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K-Sample Anderson-Darling Tests 

F. W. SCHOLZ and M. A. STEPHENS* 

Two k-sample versions of an Anderson-Darling rank statistic are pro- 
posed for testing the homogeneity of samples. Their asymptotic null 
distributions are derived for the continuous as well as the discrete case. 
In the continuous case the asymptotic distributions coincide with the (k 
- 1)-fold convolution of the asymptotic distribution for the Anderson- 
Darling one-sample statistic. The quality of this large sample approxi- 
mation is investigated for small samples through Monte Carlo simulation. 
This is done for both versions of the statistic under various degrees of 
data rounding and sample size imbalances. Tables for carrying out these 
tests are provided, and their usage in combining independent one- or k- 
sample Anderson-Darling tests is pointed out. 

The test statistics are essentially based on a doubly weighted sum of 
integrated squared differences between the empirical distribution func- 
tions of the individual samples and that of the pooled sample. One 
weighting adjusts for the possibly different sample sizes, and the other 
is inside the integration placing more weight on tail differences of the 
compared distributions. The two versions differ mainly in the definition 
of the empirical distribution function. These tests are consistent against 
all alternatives. The use of these tests is two-fold: (a) in a one-way analysis 
of variance to establish differences in the sampled populations without 
making any restrictive parametric assumptions or (b) to justify the pool- 
ing of separate samples for increased sample size and power in further 
ahalyses. Exact finite sample mean and variance formulas for one of the 
two statistics are derived in the continuous case. It appears that the 
asymptotic standardized percentiles serve well as approximate critical 
points of the appropriately standardized statistics for individual sample 
sizes as low as 5. The application of the tests is illustrated with an ex- 
ample. Because of the convolution nature of the asymptotic distribution, 
a further use of these critical points is possible in combining independent 
Anderson-Darling tests by simply adding their test statistics. 

KEY WORDS: Combining tests; Convolution; Consistency; Empirical 
processes; Pearson curves; Simulation. 

1. INTRODUCTION AND SUMMARY 

Anderson and Darling (1952, 1954) introduced the 
goodness-of-fit statistic 

to test the hypothesis that a random sample XI, . . . ,Xm, 
with empirical distribution Fm(x), comes from a continuous 
population with completely specified distribution function 
Fo(x). Here Fm(x) is defined as the proportion of the sam- 
ple XI,  . . . , Xm that is not greater than x. The corre- 
sponding two-sample version 

* F. W. Scholz is Statistician, Boeing Computer Services, MS 7L-22, 
Seattle, WA 98124-0346, and Affiliate Associate Professor, Department 
of Statistics, University of Washington, Seattle, WA 98105. M. A. Ste- 
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was proposed by Darling (1957) and studied in detail by 
Pettitt (1976). Here G,(x) is the empirical distribution 
function of the second (independent) sample Y, , . . . ,Y, 
obtained from a continuous population with distribution 
function G(x), and HN(x) = {mFm(x)+ nG,(x))lN, with 
N = m + n, is the empirical distribution function of the 
pooled sample. The above integrand is appropriately de- 
fined to be zero whenever HN(x) = 1. In the two-sample 
case A&, is used to test the hypothesis that F = G without 
specifying the common continuous distribution function. 

The k-sample Anderson-Darling test is a rank test and 
thus makes no restrictive parametric model assumptions. 
The need for a k-sample version is twofold. It can either 
be used to establish differences in several sampled pop- 
ulations with particular sensitivity toward the tails of the 
pooled sample or it may be used to judge whether several 
samples are sufficiently similar so that they may be pooled 
for further analysis. For example, one may be interested 
in testing whether several batches of data come from a 
common normal population. This could be done by testing 
first for the homogeneity of the batches using the Ander- 
son-Darling k-sample test, and, in the case of acceptance, 
the order statistics of the pooled batches may then be used 
in a test of normality. Rejection at either stage more clearly 
pinpoints the reason for rejecting the hypothesis of a com- 
mon normal distribution. The combination of the Type I 
error probabilities of such a two-stage procedure is facil- 
itated by the fact that the Anderson-Darling rank test is 
statistically independent of the pooled order statistics on 
which the second test might be based, provided that the 
hypothesis accepted by the first test is correct. This in- 
dependence follows through Basu's theorem (Lehmann 
1983, p. 46) from the ancillarity of the ranks and the suf- 
ficiency and completeness of the order statistics when all 
observations come from a common (continuous) distri- 
bution (Bell, Blackwell, and Breiman 1960). 

