .4 1.625480 -.325211 1.078433 1.736943 .715075 1.542208 

.1 .5 2.124585 -.062235 1.217902 2.458565 1.364988 2.128202 

NOTE: The shape parameters are K = 1 and K = oo. Proportions q1 are censored from below, and proportions q2 
are censored from above. 
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3. AN APPROXIMATE CONDITIONAL 
PROCEDURE AND THE MONTE 

CARLO METHOD 

The accuracy of the preceding approximation will 
be examined mainly for the location-scale model, 
since for the general regression model few standards 
for comparisons are available. Even for the location- 
scale model it is difficult to obtain reasonably accurate 
determinations for the y-percentile Bn = B, y p of the 
pivot Vp = /n(Yp - yp)/6, since the distribution of Vp 
is typically analytically intractable, the normal error 
model forming a notable exception. 

For the extreme value error model (K = 1), Bain 
(1978) (based on a method of Thomas et al. 1970) has 
tabulated estimates tu of u, (1 - p) - L= By p. [The 
factor L- = 1.28255 is the standard deviation of the 
density exp (y - exp (y)); the conversion factor aL 
arises from the fact that Bain deals with the standard 
extreme value density, whereas we chose the standard- 
ized version with mean zero and variance one. Note 
also the switch from p to 1 - p.] Bain obtained these 
estimates ui from extensive Monte Carlo simulations 
for various values of y, p, and n. The accuracy of Bain's 
tables is variable and in fact for p = .02 these esti- 
mates appear to be off considerably. This is indicated 
by the asymptotic values reversing the monotone 
trend exhibited by u,, (1 - p) as n-> oo, and is corrob- 
orated by our separate simulations. 

Another standard for comparison is made possible 
by modifying a method for constructing conditional 
tolerance values, due to Lawless (1975, 1982). The 
basic difference between Lawless's method and the 
one based on Bain's tables is that for the former the 

multiplier Bn is no longer constant for a sample of a 
given size but changes from sample to sample. In fact, 
Lawless's Bn is a function of certain ancillary statistics 
a = (al, ..., an) and the confidence level is con- 
ditionally (given a) equal to 7 and thus also un- 
conditionally equal to 7. The advantage of this con- 
ditional approach is that the conditional distribution 
of the pivot Vp given a is analytically tractable, al- 
though a nontrivial computer program is required for 
the computation of the conditional percentiles Bn(a). 
The drawback is that Bn(a) cannot be tabulated, since 
it changes from sample to sample. To bypass this 
problem we propose to compute the B,(ao) for a 
pseudo extreme value sample of size n with resultant 
ancillaries ao. Our second proposal is thus: 

Use the resulting value B,(ao) as a substitute 
for the unconditional percentile B,. (3.1) 

As a pseudo sample we propose to take the following 
approximation to the expected extreme-value order 
statistics (compare Blom 1958, p. 73): 

,i =log -log1 ...i. ,n. 
n + .25 

(3.2) 

4. ACCURACY OF THE APPROXIMATIONS 

As is evident from Table 5, our proposals (1.21) and 
(3.1) and the Monte Carlo values of Bain (1978) agree 
reasonably well as long as p > .05. For p < .05 both of 
our methods perform better. In order to judge the 
performance of B, [our approximaton (1.21)], Bn = 

Table 5. Extreme - Value Distribution (K = 1 ) 

.01 .02 .05 .10 
P, 
n PI Bn Bn P, In Bn B An B, 5n 

Confidence Level y =.90 

15 6.016 6.428 5.203 5.537 4.850 4.131 4.361 4.288 3.319 3.472 3.460 
(.8824) (.8969) (.8820) (.8968) (.8666) (.8846) (.8960) (.8919) (.8879) (.8958) (.8949) 

30 5.290 5.511 4.582 4.761 3.972 3.649 3.773 3.702 2.945 3.026 3.043 
(.8899) (.8974) (.8909) (.8982) (.8547) (.8922) (.8975) (.8938) (.8908) (.8973) (.8989) 

