
Stat 425 HW4 Solution
Fritz Scholz

1. The purpose of this homework is to understand the power behavior of the two-sample Wilcoxon
test when sampling from normal populations which may differ from each other by a shift parameter
∆, i.e., N (µ,σ2) and N (µ+∆,σ2), respectively.
In particular, we want to compare the power function of the rank-sum test against that of the two-
sample t-test. We also want to understand to what extent the asymptotic relative efficiency (ARE)
eW, t = 3/π is reflected for finite sample sizes m and n. We want to use both normal approximations
for the power function and explore their quality in relation to m and n.
This exercise offers opportunity for extra credit (to make up for previous losses) by extending the
breadth of your investigation (other α,m and n). Provide your function codes, plots and a narrative
that explains coherently what you have learned.
First note that the ranks of samples

X1, . . . ,Xm ∼N (µ,σ2) and Y1, . . . ,Yn ∼N (µ+∆,σ2)

are the same as the ranks of the transformed samples

X ′i =(Xi−µ)/σ∼N (0,1), i = 1, . . . ,m and Y ′j =(Yj−µ)/σ∼N (∆/σ,1)= N (∆′,1), j = 1, . . . ,n

since the common transformation (· − µ)/σ does not alter the joint order relationships among X’s
and Y ’s. Hence the distribution of the rank-sum is the same, whether we sample from N (µ,σ2) and
N (µ+∆,σ2) or from N (0,1) and N (∆′,1) with ∆′ = ∆/σ. Thus the power of the rank-sum test does
not depend on µ and it depends on ∆ and σ only through the ratio ∆′ = ∆/σ. A corresponding property
holds for the two-sample t-test, namely its power depends on µ, ∆ and σ only through ∆′ = ∆/σ. Note
however, that in both cases (Wilcoxon and t-test) the sample sizes m and n affect the power.

Write a function Ranksum.sim=function(m=10,n=10,alpha=.05,Nsim=10000,Delta.p=.5){...}
that simulates the distribution of the Wilcoxon rank-sum statistic Ws for samples of sizes m and n from
N (0,1) and N (∆′,1), respectively (∆′≡ Delta.p). By distribution is meant a vector Ws.vec of length
Nsim, containing the results from calculating the rank-sums Ws for Nsim simulations of independent
samples of sizes m and n from N (0,1) and N (∆′,1), respectively. Run these simulations in a loop
(for(i in 1 : Nsim){. . .} ) with appropriate initialization of Ws.vec (remember HW3).
We consider one-sided rank-sum tests which reject H0 : ∆ = 0 whenever Ws ≥ cα, where cα is the
lowest integer value such that PH0(Ws ≥ cα) ≤ α. To find the appropriate cα you may use qwilcox

but understand that qwilcox(p,m,n) returns the smallest L such that PH0(WXY ≤ L) ≥ p and realize
the appropriate relationship between WXY and Ws. Explain your reasoning in coming up with cα.
Ranksum.sim should produce a named vector1 with components representing

Nsim, m, n, α, cα, αc, ∆
′, P∆′(Ws ≥ cα)

where αc = P0(Ws ≥ cα) is the achieved significance level (≤ α) when using c = cα as critical point.
P∆′(Ws ≥ cα) represents the power of the test at the alternative ∆′, the quantity of main interest to us.
While building this function use Nsim = 100 for faster debugging.

1For example, you name a vector out = c(x,y,z) via names(out) = c(”x.name”,”name.y”,”z”).



As a check run Ranksum.sim for Nsim = 10000 and ∆′ = 0. Your power should then be close to the
achieved significance level αc, which of course depends on m and n though qwilcox.
Next, write a function

power.fun = function(Nsim = 10000,alpha = .05,m = 10,n = 10,fac = 3/pi){. . .}

that evaluates Ranksum.sim for Delta.p in Delta.vec = seq(0,2,length.out = 21) and then plots
P∆′(Ws ≥ cα) against Delta.p over the grid vector Delta.vec. In a loop store the calculated values
of P∆′(Ws ≥ cα) in a vector power.vec of same length as Delta.vec. Superimposed on this plot

plot(Delta.vec,power,type="l",xlab=expression(Delta*minute==Delta/sigma),
ylab=expression(Pi(Delta*minute)==Pi(Delta/sigma)),ylim=c(0,1))

add the power function of the two-sample t-test, evaluated over the same grid. Do this by using the
lines(x,y) command for appropriate vectors x and y. The power function values for the t-test can
be obtained in vectorized mode (since we use the vector argument Delta.vec) via

power.t = 1−pt(qt(1−alpha.c,m+n−2,0),m+n−2,Delta.vec/sqrt(1/m+1/n))

Explain this last command in terms of the fact that the distribution of the two-sample t-statistics is a
noncentral t-distribution with m+n−2 degrees of freedom and noncentrality parameter

δ =
∆′√

1/m+1/n
=

∆

σ
√

1/m+1/n
.

