
Stat 425 HW3 Solution
Fritz Scholz

1. Describe in words what the following function does, in particular the distinction between flag=T
and flag=F.

Initialize=function(flag=T,Nsim=10000){
if(flag==T){

out=NULL}else{
out=rep(0,Nsim)

}
for(i in 1:Nsim){

out[i]=sum(rnorm(20))
}
}

Import this function into your R workspace (cut and paste should do). Time this function by executing
the command

system.time(Initialize(flag = F,Nsim = 10000))

and do the same with flag=T. Repeat this with Nsim=20000, 30000, 50000. Plot the vector y of
the respective execution times for flag = T against the x vector holding the corresponding Nsim
values. You can add a second set of points with coordinate vectors x1 and y1 to an existing plot by
points(x1,y1). Thus you can plot the points corresponding to flag=T and flag=F on the same
graph.

In another graph plot the square root (sqrt(y)) of the execution times obtained for flag=T against
x. You can fit a line to a plot pattern created by plot(x,y) by doing out=lsfit(x,y), then out$coef gives
you a vector of intercept and slope. The command abline(out) would add the fitted line to your plot.
Only fit a line to those point patterns that look approximately linear.

Project how long you would have to wait to run each (flag=T and flag=F) for Nsim=100000,
1000000. What have you learned from this, in particular with respect to calculating estimated p-
values?

You can add R plots to your Word (or free Open Office Writer) document by activating the graphics
window in R that shows the plot (i.e., click on it), go to File then Copy to the Clipboard, then choose
as Metafile and then do a CTRL V in your Word (or free Open Office Writer) document.

The function Initialize generates a vector out of length Nsim with independent sums of 20 stan-
dard normal random deviates for each position. It can do this two different ways depending on the
input flag. If flag=T the vector out is initialzed as out=NULL, i.e., there is no predetermined space
allocated for it. When flag=F the vector out is initialized to its full anticipated length Nsim.
The timing results on my laptop were as follows:



> system.time(Initialize(flag=F,Nsim=10000))
user system elapsed

0.660 0.000 0.664
> system.time(Initialize(flag=F,Nsim=20000))

user system elapsed
1.376 0.000 1.375

> system.time(Initialize(flag=F,Nsim=30000))
user system elapsed

1.988 0.000 2.003
> system.time(Initialize(flag=F,Nsim=50000))

user system elapsed
3.457 0.000 3.470

> system.time(Initialize(flag=T,Nsim=10000))
user system elapsed

2.512 0.020 2.536
> system.time(Initialize(flag=T,Nsim=20000))

user system elapsed
9.984 0.124 10.158

> system.time(Initialize(flag=T,Nsim=30000))
user system elapsed

24.590 0.360 25.052
> system.time(Initialize(flag=T,Nsim=50000))

user system elapsed
70.180 1.808 72.338

Of course, your elapsed time may be quite different.
The following plots are as requested and they also show the projections based on the fitted lines.
These plots wer produced by

timing.plot=function(PDF=F){
if(PDF==T) pdf(file="timingF.pdf",width=7)
plot(Nsim,timeT,xlab="Nsim",ylab="elapsed time",pch=16,col="red")
points(Nsim,timeF,pch=16)
ls.out=lsfit(Nsim,timeF)
abline(ls.out)
text(max(Nsim),max(timeF)*4,paste("intercept =",

signif(ls.out$coef[1],3)," slope =",
signif(ls.out$coef[2],3)),adj=1)
text(max(Nsim),max(timeF)*2,paste("Nsim=100000", " elapsed time =",
round(ls.out$coef[1]+ls.out$coef[2]*100000,0)," seconds"),adj=1)
text(max(Nsim),max(timeF)*3,paste("Nsim=1000000", " elapsed time =",
round(ls.out$coef[1]+ls.out$coef[2]*1000000,0)," seconds"),adj=1)
if(PDF==T) dev.off()
readline("hit return\n")
if(PDF==T) pdf(file="timingT.pdf",width=7)
plot(Nsim,sqrt(timeT),xlab="Nsim",
ylab=expression(sqrt("elapsed time")),pch=16,col="red")



ls.out=lsfit(Nsim,sqrt(timeT))
abline(ls.out)
text(min(Nsim),max(sqrt(timeT))*.95,paste("intercept =",
signif(ls.out$coef[1],3)," slope =",
signif(ls.out$coef[2],3)),adj=0)

text(min(Nsim),max(sqrt(timeT))*.85,paste("Nsim=100000", " elapsed time =",
round(((ls.out$coef[1]+ls.out$coef[2]*100000)ˆ2)/60,2)," minutes"),adj=0)
text(min(Nsim),max(sqrt(timeT))*.8,paste("Nsim=1000000", " elapsed time =",
round(((ls.out$coef[1]+ls.out$coef[2]*1000000)ˆ2)/3600,2)," hours"),adj=0)
if(PDF==T) dev.off()
}
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intercept = −0.0439   slope = 6.99e−05