Similarly, other k-sample rank tests could satisfy the 
aforementioned needs. Popular tests are the Kruskal-Wal- 
lis and the Brown-Mood median tests. Of more theoretical 
interest is the normal scores k-sample test. For a descrip- 
tion of these tests and further references we refer to Con- 
over (1980), Hhjek and Sidak (1967), Hollander and Wolfe 
(1973), and Lehmann (1975). The disadvantage of the 
aforementioned rank tests is that they are only consistent 
against a rather restricted set of alternatives and would 
thus be quite ineffective in certain situations, especially 
when the alternative is largely characterized by changes 
in scale. 

Rank tests that do not share this weakness are typically 
based on some distance measure applied to the empirical 
distribution functions of the respective samples. Kiefer 
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(1959) investigated several k-sample extensions of the Kol- 
mogorov-Smirnov and Cramer-von Mises tests and pro- 
vided tables for their asymptotic distributions, but the use- 
fulness of these tables for small samples has not been 
investigated. Other such distance tests with tables for small 
samples are described in Conover (1980). These tables are 
applicable, however, only for samples of equal size. Since 
the asymptotic behavior of the Anderson-Darling tests 
manifests itself rather rapidly in the one- and two-sample 
case (Pettitt 1976; Stephens 1974) it is worthwhile to in- 
vestigate its k-sample version. 

In Section 2 a k-sample version of the Anderson-Dar- 
ling test is proposed for the continuous case and a com- 
putational formula is given. In Section 3 the finite sample 
distribution of this statistic is discussed, and exact formulas 
for its mean and variance are given. The asymptotic null 
distribution of this statistic is described in Section 4, and 
tables of approximate percentiles are provided. Some re- 
marks are made about the power of the test. In Section 5 
we discuss the case of discrete parent populations; we give 
a computational formula for the proposed statistic as well 
as an alternate version of the k-sample Anderson-Darling 
statistic, which treats ties in a different manner. Monte 
Carlo simulation results are given in Section 6, to examine 
the adequacy of the approximate asymptotic percentiles 
for the continuous and discrete case. An example is dis- 
cussed in Section 7. The tables can be used also for com- 
bining independent one- and k-sample Anderson-Darling 
tests; this is discussed in Section 8. The technical details 
of the asymptotic derivations are given in the Appendix. 

2. 	 THE k-SAMPLE ANDERSON-DARLING TEST: 
CONTl N UOUS POPULATIONS 

It is not immediately obvious how to extend the two- 
sample test to the k-sample situation. There are several 
reasonable possibilities, but not all are mathematically 
tractable as far as asymptotic theory is concerned. Kiefer's 
(1959) treatment of the k-sample analog of the Cramer- 
von Mises test shows the appropriate path. To set the stage 
the following notation is introduced. Let Xij be the jth 

n, .  i = 1 , . .  . ,observation in the ith sample ( j  = 1, . . . , ,, 
k). All observations are independent. Suppose that the 
ith sample has continuous distribution function Fi. We wish 
to test the hypothesis 

without specifying the common distribution F. Denote the 
empirical distribution function of the ith sample by Fini(x) 
and that of the pooled sample of all N = n1 + ... + nk 
observations by HN(x). The k-sample Anderson-Darling 
test statistic is then defined as 

where BN = {XE R:  HN(x) < 1). For k = 2 (2) reduces 
to (1). Under the continuity assumption on the Fi the 
probability of ties is zero. Hence the pooled ordered sam- 
ple is Z1 < < ZN, and a straightforward evaluation of 

(2) yields the following computational formula for AiN: 

where Mij is the number of observations in the ith sample 
that are not greater than Zj. For the appropriate formula 
in the presence of ties see Section 5. 