We expect the power of the t-test to be slightly higher than the power of the Wilcoxon rank-sum test.
To get a better match of the power functions recompute the power of the t-test when m and n are
reduced by the factor fac = 3/pi = 3/π, which represents the ARE of the Wilcoxon test relative to
the t-test. This adjustment (only for the power of the t-test) is possible since pt and qt allow non-
integer degrees of freedom. However, non-integer sample sizes don’t make sense in the application
of the t-test. What can you say about the quality of the match-up? Note that you can make both
comparisons by using fac = 1 and fac = 3/pi in the argument sequence to power.fun.
In spite of the quality of the match-up what aspect makes the rank-sum test preferable? Does the
above match-up of power suggest a way to plan the sample sizes for the rank-sum test when dealing
with normal shift alternatives (without simulating the Ws distribution for ∆)?
Now add to this plot the power as computed by the two normal approximations and add a legend in
the upper left corner using the legend(. . .) command, e.g.,

legend(0,1,c("simulated power of Ws",
paste("non-central t power (fac =",round(fac,3),")"),
"power: normal approx. 1","power: normal approx. 2"),
col=c("black","blue","red","orange"),lty=1:4,bty="n")

Make sure the various lines(. . .) commands use the appropriate colors and lty parameters. Also
add the following annotation to your plot.

text(max(Delta.vec),0,substitute(N[sim]==xNsim˜", "˜m ==xm˜", "
˜n ==xn˜", "˜alpha==xalpha˜", "˜alpha[c]==xalpha.c,
list(xNsim=Nsim,xm=m,xn=n,xalpha=alpha,xalpha.c=round(alpha.c,3))),adj=1)



Show these plots for m = 10 and n = 10 and α = .05. Discuss your results.

Note that I have given you two instances of writing mathematical expressions (Greek) in your plot
via expression and substitute. For more on this see the link to “An Approach to Providing
Mathematical Annotation in Plots” by Paul Murrell and Ross Ihaka that I provided on the class web
page.

Optional (no need to do all): While the plots should look fine for m = n = 10 they could use some
scaling improvement for m = n = 5 or m = n = 30. Try to implement this in an automatic fashion by
using the second normal approximation to find an appropriate U (corresponding to approximate power
.99) to get an adjustable grid vector Delta.vec=seq(0,U,length.out=21). What about two-sided
tests? What would you have to change if you were to compare the power of t-test and Wilcoxon test
for non-normal shift alternatives. Note that the non-central t-distribution no longer applies.

The code for the two functions Ranksum.sim and power.fun is given at the end. Note that lines 3
and 4 of power.fun set up the plotting grid from 0 to the .99-quantile based on the second normal
approximation. This adapts the relevant plotting range to the choice of m and n.
We checked Ranksum.sim by running it for Delta.p=0

> Ranksum.sim(10,10,.05,100000,0)
Nsim m n alpha c.alpha alpha.c

1.000000e+05 1.000000e+01 1.000000e+01 5.000000e-02 1.280000e+02 4.460478e-02
Delta.p power.sim

0.000000e+00 4.644000e-02

The values 4.460478e-02 and 4.644000e-02 are reasonably close to each other.
As for finding cα using qwilcox we give the following explanation. qwilcox(1-alpha,m,n) gives
us the smallest k = kα such that P0(WXY ≤ k)≥ 1−α, i.e., the smallest k such that P0(WXY ≥ k+1) =
αc≤α and (since Ws =WXY +n(n+1)/2) thus the smallest k such that P0(Ws≥ k+1+n(n+1)/2)≤
α. Thus our critical point should be

cα = k +1+n(n+1)/2 = qwilcox(1−alpha,m,n)+1+n(n+1)/2

and is implemented in line 4 of Ranksum.sim.
The line calculating the power of the t-test

power.t = 1−pt(qt(1−alpha.c,m+n−2,0),m+n−2,Delta.vec/sqrt(1/m+1/n))

is explained as follows. 1-pt(x,m+n-2,delta) gives the probability that the two-sample t-statistic
with m+n-2 degrees of freedom is ≥ x, i.e., rejects the hypothesis when delta is the noncentrality
parameter. For sampled normal distribution N (µ,σ2) and N (µ+∆,σ2) this noncentrality parameter
is delta= ∆/(σ

