Stat 425 HWS5 Solutions

Fritz Scholz

1. Anatomy of an R function. Execute the following function with the given default arguments.

Using.get=function (N=5,dist="norm") {
set.seed (26)
x=get (paste ("r",dist, sep="")) (N)
X

}
Follow this with the command lines

set.seed(26)
rnorm(5)

and again
rnorm(5)

To understand the 3rd line in Using.get execute the following commands in the given progression
and describe your understanding of what is happening.

paste ("r", "norm")

paste ("r", "norm", sep="")

get (paste ("r", "norm"))

get (paste ("r", "norm", sep=""))
rnorm

set.seed(26)

rnorm(5)

set.seed(26)

get (paste ("r", "norm", sep="")) (5)

What is the usefulness of the argument dist in Using.get? Try the call
Using.get (N=5,dist="unif")

Possible values for dist are unif, norm, lnorm, logis, exp, cauchy. If you put an r before
any of those strings you get the command for a random sample from that continuous distribution. For
example, you get information on logis by searching in the web based help facility help.start ()
for rlogis or by executing ?rlogis at the command line. All of these random sample generators
have default arguments, but there are others (like rf, rt, rweibull, rgamma) that do not. If you
use one of these latter random sample generating functions the above construct of Using.get would
fail. To accommodate these the function Using.get would need some modification, but we will pass
on that for now.



> Using.get ()

[1] -2.1298417 1.1478961 -0.4895019 0.8263438 -0.4099352
> set.seed(26)

> rnorm(5)

[1] -2.1298417 1.1478961 -0.4895019 0.8263438 -0.4099352
# we got the same set of numbers, thus Using.get appears to do the same
# as rnorm(5) preceded by set.seed(26)

> rnorm(5)

[1 0.14878788 0.12807120 0.91546624 -0.03993861 0.42013653

#

]
here we got a different set of numbers because we did not reset the seet to 26.

> paste("r", "norm")

[1] "r norm" # here we have a space between r and norm

> paste("r", "norm", sep="")

[1] "rnorm" # here we have no space between r and norm

> get (paste("r", "norm"))

Error in get (paste("r", "norm")) : object 'r norm’ not found
# here R complains because there is no object with name 'r norm’ with
# a space in it.

> get (paste("r", "norm", sep=""))

function (n, mean = 0, sd = 1)

.Internal (rnorm(n, mean, sd))

<environment: namespace:stats>

# here R spits out the function body, which is the same as if
# I give rnorm on the comman line, see next.

> rnorm

function (n, mean = 0, sd = 1)

.Internal (rnorm(n, mean, sd))

<environment: namespace:stats>

# the displayed result is exactly the same as before.

> set.seed(26)

> rnorm(5)

[1] -2.1298417 1.1478961 -0.4895019 0.8263438 -0.4099352

> set.seed(26)

> get (paste("r", "norm", sep="")) (5)

[1] -2.1298417 1.1478961 -0.4895019 0.8263438 -0.4099352

# the previous two sequences of commands produce the same

# set of standard normal deviates.



The third line in Using.get does the following. It concatenates two strings without a space between
them, i.e., ’r”” and “norm” to become “rnorm”. Since I cannot refer to an object by rnorm” (“rnorm”
is a character string and just a character value) I cannot call “rnorm”(5). I want to call rnorm(5)
without the quotes. That is what the function get does to “rnorm”, i.e., strips the quotes and treats the
remainder as an object (function) name.

The usefulness of the argument dist is that with the same function I can carry out simulations by
sampling from different distribution, simply by giving a different value to dist. For example

> Using.get (dist="unif")
[1] 0.01659234 0.28947830 0.87449426 0.79992188 0.31224322

In order to enable other distributions which require parameter values, one could add a parm vector
to the calling sequence of Using.get and then use if clauses to handle distributions differently by
using parameter values parm[1], parm[2], parm[3] as needed. The following is such a version but
it does not use the get construct. We pass the function object directly via dist (without quotes, with
the r built a priori into the object name). It can handle up to three parameters and is easily extended
to handle more if needed.

