
Stat 425 HW6 Solution
Fritz Scholz

1. Write a function

Estimate.compare = function(m = 10,n = 10,Nsim = 1000,Delta = 2,

dist = rnorm,parm = c(0,1)){...}

that generates independent samples X, . . . ,Xm ∼ F(x) and Y1, . . . ,Yn ∼ F(x− ∆) and computes the
estimates ∆̄ = Ȳ − X̄ and ∆̂ = medi, j(Yj−Xi) and repeats this process Nsim times and collects the
estimates in vectors Delta.bar and Delta.hat, respectively. Here the input argument dist indicates
which F is to be used. This builds on what you learned from the previous assignment. Inside the
function body of Estimate.compare you may want to use the function Using.dist given in the
solution to HW5. Of course, you have to make sure that Using.dist exists inside your R work
space.

The output of Estimate.compare should be the mean, median and variance of the two generated
vectors of length Nsim, i.e., the estimated mean, median and variance of the respective estimator
distributions. We know that the variance of the ∆̄ sampling distribution is

var(∆̄) = var(Ȳ − X̄) = var(Ȳ )+var(X̄) =
σ2

n
+

σ2

m
= σ

2 m+n
mn

where σ2 is the variance of F(x) and thus also of F(x−∆). We see that 1/var(∆̄) is proportional to
mn/(m+n). Illustrate this fact by writing a function

recip.var.plot = function(Nsim = 1000,mvec = c(5,10,20,30,50,100),
nvec = c(5,10,20,30,50,100),dist = rnorm,

parm = c(0,1),dist.name = ”normal”){. . .}

that calls Estimate.compare for several different m,n, i.e., m = mvec[i] and n = nvec[i],i = 1,2, ...,
and which plots the reciprocal of the estimated variances, i.e., the estimated values of 1/var(∆̄),
against the respective values of mn/(m + n). The point pattern should look roughly linear. Fit a
line through this point pattern such that it goes through the origin (i.e., with intercept zero) using
out.ls1=lsfit(...,intercept=F). The component out.ls1$coef will give you the slope of that
line. Does the slope of this linear pattern make sense? Once you have accomplished this, add the
corresponding points for the estimates of 1/var(∆̂) in relation to mn/(m + n) and fit a similar line to
them. Does this suggest that var(∆̂) is proportional to (m+n)/mn? Make sure that all 12 points show
in the plot. Annotate your plot such that the sampled distribution is shown (that’s is where you use the
argument value for dist.name). In the annotation also show the ratio of slopes (slope of the 1/var(∆̂)
pattern over the slope of the 1/var(∆̄) pattern) and also show those slopes separately. Further, add a
legend explaining which points/lines belong to which type of estimate. Using an appropriate choice
for M you may want to experiment with:



text(0,.9*M,substitute("slope for "˜1/var(hat(Delta))==xx,
list(xx=format(signif(out.ls2$coef,3)))),adj=0)

text(0,.85*M,substitute("slope for "˜1/var(bar(Delta))==xx,
list(xx=format(signif(out.ls1$coef,3)))),adj=0)

legend(0,.8*M,c(expression(1/var(bar(Delta))),
expression(1/var(hat(Delta)))),lty=1:2,
col=c("black","blue"),pch=c(1,16),bty="n")

We have shown above why to expect proportionality with respect to mn/(m + n) in the case of
1/var(∆̄) and based on the simulation evidence we will accept the same type of proportionality for
1/var(∆̂).
If you were to match var(∆̂m.n) = var(∆̄m′,n′) by proper choice of sample sizes m = n and m′ = n′ =
ρ×m, what concept would ρ resonate with and how does it relate to the ratio of slopes that annotates
your plot. We have seen two instances of this concept already.
By changing dist, parm, dist.name make such plots for dist = rnorm, dist = runif, dist =
rlogis, and dist = rexp.

What is expected:

1. The code for Estimate.compare.

2. The code for recip.var.plot.

3. The 4 plots produced by recip.var.plot for the 4 indicated distributions.

4. Discussion of the resonance of ρ and its relation to the slope ratio.

5. Does the slope for 1/var(∆̄) in the normal distribution plot make sense? Explain. Try to extend
that insight to the other distributions. Take as given: The variance of the logistic distribution
with location 0 and scale 1 is π2/3, the variance of the U(0,1) distribution is 1/12, and the
variance of the exponential distribution with mean 1 is 1.