√
1/m+1/n). For the critical point x = cα = qt(1−α.c,m+n−2,0) this rejection

probability will be α when H0 : ∆ = 0 is true, i.e., make it a level α test. For any other delta it will
give you the power of that t-test.
The following plots show the results for various runs of power.fun as indicated by the annotations.
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Some observations: When comparing the Wilcoxon test with the t-test for the same respective sample
sizes (using fac=1) the power of the former is clearly lower than the power of the latter, as expected.
This is illustrated for sample size combinations m = n = 5,m = 3,n = 7, m = n = 10, and m = 15,n = 5.
When we adjust (reduce) the sample sizes in the t-test power function by changing m and n to m′ =
m ·3/π and n′= n ·3/π as suggested by the ARE (i.e., asymptotically the t-test should require only 3/π

of the Wilcoxon test sample sizes for equal power) we find a very good match between the adjusted
power of the t-test and the simulated power (Nsim=100000) of the Wilcoxon test. This matchup is
especially good when m = n, as seen for m = n = 5 and m = n = 10. Even for the unbalanced sample
sizes m = 3, n = 7 and m = 15, n = 5 this match is still very good (especially when comparing it with
the normal approximations), namely very good for power ≤ .5 and with slight separation between the
power curves for power > .5. The match is better for the higher total sample size N = 15+5 than for
N = 3+7, as expected. Also shown are the corresponding plots for m = n = 20 and m = n = 50 with
the ARE-adjusted t-test power function. The latter and the normal approximations agree fairly well
for such larger sample sizes.
The normal approximations are quite poor for low N = m+n = 10, especially for N = 3+7, although
they are in the right ballpark. The normal approximation improved for N = m + n = 20, but that im-
provement is again somewhat negatively impacted for the unbalanced case m = 15,N = 5. Generally
the ARE-adjusted t-test power curves are better than either of the normal approximations for small to
moderate sample sizes m = n.
Because of the good approximation quality of the ARE-adjusted t-test power and because the calcula-
tion of that power is essentially instantaneous it would make sense to use the t-test power to plan sam-
ple sizes m = n for the Wilcoxon test. For any m = n find the appropriate cα and αc by using qwilcox

and pwilcox and then use that αc to evaluate the t-test power when using m′ = n′ = (3/π)m = (3/π)n
for the ∆′ = ∆/σ of interest. Based on our previous plots this power should be very close to the
power of the Wilcoxon test at the same shift alternative and for the same significance level. This t-
test power calculation is instantaneous and does not require time consuming simulation, which would
slow matters considerably when trying to iterate.
In spite of the good match-up of power and the resulting lower required sample size for the t-test it
is preferable to use the Wilcoxon test, because its significance level is correct under H0 : ∆ = 0, no
matter what the underlying distribution F in the shift model is. The t-test would only approximately
be distribution-free in that regard, provided the variance of F is finite.
The code for a two-sided test version of Ranksum.sim (namely Ranksum2.sim) is attached at the end.
By proper modification (as commented inside the function) it can be used to generate samples from
an exponential shift model. By running that for m 6= n (sufficiently different) one could illustrate the
non-symmetric behavior for the Π(∆) 6= Π(−∆) in the exponential shift model. The modified version
is denoted by Ranksum2exp.sim (not shown here) and it produced the following confirmation of the
above asymmetry.

> Ranksum2exp.sim(20,5,.05,10000,1.5,"both")
Nsim m n alpha k.alpha alpha.c

1.000000e+04 2.000000e+01 5.000000e+00 5.000000e-02 8.000000e+01 4.234896e-02
Delta.p power.sim

1.500000e+00 9.175000e-01
> Ranksum2exp.sim(20,5,.05,10000,-1.5,"both")

Nsim m n alpha k.alpha
1.000000e+04 2.000000e+01 5.000000e+00 5.000000e-02 8.000000e+01



alpha.c Delta.p power.sim
4.234896e-02 -1.500000e+00 8.336000e-01

The difference between the powers 9.175000e-01 and 8.336000e-01 is substantial, i.e., confirms
the asymmetry of Π at ∆ =±1.5 when m = 20 and n = 5.

Ranksum.sim=function(m=10,n=10,alpha=.05,Nsim=10000,Delta.p=.5){
k.alpha=qwilcox(1-alpha,m,n)
alpha.c=1-pwilcox(k.alpha,m,n)
c.alpha=k.alpha+1+n*(n+1)/2
Ws.vec=rep(0,Nsim)
for(i in 1:Nsim){

x=rnorm(m); y=rnorm(n)+Delta.p
z=c(x,y)
Ws.vec[i]=sum(rank(z)[m+(1:n)])

}
power.sim=mean(Ws.vec>=c.alpha)
xout=c(Nsim,m,n,alpha,c.alpha,alpha.c,Delta.p,power.sim)
names(xout)=c("Nsim","m","n","alpha","c.alpha",