Using.dist=function (N = 5, dist = rnorm, parm) {
np=length (parm)

if (np==1) {

x=dist (N,parm[1])}

if (np==2) {

x=dist (N, parm[1l],parm([2]) }

if (np==3) {

x=dist (N,parm[1l],parm[2],parm[3])}
X

}

For example try the following two examples, the first one involving 3 parameters and the second
involving just one parameter.

> Using.dist (5,dist=rf,parm=c(10,15,20))
[1] 0.8611638 1.6795521 2.6281027 3.2001922 3.0871473

> Using.dist (5,dist=rexp,parm=10)
[1] 0.35276456 0.08510604 0.02164305 0.12026024 0.10568541



2. Via simulation you are to investigate the sampling distributions of the Hodges-Lehmann estimator
A= median(Y; — X;) and of A=Y — X in the shift model for various distributions . Write a function
Delta.est.sim(Nsim=10000,m=15,n=15,dist="norm",dist.name="normal",Delta=2){...}
that uses aloop for ( i in 1:Nsim ){...} to simulate samples x of size m from F (x) (correspond-
ing to dist, make use of what you learned from Problem 1.) and samples y of size n from F(x — A)
(i.e., shift A = 2 for the above default argument) and computes A and A for these two samples. Accu-
mulate these estimates in respective vectors Delta.hat and Delta.bar of length Nsim each. While
you develop Delta.est.simuse Nsim=1000 but for the final plots use Nsim=10000.

You are to illustrate through plots (to be produced by Delta.est.sim) the following results from
class, when they are known to be true and when they might be false.

The distributions of both estimators are symmetric around A when m = n or when F is symmet-
ric around some point u. The symmetry of the simulated distribution y=Delta.hat (and similarly
y=Delta.bar) around A is most effectively illustrated by using x=y-Delta and

qgplot (x[x>0],-x[x<0],pch=16, cex=.5)
abline (0,1)

Here x[x>0] is the positive part of the x-distribution while -x[x<0] is the negative part reflected
around zero. If both parts have equal length then ggplot plots the smallest of one part against the
smallest of the other, then the second smallest ones are plotted against each other, ..., and finally
the largest ones are plotted against each other. If the two parts are of different length then the sorted
larger vector is interpolated to give the same length as the shorter vector and these shorter vectors are
plotted against each other according to the above scheme. When the distribution of x is symmetric
around zero, then the plotted point pattern should align well with the main diagonal. The extremes
in any data set typically show greater fluctuations. Thus one should be more forgiving for the large
observation (the tail values) when judging closeness to the main diagonal. Delta.est.sim should
create annotated example plots (indicating dist .name, m, n and estimator type) that show

1. symmetry when m = n even when F' is not symmetric.

2. asymmetry when m # n and F is not symmetric (make m and n sufficiently different so that the
asymmetry becomes obvious).

3. symmetry when m # n and F is symmetric ( m and n as different as in the previous illustration).

Do the above illustration for both the simulated A and A distribution as captured by Delta.hat and
Delta.bar. Give the code for Delta.est.sim and these plots. If you write a function that produces
several plots and you want to look at them at your own pace (also for cutting and pasting) you should
add the following command after each plot is finished:

readline ("hit return\n")

Optionally, for extra credit, illustrate the corresponding results or counter examples concerning unbi-
asedness and median unbiasedness. Here you would be looking at the mean of the generated distribu-
tion vectors, compare them with A and look at the proportion of the distributions > A and < A.