3. THE FINITE SAMPLE DISTRIBUTION UNDER Ho 

Under Ho and assuming continuity of the common dis- 
tribution F the expected value of A$, is k - 1. This can 
be seen by conditioning on the order statistics Z1, . . . , 
ZN when taking the expectation of (2). This conditioning 
reduces the calculation to the evaluation and manipulation 
of simple hypergeometric moments. 

Higher moments of AiN are very difficult to compute. 
Pettitt (1976) gave an approximate variance formula for 
AZN as var(AiN) = a2(1 - 3.1/N), where a2 = 2(n2 -
9)/3. This approximation does not account for any de- 
pendence on the individual sample sizes. 

The same conditioning method, used for the first mo- 
ment, also yields the second moment and hence the vari- 
ance of A:,. The calculations are very tedious and ben- 
efited greatly from the use of MACSYMA (1984). The 
variance formula of A:, is given for the continuous case 
as 

with 

where 

and 

Note that 

71

d x d y  = - as N + m

6 

and thus var(A2,) + (k - l )a2  as min(nl, . . . ,nk) + 

w. The effect of the individual sample sizes is reflected 
through H and is not negligible to order 1/N. 

From the definition of the Mij in formula (3) it is clear 
that the statistic AiN depends on the sample values only 
through their ranks and the test based on it is thus a rank 
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test. In principle, it is possible to derive the null distri- 
bution (under Ho) of (3) by recording the distribution of 
(3) as one traverses through all rank permutations. For 
small sample sizes it may be feasible to derive this distri- 
bution and tables could be constructed. The computational 
and tabulation effort, however, quickly grows prohibitive 
as k and N get larger. If k = 4 and nl = = n4 = 8, 
as in the example of Section 7, it would be necessary to 
evaluate (3) for about 9.9 1016 different permutations. 

A more pragmatic approach would be to record the 
relative frequency I j  with which the observed value a2 of 
(3) is matched or exceeded when computing (3) for a large 
number M of random rank permutations. This was done, 
for example, to get the distribution of the two-sample 
Watson statistic UZ,, in Watson (1962). This method is 
applicable equally well in small and large samples. 0 is an 
unbiased estimator of the true P value of a2, and the vari- 
ance of I j  can be controlled by the choice of M. 

4. 	 ASYMPTOTIC DISTRIBUTION UNDER H, AND 
CRITICAL POINTS 

In the Appendix it is shown that the limiting distribution 
of AiN under Ho is the (k - 1)-fold convolution of the 
asymptotic distribution for the one-sample Anderson- 
Darling statistic. In particular, assuming a common con- 
tinuous distribution, it follows that AiN converges in dis- 
tribution to 

where Yj are independent chi-squared random variables 
with (k - 1) df. Since the cumulants and first four mo- 
ments of (5) are easily calculated, approximate percentiles 
of the random variable were obtained by fitting Pear- 
son curves as in Stephens (1976) and Solomon and Ste- 
phens (1978). 

For the one- and two-sample Anderson-Darling test 
statistics the use of the asymptotic percentiles as critical 
values works very well even in small samples (Pettitt 1976; 
Stephens 1974). This suggests the use of asymptotic per- 
centiles here as well. These will be standardized to make 
the test. Table 1contains the upper tail percentage points 

Following Pettitt (1976) the test statistic AiN will be stan- 
dardized using its exact finite sample mean and standard 
deviation. The hope that this latter form of standardization 
removes some of the dependence of the test on the sample 

Table 1. Upper a Percentiles t,,,(a) of the T, Distribution 
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Table 2. Interpolation Coefficients 

size was confirmed through the Monte Carlo study de- 
scribed in Section 6. 

The test procedure is then as follows. 

1. Calculate A$, from (3) and oN from (4). 
2. Calculate 

AiN - (k - 1)
TkN = 

ON 

3. Refer TkN to the upper tail percentage points, tk-,(a), 
given in Table 1; reject Ho at significance level a if 
TkN exceeds the given point tk- l(a). 