"alpha.c","Delta.p","power.sim")
xout
}

and

power.fun=function(Nsim=10000,alpha=.05,m=10,n=10,fac=3/pi,PDF=F){
if(fac==1){fac0=1}else{fac0=round(1000*fac,0)}
alph=round(alpha*100,0)
if(PDF==T) pdf(file=paste("RankSumPowerm",m,"n",n,"fac",

fac0,"alpha",alph,".pdf",sep=""),width=7)
U=(qnorm(.99)+qnorm(1-alpha))*sqrt((m+n+1)*pi/(3*m*n))
Delta.vec=seq(0,U,length.out=21)
M=length(Delta.vec)
power=rep(0,M)
for(i in 1:M){
out=Ranksum.sim(m,n,alpha,Nsim,Delta.vec[i])
power[i]=out[8]
}
alpha.c=out[6]
k.alpha=out[5]
power.t=1-pt(qt(1-alpha.c,fac*(m+n)-2,0),

fac*(m+n)-2,Delta.vec/(sqrt(1/m+1/n)*sqrt(1/fac)))
plot(Delta.vec,power,type="l",

xlab=expression(Delta*minute==Delta/sigma),
ylab=expression(Pi(Delta*minute)==Pi(Delta/sigma)),
ylim=c(0,1))

lines(Delta.vec,power.t,col="blue",lty=2)



if(!exists("pmnorm"))library(mnormt)
p1=pnorm(Delta.vec/sqrt(2))
p2=rep(0,M)
for(i in 1:M){
p2[i]=pmnorm(c(Delta.vec[i]/sqrt(2),Delta.vec[i]/sqrt(2)),

c(0,0),varcov=matrix(c(1,.5,.5,1),ncol=2))
}
p3=p2
meanWXY=m*n*p1
varWXY=m*n*p1*(1-p1)+m*n*(m+n-2)*(p2-p1ˆ2)
power.n1=1-pnorm((k.alpha-n*(n+1)/2-.5-meanWXY)/sqrt(varWXY))
power.n2=pnorm(sqrt(3*m*n/((m+n+1)*pi))*Delta.vec-qnorm(1-alpha.c))
lines(Delta.vec,power.n1,col="red",lty=3)
lines(Delta.vec,power.n2,col="orange",lty=4)
legend(0,1,c("simulated power of Ws",

paste("non-central t power (fac =",round(fac,3),")"),
"power: normal approx. 1","power: normal approx. 2"),
col=c("black","blue","red","orange"),lty=1:4,bty="n")

text(max(Delta.vec),0,substitute(N[sim]==xNsim˜", "˜m ==xm˜", "
˜n ==xn˜", "˜alpha==xalpha˜", "˜alpha[c]==xalpha.c,

if(PDF==T) dev.off()
}

Ranksum2.sim=function(m=10,n=10,alpha=.05,Nsim=10000,Delta.p=0,alternative="higher"){
#===================================================================================
# this function simulates the power of one- and two-sided Wilcoxon rank-sum tests,
# depending on the choice alternative = "higher", "lower" or "both".
# samples are drawn from normal and shifted normal distributions.
# Commented in is the change to make if you want to sample from an exponential
# and shifted exponential distribution. Modifications for other sampled shift model
# distributions should be obvious.
#===================================================================================
if(alternative=="higher" | alternative=="lower"){

k=qwilcox(1-alpha,m,n)+1
}else{
k=qwilcox(1-alpha/2,m,n)+1

}
Ws.vec=rep(0,Nsim)
for(i in 1:Nsim){

x=rnorm(m); y=rnorm(n)+Delta.p
# changing the previous line to
# x=rexp(m); y=rexp(n)+Delta.p
# would generate samples from an exponential
# and a shifted exponential distribution.
# The exponential distribution is not symmetric.
# Thus the power of the two-sided test would not be



# symmetric around the origin for m != n.
z=c(x,y)
Ws.vec[i]=sum(rank(z)[m+(1:n)])

}
if(alternative=="higher"){

cWs=k+n*(n+1)/2
power=mean(Ws.vec>=cWs)

}
if(alternative=="lower"){

cWs=m*n-k+n*(n+1)/2
power=mean(Ws.vec<=cWs)

}
if(alternative!="higher" & alternative != "lower"){

cWs1=k+n*(n+1)/2
cWs2=m*n-k+n*(n+1)/2
power=mean(Ws.vec<=cWs2 | Ws.vec>=cWs1)

}
if(alternative=="higher" | alternative=="lower"){

alpha.c=1-pwilcox(k-1,m,n)
}else{

alpha.c=2*(1-pwilcox(k-1,m,n))
}
xout=c(Nsim,m,n,alpha,k,alpha.c,Delta.p,power)
names(xout)=c("Nsim","m","n","alpha","k.alpha","alpha.c","Delta.p","power.sim")
xout
}


