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Uses of the Noncentral t-Distribution
The noncentral t–distribution is intimately tied to statistical inference procedures for

samples from normal populations.

For simple random samples from a normal population the applications of the

noncentral t–distribution include (extendable to regression situations):

basic power calculations,

variables acceptance sampling plans (MIL–STD–414)

confidence bounds for

percentiles,

tail probabilities,

statistical process control parameters CL, CU and Cpk and for

coefficients of variation.
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Checking Normality of a Sample
X1, . . . ,Xn is a random sample from N (µ,σ2).

CDF F(x) = P(Xi≤ x) = Φ((x−µ)/σ) & density f (x) = F ′(x) = ϕ((x−µ)/σ)/σ.

The p-quantile of N (µ,σ2) is xp = µ+σzp, zp is the standard normal p-quantile.

Sort the sample X1, . . . ,Xn in increasing order X(1)≤ . . .≤X(n) assigning fractional

ranks pi ∈ (0,1) to these order statistics in one of several ways for i = 1, . . . ,n:

pi =
i− .5

n
or pi =

i
n+1

or pi =
i− .375
n+ .25

.

Plot X(i) against the standard normal pi-quantile zpi = qnorm(pi) for i = 1, . . . ,n.

We would expect X(i) ≈ xpi = µ+σzpi, i.e., X(i) should look ≈ linear against zpi

with intercept ≈ µ and slope ≈ σ. Judging approximate linearity takes practice.

The third choice for pi is used by R in qqnorm(x) for a given sample vector x.

qqline(x) (invoked after qqnorm(x)) fits a line to the middle half of the data.
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Normal QQ-Plot: n = 8
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Normal QQ-Plot: n = 16
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Normal QQ-Plot: n = 64
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Normal QQ-Plot: n = 256
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EDF-Based Tests of Fit

Judgment?? We can also carry out formal EDF-based tests of fit for normality.

Assume X1, . . . ,Xn ∼ F . Test H0 : F(x) = Φ((x−µ)/σ) for some µ and σ.

The empirical distribution function (EDF) is defined as

Fn(x) =
1
n

n

∑
i=1

I(−∞, x](Xi) with I(−∞, x](Xi) = 1 or 0 as Xi ≤ x or Xi > x .

Fn(x) is the proportion of sample values ≤ x.

Law of Large Numbers (LLN) =⇒ Fn(x)
n→∞−→ F(x) for all x.

Compare Fn(x) with F̂(x) = Φ((x− X̄)/S) via some discrepancy metric D(Fn, F̂).

Using the null distribution for D(Fn, F̂) we reject H0 whenever D(Fn, F̂) is too large.
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Empirical Distribution Function (EDF)

F̂n(x) =
number of X1, . . . ,Xn ≤ x

n
here n = 4, i.e., step size 1/4
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EDF of Normal Sample n = 100
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Comparison of EDF & CDF
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Comparing CDFs is not as fickle as comparing histograms with densities.

There is smoothing due to averaging.
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Discrepancy Metrics

• The Kolmogorov-Smirnov metric (local discrepancy)

D = max
x

{∣∣∣∣F̂n(x)−Φ

(
x− X̄

S

)∣∣∣∣}

• The Cramer-von-Mises metric (cumulative discrepancies)

W 2 =
∫

∞

−∞

[
F̂n(x)−Φ

(
x− X̄

S

)]2 1
S

ϕ

(
x− X̄

S

)
dx with ϕ(x) = Φ

′(x)

• The Anderson-Darling metric (cumulative but sensitive to tail behavior)

A2 =
∫

∞

−∞

[
F̂n(x)−Φ

(
x−X̄

S

)]2

Φ

(
x−X̄

S

)[
1−Φ

(
x−X̄

S

)] 1
S

ϕ

(
x− X̄

S

)
dx

Computing these metrics seems challenging, but . . .
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Computational Formulas for Discrepancy Metrics
• The Kolmogorov-Smirnov metric

D = max

[
max

{
i
n
−Φ

(
X(i)− X̄

S

)}
,max

{
Φ

(
X(i)− X̄

S

)
− i−1

n

}]

• The Cramer-von-Mises metric

W 2 =
n

∑
i=1

{
Φ

(
X(i)− X̄

S

)
− 2i−1

2n

}2

+
1

12n

• The Anderson-Darling metric

A2 =−n− 1
n

n

∑
i=1

[
(2i−1) log

(
Φ

(
X(i)− X̄

S

))

+(2n+1−2i) log

(
1−Φ

(
X(i)− X̄

S

))]
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Installing the Package nortest
Approximate null distributions have been developed for all three metrics.

Goodness-of-Fit Techniques, (1986) ed. by R.B. D’Agostino and M.A. Stephens

Download nortest 1.0.zip from the class web site to the directory that houses

your R work space.

Under the R Packages menu item install this package.

This installation is done only once on your computer for the installed version of R.

After this installation you need to invoke library(nortest) in any R session that

wants to use the functions in the package nortest.