This use of asymptotic percentage points works very well 
in the case k - 1 = 1and can be expected to improve as 
k increases. 

For values of m = k - 1not covered by Table 1 the 
following interpolation formula should give satisfactory 
percentiles. It reproduces the entries in Table 1to within 
half a percent of relative error. The general form of the 
interpolation formula is 

where the coefficients for each a may be found in Table 
2. Similarly, one could interpolate and even extrapolate 
in Table 1with respect to a to establish an approximate 
P value for the observed Anderson-Darling statistic; see 
Section 7 for an example. 

The power behavior of this test has not been studied 
except to show (see the Appendix) that AiN is consistent 
against all alternatives. Being consistent against omnibus 
alternatives naturally entails some loss of power against 
specific alternatives. For some indication of what might 
be expected in the k-sample case we refer to Pettitt's (1976) 
limited power study of the two-sample Anderson-Darling 
test. There the power of A:, was compared with that of 
several other two-sample competitors in a situation where 
both populations were normal but differed in location and 
scale. For this situation A:, clearly dominated the two- 
sample Cramer-von Mises Win, but no clear dominance 
emerged in relation to any of the other tests. Of the com- 
petitors studied by Pettitt, only Watson's U2,, and Cramer- 
von Mises's W;, are consistent against omnibus alterna- 
tives, and a k-sample version of Watson's UZ,, is not avail- 
able at present. 

5. DISCRETE PARENT POPULATION 

So far it has been assumed that the sampled parent 
distributions Fi are continuous. If continuous data are 
grouped, or if the parent populations are discrete, tied 
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observations can occur. To give the computational formula 
in the case of tied observations we introduce the following 
notation. Let ZT < < 22 denote the L (>I)  distinct 
ordered observations in the pooled sample. Further, let 
fij be the number of observations in the ith sample coin- 
ciding with Z: and let 1, = 2,k=,fij denote the multiplicity 
of ZT. Using (2) as the definition of A:, the computing 
formula in the case of ties becomes 

k L-1  1, (NMij - niB,)2 
A'N = 

i=1  
-ni j=1 

B,(N - B,) ' (6) 

where Mi, = fil + ... + fii and Bj = ll + ... + 1,. 
Under H ~ ,  without assuming continuity of the common 

F, the expected value of A:, is 

E(A'~) = (k -
N 

[l - [{y(U)'N-l du] ' 

where ~ ( u )  - F{F-'(u)} with y(u) and 'du) - iff
Fis continuous. In the continuous case this expected value 

reduces to - In as -t m' the expected
'Onverges (k - l)P(y(U) < '1, where '- '(O, 

is uniform' The for the expectation is 
given for theoretical interest only and not for use in the 
standardization of the test statistic. 

An way of with ties is to change the 
definition of the empirical distribution function to the av- 
erage of the left and right limit of the ordinary empirical 
distribution function, that is, 

Faini(x) = b{Fini(x) + Fini(x-1) 
and, similarly, HaN(x). Using these modified distribution 
functions we modify (2) slightly to 

A i k ~  

k 

2 ni{Fain,(x) - HaN(~))2N - 1  r :-,
I = I-

- ' - Ha~(x)'-{H~(x)- H~(x-)'14 

from the value k - 1as it is used in the standardization 
later. 

The test based on AikN is carried out by rejecting HO at 
significance level a whenever 

T a k ~' - (k - I)  2 tk-l(a). 
ON 

Note that a, represents the exact standard deviation of 
A:, and not of A:,,. Simulation results suggest that this 
procedure is reasonable. 

A variance formula was derived only for A;, and that 
only for the continuous case [Eq. (4)]. The corresponding 
calculation for AikN has not been attempted. Simulations 
show, however, that the variances of A$, and AzkN are 
very close to each other in the continuous case. Here close- 
ness is judged by the discrepancy between the simulated 
variance of A:, and that obtained by (4). 