Nsim=100000   elapsed time = 7  seconds
Nsim=1000000   elapsed time = 70  seconds
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intercept = −0.205   slope = 0.000174

Nsim=100000   elapsed time = 4.91  minutes

Nsim=1000000   elapsed time = 8.36  hours

The simulations with preallocated memory space for the out vector appear to give elapsed times that
are basically proportional to Nsim =Nsim.
In the simulation without allocated memory the elapsed time appears to grow quadratically with Nsim.
One way to explain this is that each time we add a new element to out we have to reallocate memory
for the previous i−1 elements and the new ith element. This leads to

Nsim

∑
i=1

i =
Nsim(Nsim +1)

2

processing steps, as opposed to allocating Nsim locations all at once, as done in the first scheme. Thus
it is definitely of great advantage to allocate space for the simulation results upfront.



2. Write a function Problem2=function(x,y,Nsim=30000){...} that computes the p-value for
the two-sided Wilcoxon rank-sum test of the hypothesis of no treatment effect as indicated on slides
70-71 (Chapter 1). Write this as a function of two response vectors x and y (control and treatment)
and of Nsim (see below).
Allow for possible ties and obtain an exact p-value by using combn as long as

(m+n
n

)
is not too large,

say≤ Nsim = 300000. When the full enumeration exceeds Nsim, let the function estimate the p-value
by sampling Nsim splits of the mid-rank vector and evaluating the treatment rank-sum each time.
In addition to the exact or estimated p-value this function should also produce the corresponding p-
value obtained by normal approximation. Use the continuity correction if there are no ties, otherwise
don’t use it. You have no ties when length(c(x,y))==length(unique(c(x,y)).

Apply this test to the two vectors

x0=c(91, 94, 99, 99, 99, 100, 101, 102, 105, 106, 108)

y0=c(97, 102, 103, 104, 105, 107, 108, 111, 117)

Now run wilcox.test(x0,y0). How do the results compare?

Repeat this with wilcox.test(x1,y1) and Problem2(x1,y1,Nsim=300000), where

x1=c(94.1, 96.4, 101.55, 103.6, 100.51, 97.4, 110.69, 106.13, 101.61, 97.3, 100.33)

y1=c(104.59, 101.87, 105.84, 105.31, 108.72, 95.86, 102.35, 104.68, 102.21)

The code for Problem2 follows. Note how the switch between exact and simulation evaluation is set.

Problem2=function(x,y,Nsim=300000){
Rz=rank(c(x,y))
n=length(y)
m=length(x)
N=m+n
Ws.star=sum(Rz[m+(1:n)])
D.obs=abs(Ws.star-(N+1)*n/2)
# the switch between full enumeration and simulation is
# set in the follwing if-block
if(choose(N,n)<=Nsim){
out=combn(Rz,n,FUN=sum)

}else{
out=rep(0,Nsim)
for(i in 1:Nsim){

out[i]=sum(sample(Rz,n,replace=F))
}

}
D=abs(out-(N+1)*n/2)
p.val=mean(D>=D.obs)
mean.Wstar=n*(N+1)/2
var.Wstar=(n*(N-n)/N)*var(Rz)



# In the following if-block the normal approximation
# is adapted to the case with and without ties.
if( length(c(x,y))==length( unique(c(x,y)) ) ){

p.val.norm=2*(1-pnorm((D.obs-.5)/sqrt(var.Wstar)))
}else{

p.val.norm=2*(1-pnorm(D.obs/sqrt(var.Wstar)))
}
p=c(p.val,p.val.norm)
names(p)=c("p.val","p.val.norm")
p
}

The following shows the results of Problem2 and wilcox.test for the two data sets. When there
are no ties the results agree. When there are ties wilcox.test complains about not being able to
compute exact p-values. By changing your code for Problem2 so that it does a continuity correction
in either case (ties or no ties) one can see that the p-value reported by wilcox.test uses a continuity
correction. At least for our example here (x0 and y0) that seems inappropriate.

> Problem2(x0,y0,Nsim=300000)
p.val p.val.norm

0.03925935 0.03971414
> wilcox.test(x0,y0)

Wilcoxon rank sum test with continuity correction

data: x0 and y0
W = 22.5, p-value = 0.04353
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(x0, y0) : cannot compute exact p-value with ties
> Problem2(x1,y1,Nsim=300000)

p.val p.val.norm
0.1119433 0.1106121
> wilcox.test(x1,y1)

Wilcoxon rank sum test

data: x1 and y1
W = 28, p-value = 0.1119
alternative hypothesis: true location shift is not equal to 0