80 4.737 4.842 4.109 4.195 3.488 3.284 3.343 3.339 2.662 2.701 2.759 
(.8982) (.9031) (.8988) (.9033) (.8592) (.8999) (.9041) (.9038) (.9009) (.9032) (.9066) 

x' 4.041 3.515 2.826 2.310 

Confidence Level y = .98 

15 11.70 11.10 10.12 9.564 8.458 8.034 7.535 7.407 6.447 6.001 5.996 
(.9812) (.9782) (.9817) (.9777) (.9657) (.9827) (.9773) (.9765) (.9835) (.9775) (.9774) 

30 9.512 9.211 8.240 7.957 6.966 6.562 6.308 6.195 5.291 5.063 5.059 
(.9794) (.9771) (.9796) (.9769) (.9657) (.9807) (.9776) (.9762) (.9814) (.9789) (.9789) 

80 8.067 7.919 6.999 6.861 5.873 5.593 5.470 5.382 4.532 4.422 4.433 
(.9813) (.9808) (.9813) (.9802) (.9629) (.9821) (.9803) (.9787) (.9817) (.9795) (.9797) 

:x 6.474 5.632 4.530 3.703 

NOTE: ,-Approximation (1.21), B,- Lawless (pseudo sample), n,-Bain; the observed confidence level yis in parentheses; 10,000 replications. 
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Table 6. Extreme Value Distribution (K = 1), 
Censored Data 

y = .90 

.05 .10 .50 
p, 
n B, Sn B,, P B,, 

Censoring Pattern q = 0, q2 = .2 

10 5.572 6.063 4.340 4.649 1.542 1.482 
(.8889) (.9048) (.8912) (.9058) (.9057) (.8984) 

30 4.207 4.359 3.305 3.397 1.326 1.285 
(.8862) (.8944) (.8866) (.8951) (.9042) (.8971) 

80 3.712 3.783 2.930 2.972 1.256 1.229 
(.8981) (.9019) (.8993) (.9025) (.9049) (.8998) 

oo 3.118 2.483 1.188 

Censoring Pattern q, = 0, q 2 = .5 

10 7.773 9.211 5.680 6.524 1.581 1.340 
(.8698) (.9022) (.8773) (.9022) (.9265) (.9002) 

30 5.137 5.498 3.816 4.015 1.437 1.273 
(.8834) (.8959) (.8859) (.8954) (.9195) (.8969) 

80 4.340 4.500 3.252 3.336 1.413 1.302 
(.8910) (.9000) (.8935) (.8981) (.9171) (.8998) 

oc 3.475 2.642 1.432 

NOTE: B,-Approximation (1.21), B,-Lawless (pseudo sample); the 
observed confidence level y is in parentheses; 10,000 replications. 

Bn(ao) [our conditional approximation (3.1) based on 
applying Lawless's method to the pseudo sample], 
and Bn = uin/IL (Bain's Monte Carlo tables) for 
various values of p, y, and n, a limited Monte Carlo 
study was performed. In 10,000 replications, using the 
uniform random number generator of Schrage (1979), 
the observed confidence levels were recorded. For a 
given sample size n, one set of 10,000 replications 
produced observed confidence levels simultaneously 
for several nominal confidence levels and several per- 
centiles p. Thus the resulting observed confidence 
levels are only independent between different sample 

sizes but not within the same sample size. Table 5 
shows that Bn = Bn(aO) serves as a reasonably accurate 
proxy for the true B,,y,p no matter what the parame- 
ters n, y, p are. Furthermore (also using Monte Carlo 
tables not presented here): 

4.1 The approximation Bn tends to improve with 
increasing n and is remarkably accurate over the 
range p = .01, .02, .05, .10, .50, and y = .95, .98, 
.99, even for sample sizes as low as n = 15. 

As the nominal confidence level y decreases towards 
.75, one notices a slight deterioration in the observed 
confidence level for Bn. Our studies showed that this 
discrepancy becomes more pronounced for y = .5. 
Indeed, a closer examination of our approximation 
(1.21) reveals that for y = .5, the approximation 
EA = 0, neglecting terms of order 1/n is no longer 
satisfactory. It is conceivable that accounting for the 
term a/n in the expansion EA = 1 + a/n + * - (if 
available) would further enhance the accuracy of Bn, 
particularly for nominal y values near .5. However, 
these cases have the least practical application, except 
for y = .5, which arises in consideration of median 
unbiased estimation. 