The asymptotic distribution of A:, is derived in the Ap- 
pendix for the general case without assump-
tions The corresponding limiting distribution of A:k, is 
also given there, without derivation. It is again a (k - 1)-
fold convolution. In both cases the limiting distribution 
depends on Fthrough y. This dependence on Fdisappears 
and the two limiting distributions coincide when is con-
tinuous. Thus the limiting distribution in the continuous 

can be considered an approximation to the limiting 
diStnbutions of A:, and ,under rounding of data pro-
vided that the rounding is not too severe. Analytically it 
appears difficult to decide which of the two discrete case 
li;l;iting distributions is better approximated by the con- 
tinuous case. Only a simulation may provide some an- 
swers. 

6. MONTE CARL0 SIMULATION 

To see how well the percentiles given in Table 1perform 
in small samples a number of Monte Carlo simulations 
were performed. For the continuous case samples were 
generated from a Weibull distribution, with scale param- -

x d H ~ ( x ) ,  eter a = 1and shape b = 3.6, toeapproximate a normal 

for (nondegenerate) samples whose observations do not 
all coincide. Otherwise let A:,, = 0. The denominator of 
the integrand of A:kN is chosen to simplify the mean of 
A$,. For nondegenerate samples the computational for- 
mula for AikN becomes 

where Ma,, = fil + + fij-, + fij/2 and Baj = ll + ... 
+ lj-, + lj/2. This formula applies for a continuous pop- 
ulation also, then all 1, = 1. 

The expected value of under Ho is 

which is k - 1 for continuous F and otherwise rapidly 
becomes k - 1in the nondegenerate case as N - t  m. Again 
this expected value is given for theoretical interest. Here, 
however, it turns out that its value does not differ much 

distribution reasonably well. The underlying uniform ran- 
dom numbers were generated using Schrage's (1979) por- 
table random number generator. Selected typical simula- 
tion results taken from a more extensive simulation study 
are summarized in Table 3. For each of these simulations 
5,000 pooled samples were generated. Each pooled sample 
was then broken >own into the indicated number of sub- 
samples with the given sample sizes. The observed prob- 
abilities of Type I error are recorded in columns 2 and 3 
for the two versions of the statistic, given by (2) and (7) 
for continuous populations. Next, to examine discrete pop- 
ulations, for each pooled sample created previously the 
scale parameter was changed to a = 150, a = 100, and a 
= 30 and the sample values were rounded to the nearest 
integer. The observed Type I error probabilities are given 
in columns (4, 5), (6, 7), and (8, 9), respectively. On top 
of these columns the degree of rounding is expressed in 
terms of the average proportion of distinct observations 
in the pooled sample. 
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Table 3. Observed Significance Levels of A&, and A:,, 
- --- - -- 

Nominal significance 
level a A2 4 A2 A: A2 A: A2 A: 

Sample sizes: 5, 5, 5 

Average proportion of distinct observations 

.9555 ,9346 
.2656 ,271 4 .2614 .2702 
,0998 .lo62 ,0994 .1 046 
.0488 ,0526 .0486 .0532 
,0230 ,0256 ,0224 ,0262 
.0058 ,0086 .0062 .0084 

Sample sizes: 5, 10, 15, 20, 25 

Average proportion of distinct observations 
.7938 ,7152 

.2538 ,2582 .2528 .2572 

.I020 .lo44 .1 024 .I056 

.0496 ,051 6 .0496 .0526 
,0222 ,0248 ,0234 ,0252 
.Oil4 -01 14 ,0114 ,0118 

Sample sizes: 5, 5, 5, 5, 25 

Average proportion of distinct observations 
.a688 .a124 

.2496 ,2550 ,2464 ,2554 

.0980 .lo22 .0966 ,1024 
,0468 ,0506 ,0462 ,0502 
.0198 .0224 .0208 ,0232 
,0072 ,0094 ,0070 .0094 

NOTE: The number of replications is 5,000. 