Delta.est.sim=function(m=15,n=15,Nsim=1000,dist=rnorm, parm=c(0,1),
dist.name="normal", Delta=2,PDF=F) {

HL=rep (0, Nsim)

Delta.bar=HL

np=length (parm)

for(i in 1:Nsim) {

if (np==1) {

x=dist (m,parm[1])

y=dist (n,parm[1])+Delta}

if (np==2) {

x=dist (m,parm[1l],parm[2])

y=dist (n,parm[1l],parm[2])+Delta}

if (np==3) {

x=dist (m,parm[1],parm[2],parm[3])

y=dist (n,parm[1l],parm[2],parm[3])+Delta}

HL[i]=median (outer(y,x,"-"))

Delta.bar[i]=mean (y)-mean (x)

}

if (PDF==T) pdf (file=paste ("HLestimatesm",m,"n",n,dist.name,".pdf",sep=""),
width=7, height=5)

x=HL-Delta

ggplot (x[x>0], -x[x<0],xlab=expression ("positive"” (hat (Delta)-Delta)),

ylab="",pch=16, cex=.5)

mtext (expression("- negative"” (hat (Delta)-Delta)),2,2.5)
title(paste("Nsim =",Nsim,", m =",m,", n =",n,", ",dist.name," distribution"))
abline (0, 1)

if (PDF==T) dev.off ()

readline ("hit return\n")

if (PDF==T) pdf (file=paste("YbarXbarm",m,"n",n,dist.name,".pdf",sep=""),
width=7, height=5)

x=Delta.bar-Delta

qgaplot (x[x>0], -x[x<0],xlab=expression ("positive"” (bar (Delta)-Delta)),

ylab="",pch=16, cex=.5)

mtext (expression("- negative"” (bar (Delta)-Delta)),2,2.5)
title(paste("Nsim =",Nsim,", m =",m,", n =",n,", ",dist.name," distribution"))
abline (0, 1)

1f (PDF==T) dev.off ()

# the lines below create the output for optional credit.
mean.HL=mean (HL)

mean.Delta.bar=mean (Delta.bar)

p.above.Delta.bar=mean (Delta.bar>Delta)
p.below.Delta.bar=mean (Delta.bar<Delta)



p.above.HL=mean (HL>Delta)

p.below.HL=mean (HL<Delta)

out=c (mean.Delta.bar,mean.HL,p.above.Delta.bar,p.below.Delta.bar,
p.above.HL,p.below.HL)

names (out)=c("mean.Delta.bar", "mean.HL", "p.above.Delta.bar", "p.below.Delta.bar",
"p.above.HL", "p.below.HL")

out

}

The desired plots follow, clearly illustrating the symmetry and asymmetry. Deviations from the main
diagonal at the upper end are natural fluctuations. By repeating these plots several times you would
learn to appreciate that.

The plots were generated by the following calls to Delta.est.sim, followed by the respective op-
tional output.

> Delta.est.sim(15,5,10000, rnorm, 1, "normal", 2, T)
hit return

mean.Delta.bar mean.HL p.above.Delta.bar p.below.Delta.bar

2.008618 2.011785 0.509800 0.490200
p.above.HL p.below.HL
0.513400 0.486600

m!=n distribution F is normal, symmetric:

Both estimators appear to be unbiased and median unbiased.
> Delta.est.sim(15,5,10000, rexp, 1, "exponential”, 2, T)

hit return

mean.Delta.bar mean.HL p.above.Delta.bar p.below.Delta.bar

1.997260 2.042722 0.461300 0.538700
p.above.HL p.below.HL
0.495500 0.504500

m!=n distribution F is exponential, not symmetric:
Here Delta.bar is unbiased but not median unbiased,
HL appears to be median unbiased but not unbiased.

> Delta.est.sim(15,15,10000, rexp, 1, "exponential", 2, T)
hit return

mean.Delta.bar mean.HL p.above.Delta.bar p.below.Delta.bar

1.998899 2.000587 0.497700 0.502300
p.above.HL p.below.HL
0.499000 0.501000

illustrating both forms of unbiasedness for both estimators because m=n,
even though the exponential distribution is not symmetric
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