The approximation Bn(ao) of (3.1) is obviously too 
complex for many users who do not have access to 
tables. However: 

4.2 The approximation B,(ao) of (3.1) seems to be 
very accurate in all cases considered. When its 
tables are available, it would seem to be the 
method of choice. 

After completion of our computational work we 
became aware of a similar, yet different, way of ob- 
taining proxy values B*(ao) due to Lawless (1974, 

Table 7. Normal Distribution (K = oo) 

.01 .02 .05 .10 .50 
PI 
n Sn B, , B, B, 5, Bn, B, 

Confidence Level y = .90 

15 3.538 3.866 3.209 3.499 2.733 2.966 2.337 2.521 1.364 1.392 
(.8753) (.8981) (.8753) (.8981) (.8760) (.8956) (.8792) (.8941) (.8932) (.8983) 

30 3.153 3.323 2.867 3.017 2.456 2.577 2.116 2.212 1.322 1.334 
(.8850) (.8961) (.8851) (.8966) (.8866) (.8979) (.8869) (.8975) (.8960) (.8976) 

80 2.853 2.933 2.601 2.672 2.241 2.298 1.945 1.991 1.296 1.301 
(.8900) (.8968) (.8911) (.8971) (.8921) (.8983) (.8950) (.8990) (.8995) (.9002) 

2.467 2.261 1.967 1.730 1.282 

Confidence Level y = .98 

15 6.513 6.703 5.888 6.066 4.982 5.141 4.221 4.365 2.293 2.343 
(.9766) (.9790) (.9766) (.9787) (.9757) (.9780) (.9749) (.9779) (.9756) (.9770) 

30 5.482 5.563 4.974 5.052 4.241 4.314 3.633 3.700 2.166 2.187 
(.9767) (.9775) (.9757) (.9771) (.9763) (.9773) (.9760) (.9778) (.9771) (.9780) 

80 4.770 4.801 4.343 4.374 3.731 3.762 3.228 3.258 2.095 2.101 
(.9799) (.9801) (.9800) (.9804) (.9790) (.9802) (.9793) (.9803) (.9800) (.9800) 

zx 3.955 3.622 3.151 2.772 2.054 

NOTE: n,-Approximation (1.21), B, -Exact by Normal Theory; the observed confidence level y is in paren- 
theses; 10,000 replications. 
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Table 8. Standardized Log Gamma (K = .5) 

P, 
n .01 .02 .05 .10 .50 

t,, = .90 

20 6.539 5.592 4.347 3.415 1.326 
(.8840) (.8849) (.8873) (.8876) (.8977) 

30 6.086 5.208 4.054 3.191 1.266 
(.8942) (.8946) (.8950) (.8958) (.9043) 

80 5.421 4.645 3.626 2.865 1.183 
(.8940) (.8943) (.8959) (.8949) (.8962) 

oc 4.597 3.947 3.098 2.436 1.091 

, t, = .99 

20 15.28 13.07 10.17 7.994 3.040 
(.9929) (.9928) (.9940) (.9942) (.9947) 

30 13.30 11.39 8.870 6.984 2.727 
(.9947) (.9946) (.9946) (.9946) (.9940) 

80 10.84 9.286 7.253 5.731 2.345 
(.9918) (.9918) (.9918) (.9920) (.9928) 

0o 8.343 7.165 5.624 4.475 1.979 

NOTE: An,-Approximation (1.21); the observed confidence level y is in 
parentheses; 1 0,000 replications. 

1980). Lawless's proxy method works equally well for 
complete samples but does not extend to type II cen- 
sored data. However: 

4.3 Our modification (3.1) extends easily to the cen- 
sored case by censoring the pseudo sample. 

For censoring fractions of 20% and 50% the per- 
formance of B, = Bn(ao) and Bn is exhibited in Table 6. 

For the normal error model (K = oo), the exact 
percentiles B, were computed from the noncentral t 
distribution and they serve as a standard for compari- 
son. Again a limited Monte Carlo study was per- 
formed in order to judge the discrepancies between B, 
and Bn in terms of the observed versus nominal confi- 
dence levels. The quality of the approximation B, 
basically parallels the extreme value case (see Table 7). 