It appears that the proposed tests maintain their levels sample test to this set of data yields A;, = 8.3559 and 
quite well even for samples as small as ni = 5. For small AikN= 8.3926. Together with a, = 1.2038 this yields 
sample sizes the observed levels tend to be slightly con- standardized T values of 4.449 and 4.480, respectively, 
servative, that is, smaller than nominal, for extreme tail which are outside the range of Table 1. Plotting the log- 
probabilities. Another simulation implementing the tests odds of a versus t3(a), a strong linear pattern indicates 
without the finite sample variance adjustment did not per- that simple linear extrapolation should give good approx- 
form quite as well, although the results were good once imate P values. They are .0023 and .0022, respectively, 
the individual sample sizes reached 30. It is not clear whe- somewhat smaller than the aforementioned .005 of the 
ther AikN has any clear advantage over A;, as far as data Kruskal-Wallis test. 
rounding is concerned. At level .O1 AikN seems to perform As a check, the simulation-based evaluation of the P 
better than A;,, although that is somewhat offset at values, described at the end of Section 3, yielded estimated 
level .25. P values of .00150 and .00155 for A;, and AikN, respec- 

tively. This simulation was based on 20,000 random per- 
7. AN EXAMPLE mutations. The same kind of simulation yielded estimated 

As an example consider the paper smoothness data used P values of .00185 and .00165 for the Kruskal-Wallis and 
by Lehmann (1975, p. 209, example 3; reproduced in Table the permutation version of the analysis of variance F test, 
4) as an illustration of the Kruskal-Wallis test adjusted for respectively. The simulation-based P values agree fairly 
ties. By use of this test the four sets of eight laboratory well for these three types of test, and it appears that for 
measurements show significant differences with P value = the Kruskal-Wallis test the P value of .005, which was 
.005. 	 obtained by the chi-squared approximation, is not too ac- 

Applying the two versions of the Anderson-Darling k- 	 curate in this case. To confirm this, the simulation for the 
Kruskal-Wallis test P value was repeated with lo6random 
permutations, resulting in an estimated Pvalue of ,002092. 

Table 4. Four Sets of Eight Measurements Each of the Smoothness 
of a Certain Type of Paper, Obtained in Four Laboratories 8. COMBINING INDEPENDENT 

ANDERSON-DARLI NG TESTSLaboratory 	 Smoothness 

Due to the convolution nature of the asymptotic distri- 
bution of the k-sample Anderson-Darling rank tests the 
following additional use of Table 1 is possible. If m in-
dependent one-sample Anderson-Darling tests of fit (Sec. 



923 Scholz and Stephens: K-Sample Andersor+Darling Tests 

1) are performed for various hypotheses, then the joint 
statement, that all of these hypotheses are true together, 
may be tested by using the sum S of the m one-sample 
test statistics as the new test statistic and by 
the appropriately standardized Swith the row correspond- 

ing to m in Table 1.To standardize S note that the variance 
of a one-sample Anderson-Darling test based on niob-

servations can either be computed directly o r  can be de- 
duced from the variance formula (4) for k = 2 by letting 
the other sample size go to infinity as 

It  seems quite natural to combine independent Anderson- 
Darling tests in this fashion, but it is not clear whether 
this procedure is optimal in any sense. It  should be noted 
that these one-sample tests can only be combined this way 
if no  unknown parameters are estimated. In that case dif- 
ferent tables would be required. This problem is discussed 
further in Stephens (1986), where tables are given for com- 
bining tests of normality or of exponentiality with param- 
eters estimated. 

Similarly, independent k-sample Anderson-Darling tests 
can be combined. Here  the value of k may change from 
one group of samples to  the next, and the common dis- 
tribution function may also be different from group to 
group. The objective in combining one-sample Anderson- 
Darling tests is typically not that of pooling data. In  the 
case of combining m independent k-sample Anderson- 
Darling tests, however, one would naturally make a joint 
statement about the pooling of m groups of data sets into 
m separately pooled samples. 

APPENDIX: ASYMPTOTIC DERIVATIONS 

Asymptotic Distribution of AiNUnder H, 
The asymptotic distribution of (6) will be derived without any 

continuity assumptions on F. The asymptotic distribution of (3) 
for continuous F represents a special case. The result in the case 
of (7) will only be stated, with the proof following similar lines. 
In deriving the asymptotic distribution of (6) we combine the 
techniques of Kiefer (1959) and Pettitt (1976), with a slight short- 
ening in the argument of the latter, and track the effect of a 
possibly discontinuous F. 