1. The code for Estimate.compare

Estimate.compare = function (m = 10, n = 10,
Nsim = 100, Delta = 2, dist = rnorm,parm=c(0,1)){

Delta.bar=rep(0,Nsim); Delta.hat=rep(0,Nsim)
for(i in 1:Nsim){
y=Using.dist(N=n,dist=dist,parm=parm)+Delta
x=Using.dist(N=m,dist=dist,parm=parm)
Delta.bar[i]=mean(y)-mean(x)
Delta.hat[i]=median(outer(y,x,"-"))

}



mean.hat=mean(Delta.hat)
med.hat=median(Delta.hat)
var.hat=var(Delta.hat)
mean.bar=mean(Delta.bar)
med.bar=median(Delta.bar)
var.bar=var(Delta.bar)
out=c(mean.hat,med.hat,var.hat,mean.bar,med.bar,var.bar)
names(out)=c("mean.hat","med.hat","var.hat",

"mean.bar","med.bar","var.bar")
out}

2. The code for recip.var.plot

recip.var.plot=function(Nsim=1000,mvec=c(5,10,20,30,50,100),
nvec=c(5,10,20,30,50,100),dist=rnorm,
parm=c(0,1),dist.name="normal"){

k=length(mvec)
var.bar=rep(0,k)
var.hat=rep(0,k)
for(i in 1:k){
out=Estimate.compare(m=mvec[i],n=nvec[i],Nsim=Nsim,

Delta=2,dist=dist,parm=parm)
var.bar[i]=out[6]
var.hat[i]=out[3]
}
M=max(c(1/var.bar,1/var.hat))
plot(mvec*nvec/(mvec+nvec),1/var.bar,ylim=c(0,M),
xlim=c(0,max(mvec*nvec/(mvec+nvec))),xlab=expression(over(m * n,m+n)),

ylab="1/var(estimate)")
out.ls1=lsfit(mvec*nvec/(mvec+nvec),1/var.bar,intercept=F)
abline(0,out.ls1$coef)
points(mvec*nvec/(mvec+nvec),1/var.hat,pch=16,col="blue")
out.ls2=lsfit(mvec*nvec/(mvec+nvec),1/var.hat,intercept=F)
abline(0,out.ls2$coef,lty=2,col="blue")
text(0,M,paste(dist.name," distribution"),adj=0)
var.ratio=out.ls2$coef/out.ls1$coef
text(0,.95*M,paste("ratio of slopes =",
format(signif(var.ratio,3))),adj=0)
text(0,.9*M,substitute("slope for "˜1/var(hat(Delta))==xx,

list(xx=format(signif(out.ls2$coef,3)))),adj=0)
text(0,.85*M,substitute("slope for "˜1/var(bar(Delta))==xx,

list(xx=format(signif(out.ls1$coef,3)))),adj=0)
legend(0,.75*M,c(expression(1/var(bar(Delta))),



expression(1/var(hat(Delta)))),lty=1:2,
col=c("black","blue"),pch=c(1,16),bty="n")}

3. The 4 plots:
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normal  distribution
ratio of slopes = 0.935

slope for   1 var((∆∆̂)) == 0.975
slope for   1 var((∆∆)) == 1.04
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ratio of slopes = 1.08

slope for   1 var((∆∆̂)) == 0.304
slope for   1 var((∆∆)) == 0.281
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ratio of slopes = 2.48

slope for   1 var((∆∆̂)) == 2.44
slope for   1 var((∆∆)) == 0.987
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uniform  distribution
ratio of slopes = 0.926

slope for   1 var((∆∆̂)) == 11
slope for   1 var((∆∆)) == 11.9
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4. Discussion of resonance. Matching variances of the two estimators with different sample sizes
m = n and m′ = n′ = ρm has very much the flavor of efficiency where we matched the powers for the
Wilcoxon test with that of the t-test, or we matched the dispersion probabilities of the corresponding
estimators ∆̂ and ∆̄ by appropriate choice of sample sizes.
This suggests that we take m′/m = ρ as a measure of efficiency of ∆̂ relative to ∆̄ with respect to
estimator variances. If ρ = .5 then ∆̄ would require only half as many observations as ∆̂ would require
to have the same variance.



Assuming the following proportionalities

1
var(∆̄)

= b× m′n′

m′+n′
= b× m′

2
= b× ρm

2

1
var(∆̂)

= a× mn
m+n

= a× m
2

and having chosen m′ and m such that the variances are matched we would get

a× m
2

= b× m′

2
or

m′

m
= ρ =

a
b

the ratio of the calculated slopes. The ratios in the plots are approximately the same as the efficiencies
given in the corresponding comparison of the Wilcoxon test relative to the t-test. The only exception
is in the case of the exponential distribution where we had an ARE of 3 and the ratio in the plot only
gives 2.48. It may be that the large sample behavior takes some time in that case. While the linear
pattern is quite strong for 1/var(∆̄) (as it should be by theory, previously explained) the pattern for
1/var(∆̂) shows strong initial curvature which may starighten out only for large m = n.