These functions are lillie.test, cvm.test and ad.test and you get

documentation on them by placing a ? in front of the respective function names,

e.g., ?lillie.test.
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Kolmogorov-Smirnov Test for Normality

> lillie.test(rnorm(7))

Lilliefors (Kolmogorov-Smirnov) normality test

data: rnorm(7)

D = 0.287, p-value = 0.08424

> lillie.test(runif(137))

Lilliefors (Kolmogorov-Smirnov) normality test

data: runif(137)

D = 0.0877, p-value = 0.01169
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Anderson-Darling Test for Normality

> ad.test(rnorm(10))

Anderson-Darling normality test

data: rnorm(10)

A = 0.4216, p-value = 0.2572

> ad.test(runif(30))

Anderson-Darling normality test

data: runif(30)

A = 0.8551, p-value = 0.02452
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Some Comments

For n = 8 QQ-plots can exhibit strong nonlinear patterns. It improves as n↗.

For large n one can still expect some fluctuating behavior in the tails. That is not
unusual and should not necessarily be construed as evidence of nonlinearity and

thus nonnormality.

Intuitively such sample tail fluctuations can be understood by the fact that near the

sample extremes the data are not hemmed in quite as strongly as they are in the

main part of the sample.

When QQ-plots are not clearly linear use formal EDF goodness-of-fit tests to clarify

the issue. However, even such tests may then give an ambiguous verdict.

Do both routinely, the QQ-plot for visual impression of the data and the EDF

goodness-of-fit test (sample selection bias would invalidate the p-values).
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Definition of the Noncentral t-Distribution

If Z ∼N (0,1) and V ∼ χ2
f are (statistically) independent then the ratio

Tf , δ =
Z +δ√

V/ f

is said to have a noncentral t-distribution with f degrees of freedom and

noncentrality parameter δ.

Although f ≥ 1 originally was intended to be an integer closely linked to sample

size, it is occasionally useful to extend its definition to any real f > 0.

The noncentrality parameter δ may be any real number.

The cdf of Tf , δ is denoted by G f , δ(t) = P(Tf , δ ≤ t).

δ = 0 =⇒ G f , 0(t) is the usual central or Student t cdf.
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Properties of the Noncentral t-Distribution
G f , δ(t) increases strictly from 0 to 1 as t increases from −∞ to +∞.

(standard property of any cdf with positive density)

G f , δ(t) decreases strictly from 1 to 0 as δ increases from −∞ to +∞.

G f , δ(t) = P

(
Z +δ√

V/ f
≤ t

)
= P

(
Z− t

√
V/ f ≤−δ .

)

We have the following identity relating G f ,−δ to G f ,δ

G f ,−δ(−t) = P

(
Z−δ√

V/ f
≤−t

)
= P

(
−Z +δ√

V/ f
≥ t

)

= P

(
Z +δ√

V/ f
≥ t

)
= 1−P

(
Z +δ√

V/ f
≤ t

)
= 1−G f ,δ(t)
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The Noncentral t-Distribution and δ
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The Noncentral t-Distribution and f
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Basic Normal Sample Situation

Assume X1, . . . , Xn ∼N (µ,σ2)

X̄ =
1
n

n

∑
i=1

Xi and S =

√
1

n−1

n

∑
i=1

(Xi− X̄)2 .

X̄ and S are statistically independent

X̄ ∼N (µ,σ2/n) or equivalently Z =
√

n(X̄−µ)/σ∼N (0,1)

V = (n−1)S2/σ2 ∼ χ2
f with f = n−1 degrees of freedom

V and Z are statistically independent.

21



Canonical Use of the Noncentral t-Distribution
All one–sample applications involving the noncentral t–distribution can be reduced

to calculating the following probability

γ = P(X̄−aS≤ b) .

X̄−aS≤ b ⇐⇒
√

n(X̄−µ)/σ−
√

n(b−µ)/σ

S/σ
≤ a
√

n ⇐⇒ Tf , δ

def
=

Z +δ√
V/ f

≤ a
√

n

with f = n−1, δ =−
√

n(b−µ)/σ, and with Z and V as defined previously in

terms of X̄ and S. Thus

γ = P(Tf , δ ≤ a
√

n) = G f , δ(a
√

n) .

Three of the four parameters n, a, δ and γ are usually given and the fourth needs

to be determined either by direct computation of G f , δ(t) or by root solving

techniques, using qnct or del.nct, or by iterative trial and error with n.

All referenced R functions are part of the work space provided on the web.
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The One-Sample t-Test
Assuming X1, . . . , Xn ∼N (µ,σ2) consider the following testing problem.

A hypothesis H : µ≤ µ0 is tested against the alternative A : µ > µ0.

The intuitive and in many ways optimal procedure rejects H in favor of A whenever
√

n(X̄−µ0)

S
≥ tn−1(1−α) or equivalently when X̄− tn−1(1−α) S√

n
≥ µ0 .

tn−1(1−α) is the (1−α)-percentile of the central t-distribution with n−1 df.

The test has chance ≤ α of rejecting H when µ≤ µ0, i.e., when H is true.