Using the special construction of Pyke and Shorack (1968) (see 
also Shorack and Wellner 1986), we can assume that on a com- 
mon probability space a there exist for each N, and correspond- 
ing n,, . . . ,nk, independent uniform samples UisN - U(0, 1) (S 

= 1, . . . , n,; i = 1, . . . , k) and independent Brownian 
bridges U1, . . . , Uk such that 

I I u i N  - UilI sup luiN(t) - ui(t)l 0 
r€[O,lI  

for every w E a as ni +m. Here 

1 "' 

called HN(x) and that of the pooled uniform sample of the UisN 
is called KN(t), so H,v(x) = KN{F(x)}. This double use of H,v as 
empirical distribution of the XisN and of the Xi, should cause no 
confusion as long as only distributional conclusions concerning 
(6) are drawn. 

Following Kiefer (1959), let C = (c,) denote a k x k or- 
thonormal matrix with c,, = (n,lN)"2 ( j  = 1, . . . , k). If U = 
(U,, . . . , U,)', then the components of V = (V,, . . . , V,)' = 
CU are again independent Brownian bridges. Further, if uN = 

(ulN,. . . , UkN)' and VN = (VIN,. . . , VkN)' = CUN, then (IViN 
- VJI-, Ofor all w E a (i = 1 , .  . . , k) and 

for all x E R. 
This suggests that AiN, which is equal in distribution to 

converges in distribution to 

as q = min(nl, . . . ,nk)+m. Here AN = {u E 10, 11: KN(y(u)) 
< I}, A = {u E 10, 11: y(u) < I}, and y(u) = F{F-'(u)}. 

The argument for this convergence can be made rigorous by 
splitting the integral into a central portion and the remainder. 
The convergence of the central portion follows from theorem 5.2 
of Billingsley (1968) and the remainder is shown to be negligible 
by a combination of Markov's inequality [not Chebychev's as in 
Pettitt (1976)l and theorem 4.2 of Billingsley (1968). 

Similarly, one can show that under H, the modified version 
converges in distribution to 

k - 2 [Vi{v/(u)I + ~ i { y-(u))l2 
r=2 

4B(u){l - Y(U)}- {y(u) - y-(u)} du, 

where I,-(u) = F{F-'(u)-} andV(u) = {y(u) + y-(u)}/2 and 
V2, . . . , Vk are the same independent Brownian bridges as 
before. 

When F is continuous the distributions of A:-, and A:(,-,, 
coincide (Shorack and Wellner 1986, p. 225) with that of 

1 " 1 
Y,,  

where the Q,  are independent standard normal random variables 
uiN(t)= n!'2{GiN(t)- t} with GiN(t) = - 2 ILL~,~=Iand the Yjare independent chi-squared random variables with 

ni S = I  k - 1df. 
is the empirical process corresponding to the ith uniform sample. 
Let Xis, = F-'(UZsN) and Consistency of AfN 

1 "' To show consistency of the test based on A$,, it is sufficient 
UiN{F(x)}= ni"'{EN(x) - F(x)} with FiN(x) = -2 I [ x , ~ ~ ~ Ito show that A:, -,m (a.s.) as min(nl, . . . , n,) +m. Since

ni ,=I  

so that FiN(x) and Fini(x) have the same distribution. The em- 
pirical distribution function of the pooled sample of the Xi,, is 
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the  consistency of the  Cramer-von Mises statistic KNimplies 
that of AiN. 

Assuming that nilN-+ A i  > 0 (i = 1, . . . , k )  as  N -+ co and 
setting 

Ir 

it follows from the Glivenko-Cantelli theorem that 

and by the  law of large numbers that 

Combining these two limits we have 

and positivity of the discrepancy measure D entails consistency 
of W Nand A:,. This shows the consistency against all alterna- 
tives t o  H, provided that li> 0 (i = 1, . . . , k ) .  

[Received June 1986. Revised February 1987.1 
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