A similar study for Bn (without benefit of exact or 
pseudo exact values to compare to) was conducted for 
the log gamma (K) family with K = .5. The observed 
confidence levels relative to the nominal levels show 

roughly the same pattern as observed in the other 
cases (see Table 8). 

Concerning the accuracy of (1.21) in the regression 
case, we point out that in the normal case, Z + tA in 
(1.13) is a linear combination of a standard normal 
and an independent chi random variable, just as in the 
location-scale case. Hence the approximation (1.21) 
should do comparably well. This is confirmed in a 
limited form in Table 9. Another comparison is made 
possible in the Weibull regression case through some 
Monte Carlo results of McCool (1980). When the 
pivot percentiles u*(p, y, s) as estimated in McCool's 
table 1 are converted via B,(p, 7, s) = ,/n u*(p, 7, 
s)/1.28255 into our scale, we can compare McCool's 
converted estimates B, with our approximation B, of 
(1.21). McCool covers the case p = .10, y = .95, .5, .05, 
and n = 40. McCool's covariate s attains four levels 
Sl, ..., S4, and 10 observations are taken at each level. 
These covariates convert in our notation to wi = Zi 
-Z with Zi =-log si. We omit y = .5 from the 

comparison for reasons explained previously. Table 9 
compares B, with Bn in the Weibull case and for the 
simple linear regression setup Bn is compared with the 
exact values Bn (obtained from the noncentral t distri- 
bution) in the normal case. Whereas in the normal 
case the (regression) approximation quality parallels 
that of the location-scale case, we seem to be at some 
odds with McCool's estimates in the Weibull case. 
Some of that may be explained by the standard devi- 
ation of McCool's Monte Carlo estimates. A rough 
idea (possibly too small) of this standard deviation 
may be obtained by assuming an approximate normal 
distribution for the pivot whose distribution was sim- 
ulated by McCool. Concentrating on the case (of 
widest discrepancy between B,, and Bn) with y = .95 
and So = .75, we find a standard deviation of .062 for 
the quantile estimator of the 95th percentile of the 
pivot distribution. [The standard deviation of the 
pivot distribution was obtained from (5.04 - 

(-4.56))/3.3 = 2.91; we then calculated (.05 x .95)/ 
(10,000 rp2(1.645)/2.912) = (.062)2.] This seems to indi- 
cate that Monte Carlo methods for establishing ex- 
treme population percentiles are still rather unre- 

Table 9. Simple Linear Regression (p =. 10) 

Weibull Case Normal Case 

y = .95 y = .05 y = .95 y = .05 

Covariates 3, , BA , , A Bn B, B,, ,n 

so = .75 wo = .3133 5.04 5.66 -4.56 -4.07 5.89 5.78 -4.75 -4.78 
s,= .87 wI = .1649 4.05 4.51 -3.20 -2.92 4.02 3.92 -2.89 -2.90 
S2- .99 w2 = .0356 3.71 3.98 -2.55 -2.39 2.99 2.89 -1.88 -1.87 
s3 = 1.09 W3 =-.0606 3.78 4.03 -2.62 -2.45 3.11 3.01 -1.99 -1.99 

4 = 1.18 w4= -.1399 4.04 4.36 -3.00 -2.77 3.75 3.65 -2.62 -2.64 

NOTE: B/,-McCool's estimate, /,,-Approximation (1.21), B,,-exact (normal case); 10 observations at each si, 
(w) i=1 ...,4, n =40. 
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liable, even for 10,000 replications. In this same vein, 
recall the difficulties with Bain's Monte Carlo values 
for percentiles well out in the tail. 

5. AN EXAMPLE 

Failure strengths of ceramic specimens (Norton 
NC-132 HP-Si3 N4) from each of three billets (N, A, 
and B) are presented in Table 10. Each specimen was 
tested with a flexural strength (four-point) test with a 
crosshead speed of .005 mm per minute and a stress 
rate of 20 MPa per minute at temperature 1204?c 
(Larsenetal. 1981, p. 188). 

