1. The purpose of this homework is to understand the power behavior of the two-sample Wilcoxon test when sampling from normal populations which may differ from each other by a shift parameter Δ, i.e., $\mathcal{N}(\mu, \sigma^2)$ and $\mathcal{N}(\mu + \Delta, \sigma^2)$, respectively.

In particular, we want to compare the power function of the rank-sum test against that of the two-sample t-test. We also want to understand to what extent the asymptotic relative efficiency (ARE) $e_{W,t} = 3/\pi$ is reflected for finite sample sizes m and n. We want to use both normal approximations for the power function and explore their quality in relation to m and n.

This exercise offers opportunity for extra credit (to make up for previous losses) by extending the breadth of your investigation (other α, m and n). Provide your function codes, plots and a narrative that explains coherently what you have learned.

First note that the ranks of samples

$$X_1, \ldots, X_m \sim \mathcal{N}(\mu, \sigma^2) \quad \text{and} \quad Y_1, \ldots, Y_n \sim \mathcal{N}(\mu + \Delta, \sigma^2)$$

are the same as the ranks of the transformed samples

$$X'_i = (X_i - \mu)/\sigma \sim \mathcal{N}(0, 1), \; i = 1, \ldots, m \quad \text{and} \quad Y'_j = (Y_j - \mu)/\sigma \sim \mathcal{N}(\Delta/\sigma, 1) = \mathcal{N}(\Delta', 1), \; j = 1, \ldots, n$$

since the common transformation $(\cdot - \mu)/\sigma$ does not alter the joint order relationships among X’s and Y’s. Hence the distribution of the rank-sum is the same, whether we sample from $\mathcal{N}(\mu, \sigma^2)$ and $\mathcal{N}(\mu + \Delta, \sigma^2)$ or from $\mathcal{N}(0, 1)$ and $\mathcal{N}(\Delta', 1)$ with $\Delta' = \Delta/\sigma$. Thus the power of the rank-sum test does not depend on μ and it depends on Δ and σ only through the ratio $\Delta' = \Delta/\sigma$. A corresponding property holds for the two-sample t-test, namely its power depends on μ, Δ and σ only through $\Delta' = \Delta/\sigma$. Note however, that in both cases (Wilcoxon and t-test) the sample sizes m and n affect the power.

Write a function

```r
Ranksum.sim=function(m=10,n=10,alpha=.05,Nsim=10000,Delta.p=.5){
  ...}
```

that simulates the distribution of the Wilcoxon rank-sum statistic W_s for samples of sizes m and n from $\mathcal{N}(0, 1)$ and $\mathcal{N}(\Delta', 1)$, respectively ($\Delta' \equiv \text{Delta.p}$). By distribution is meant a vector $W_{s,\text{vec}}$ of length N_{sim}, containing the results from calculating the rank-sums W_s for N_{sim} simulations of independent samples of sizes m and n from $\mathcal{N}(0, 1)$ and $\mathcal{N}(\Delta', 1)$, respectively. Run these simulations in a loop (for(i in 1:N_{\text{sim}}){...}) with appropriate initialization of $W_{s,\text{vec}}$ (remember HW3).

We consider one-sided rank-sum tests which reject $H_0 : \Delta = 0$ whenever $W_s \geq c_\alpha$, where c_α is the lowest integer value such that $P_{H_0}(W_s \geq c_\alpha) \leq \alpha$. To find the appropriate c_α you may use `wilcox` but understand that `wilcox(p,m,n)` returns the smallest L such that $P_{H_0}(W_{XY} \leq L) \geq p$ and realize the appropriate relationship between W_{XY} and W_s. Explain your reasoning in coming up with c_α.

`Ranksum.sim` should produce a named vector\(^1\) with components representing

$$N_{\text{sim}}, \; m, \; n, \; \alpha, \; c_\alpha, \; \alpha_c, \; \Delta', \; P_{\Delta'}(W_s \geq c_\alpha)$$

\(^1\)For example, you name a vector out = c(x,y,z) via names(out) = c("x.name", "name.y", "z").
where $\alpha_c = P_0(W_s \geq c_\alpha)$ is the achieved significance level ($\leq \alpha$) when using $c = c_\alpha$ as critical point. $P_{\Delta'}(W_s \geq c_\alpha)$ represents the power of the test at the alternative Δ', the quantity of main interest to us.

While building this function use $N_{\text{sim}} = 100$ for faster debugging.

As a check run `Ranksum.sim` for $N_{\text{sim}} = 10000$ and $\Delta' = 0$. Your power should then be close to the achieved significance level α_c, which of course depends on m and n though `qwilcox`.

Next, write a function

```r
power.fun = function(Nsim = 10000, alpha = .05, m = 10, n = 10, fac = 3/pi){...}
```

that evaluates `Ranksum.sim` for $\Delta.p$ in `Delta.vec = seq(0,2,length.out = 21)` and then plots $P_{\Delta'}(W_s \geq c_\alpha)$ against `Delta.p` over the grid vector `Delta.vec`. In a loop store the calculated values of $P_{\Delta'}(W_s \geq c_\alpha)$ in a vector `power.vec` of same length as `Delta.vec`. Superimposed on this plot

```r
plot(Delta.vec,power,type="l",xlab=expression(Delta*minute==Delta/sigma),
ylab=expression(Pi(Delta*minute)==Pi(Delta/sigma)),ylim=c(0,1))
```

add the power function of the two-sample t-test, evaluated over the same grid. Do this by using the `lines(x,y)` command for appropriate vectors x and y. The power function values for the t-test can be obtained in vectorized mode (since we use the vector argument `Delta.vec`) via

```r
power.t = 1 - pt(qt(1-alpha.c,m+n-2,0),m+n-2,Delta.vec/sqrt(1/m+1/n))
```

Explain this last command in terms of the fact that the distribution of the two-sample t-statistics is a noncentral t-distribution with $m + n - 2$ degrees of freedom and noncentrality parameter

$$\delta = \frac{\Delta'}{\sqrt{1/m+1/n}} = \frac{\Delta}{\sigma \sqrt{1/m+1/n}}.$$

We expect the power of the t-test to be slightly higher than the power of the Wilcoxon rank-sum test. To get a better match of the power functions recompute the power of the t-test when m and n are reduced by the factor $\text{fac} = 3/\pi$, which represents the ARE of the Wilcoxon test relative to the t-test. This adjustment (only for the power of the t-test) is possible since `pt` and `qt` allow non-integer degrees of freedom. However, non-integer sample sizes don’t make sense in the application of the t-test. What can you say about the quality of the match-up? Note that you can make both comparisons by using `fac = 1` and `fac = 3/\pi` in the argument sequence to `power.fun`.

In spite of the quality of the match-up what aspect makes the rank-sum test preferable? Does the above match-up of power suggest a way to plan the sample sizes for the rank-sum test when dealing with normal shift alternatives (without simulating the W_s distribution for Δ)?

Now add to this plot the power as computed by the two normal approximations and add a legend in the upper left corner using the `legend(...)` command, e.g.,

```r
legend(0,1,c("simulated power of Ws",
            paste("non-central t power (fac =",round(fac,3),")"),
            "power: normal approx. 1","power: normal approx. 2"),
            col=c("black","blue","red","orange"),lty=1:4,bty="n")
```
Make sure the various `lines(...)` commands use the appropriate colors and `lty` parameters. Also add the following annotation to your plot.

```r
text(max(Delta.vec),0,substitute(N[\sim]==xNsim", "m ==xm", "n ==xn", "\alpha==xalpha", "\alpha[c]==xalpha.c,
   list(xNsim=Nsim,xm=m,xn=n,xalpha=alpha,xalpha.c=round(alpha.c,3))),adj=1)
```

Show these plots for $m = 10$ and $n = 10$ and $\alpha = .05$. Discuss your results.

Note that I have given you two instances of writing mathematical expressions (Greek) in your plot via `expression` and `substitute`. For more on this see the link to “An Approach to Providing Mathematical Annotation in Plots” by Paul Murrell and Ross Ihaka that I provided on the class web page.

Optional (no need to do all): While the plots should look fine for $m = n = 10$ they could use some scaling improvement for $m = n = 5$ or $m = n = 30$. Try to implement this in an automatic fashion by using the second normal approximation to find an appropriate U (corresponding to approximate power .99) to get an adjustable grid vector `Delta.vec=seq(0,U,length.out=21)`. What about two-sided tests? What would you have to change if you were to compare the power of t-test and Wilcoxon test for non-normal shift alternatives. Note that the non-central t-distribution no longer applies.