Let Yj represent the log failure time of the jth 
observation in the ith billet for 1 < i < 3, 1 < j < 10; 
with i = 1, 2, 3 denoting billets N, A, B, respectively. 
Two possible models for the data are as follows: 

Model A. Yj = /u + ai + a?ij(K) with side con- 
dition al = 0 

Model B. Yij = #i + asi(K), 

where the eij(K) are iid standardized log gamma (K) 
for 1 < i < 3,1 <j < 10. 

When Model A is assumed and 2, a2, a3, 6 are then 
calculated for varying values of K, we find that K = 1 
very nearly maximizes the likelihood equation. As- 
suming K = 1 is equivalent to assuming that exp (Yj) 
follows a Weibull distribution with modulus bi = exp 
(I + a. - qI(l)/'(1)) and characteristic strength 
c = /f/'(1)/a. (The Weibull distribution is commonly 
used to model failure strength of ceramic materials). 

Assuming Model A with K = 1, we find /2 = 
6.52875, a2 = .03735, a3 = .11320, and 6 = .11221. In 
the setup of Sections 2 and 3, we have n = 30; r = 2; 
the matrix D = 312, where 12 is the 2 x 2 identity 
matrix; aoo = a22 = .607927; ao0 = -.473999; a1l = 
.977503; and es. = -1.305. Then for all three billets, 
B30(Y = .95, p = .1) - 4.374 from (1.21); so Y1(N) = 
6.38232 with approximate 95% tolerance bound 
Y1(N) - B3o0 6//30 = 6.29271, Y1(A) = 6.41967 with 
95% tolerance bound 6.33006, and Y1(B) = 6.49552 
with 95% tolerance bound 6.40591. 

When Model B is assumed and i2(K) and v(K) are 
calculated for varying values of K, we find K = 1 is 

Table 10. Failure Strength of Si3 N4 Specimens 

Billet 

N A 

640 522 658 
660 629 676 
670 632 696 
681 712 696 
696 730 721 
707 748 735 
737 759 761 
741 768 828 
766 781 875 
771 826 917 

close to a local maximum of the likelihood equation, 
although the value of K yielding the global maximum 
appears to be quite large. Assuming K = 1, we find 
f2 = 6.57244, 6 = .13373, and Y1 = 6.39792. The ap- 
proximate values of B30(y = .95, p = .1) are 3.971 
[from (1.21)], 3.943 [from (3.1)], or 4.008 (from Bain 
1978); these yield 95% tolerance bounds for y . of 
6.30096 [from (1.21)], 6.30165 [from (3.1)], or 6.30006 
(from Bain 1978). 

Assuming Model B with K = oo, we find i = y = 
6.57994, a = /(n - 1)/ns = .10768, and Y, = 
6.44189. Now B30(y = .95, p = .1) - 2.793, yielding an 
approximate 95% tolerance bound for Y. of 6.38698. 

If Model B is assumed, probability plots suggest the 
log-normal model (K = oo) is more appropriate here. 
The Weibull estimates of location and scale are 
strongly influenced by the highest order statistics, and 
they give conservative estimates of the lower percen- 
tiles. 

Assume Model B with K = 1, and trim the six 
highest order statistics. Then, in the setup of Section 2, 
we have q1 = .0 and q2 = .2. We find i2 = 6.57043, 
( = .09210, and Y1 = 6.45024. Then B30(7 = .95, p = 
1) _ 4.545, yielding an approximate 95% tolerance 
bound for y., of 6.37382. These values agree more 
closely with those given by Model B with K = oo than 
by Model A with K = 1. 

A note is in order on the comparative merits of the 
different models considered. Often the estimate of in- 
terest in this situation is the estimate of the tolerance 
bound for an overall percentile of the data. In this case 
Model B would be more appropriate. However, com- 
parative box plots of the billets suggest that Model A 
may more accurately represent the random variation 
of the data. This is reinforced by calculating the likeli- 
hood ratio for Model A, K = 1, and Model B, K = 1, 
which has a value of 3.45193. 

Comparison of estimates of tolerance bounds for 
various values of K (while tabulating the likelihood of 
the sample for these different values of K) provides an 
approach to robustness (see Fraser 1976). See Prentice 
(1974) for another approach. 
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