As will become clear below, the chance of rejection is < α when µ < µ0.

It is = α when µ = µ0.

Thus α is the maximum chance of rejecting H falsely,

i.e., the maximum type I error probability.
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The Power Function of the One-Sample t-Test

An important characteristic of a test is its power function, which is defined as the

probability of rejecting H as a function of (µ, σ), i.e.,

β(µ, σ) = Pµ, σ

(√
n(X̄−µ0)

S
≥ tn−1(1−α)

)
.

For µ > µ0 the value of 1−β(µ, σ) represents the probability of falsely accepting

H, i.e., the probability of type II error.

√
n(X̄−µ0)

S
=

√
n(X̄−µ)/σ+

√
n(µ−µ0)/σ

S/σ
=

Z +δ√
V/(n−1)

,

=⇒ β(µ, σ)= β(∆)=Pµ, σ

(√
n(X̄−µ0)

S
≥ tn−1(1−α)

)
= 1−Gn−1, δ(tn−1(1−α)) ,

strictly increasing in δ =
√

n(µ−µ0)/σ =
√

n∆ with ∆ = (µ−µ0)/σ.

24



Some Comments

With increasing n the noncentrality parameter δ can become arbitrarily large.

Thus we will reject H for any alternative µ > µ0 with probability increasing to 1,

no matter how close µ is to µ0 and no matter how large σ is.

Of course one should address the practical significance issue of any difference

µ−µ0 and weigh that against the cost of a large sample size.

In doing so, the magnitude of µ−µ0 would typically be judged in relation to the

inherent population variability σ.

β(µ,σ) = β(∆) depends on µ and σ only through ∆ = (µ−µ0)/σ.
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Minimum Sample Size Determination

What is the minimum sample size n to achieve power β for a specific ∆ = ∆1?

This also controls the type II error probability 1−β.

Problem: The power function depends on n not only through δ =
√

n∆1 but also

through the degrees of freedom in tn−1(1−α) and in the cdf Gn−1, δ.

The smallest n for which β(∆1) = β can be found through iteration, starting with a

crude initial guess ñ =
(
(zβ− zα)/∆1

)2
rounded up to the next integer.

Here zp denotes the p-quantile of the standard normal distribution.

This crude initial guess is based on treating the noncentral t-distribution as a N (δ,1)

distribution, which it approaches as n gets large.
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Crude Initial Guess

β(∆) = P∆

(√
n(X̄−µ0)

S
≥ k
)
≈ P∆ (Z +δ≥ k)

α = P∆=0 (Z +δ≥ k) = P(Z ≥ k)

=⇒ k = z1−α =−zα with zp = Φ−1(p).

β = P∆1 (Z +δ≥ k) = 1−Φ(k−
√

n∆1) =⇒ z1−β =−zβ = k−
√

n∆1

=⇒
√

n∆1 = zβ+ k = zβ− zα =⇒ n =

(zβ− zα

∆1

)2
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The R Function min.sample.size

The R function min.sample.size (available in the R work space) carries out this

iterative process and reports the initial ñ and resulting initial power, in addition to

the final n and its achieved power ≥ β.

Please study the implementation of min.sample.size.

This function also produces the following plots.

Similarly deal with the dual problem of testing the hypothesis H ′ : µ≥ µ0

against the alternative A′ : µ < µ0.

The modifications, which consist of reversing certain inequalities, e.g., rejecting H ′

when
√

n(X̄−µ0)/S≤ tn−1(α), are straightforward and are omitted.
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Sample Size Determination Plots
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Sample Size Determination Plots
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Two-Sided Alternatives
Testing H? : µ = µ0 against the alternative A? : µ 6= µ0 the relevant test

rejects H? in favor of A? whenever
√

n|X̄−µ0|
S

≥ tn−1(1−α/2) .

The power function β(µ,σ) of this test is

Pµ, σ

(√
n(X̄−µ0)

S
≤−tn−1(1−α/2) or

√
n(X̄−µ0)

S
≥ tn−1(1−α/2)

)
= Gn−1, δ(−tn−1(1−α/2))+1−Gn−1, δ(tn−1(1−α/2)) = β

?(µ, σ) ,

where δ =
√

n(µ−µ0)/σ.

The power function β?(µ, σ) = β?(|δ|) is strictly increasing in |δ|.

min.sample.size =⇒ minimum n for H ′ vs A′ and for H? vs A?.
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Variables Acceptance Sampling Plans

Quality control applications governed by MIL–STD–414 deal with

variables acceptance sampling plans (VASP).

In a VASP the quality of sampled items is measured on a quantitative scale.

An item is judged defective when its measured quality exceeds a certain threshold.

The samples are drawn randomly from a population of items.

Objective: Make inferences about the proportion of defectives in the population.

=⇒ acceptance or a rejection of the population quality as a whole.
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Meaning of Population
In various applications the term “population” can have different meanings.

It represents that collective of items from which the sample is drawn.

It could be a shipment, a lot or a batch or any other collective entity.

For the purpose of this discussion the term “population” will be used throughout.

Any batch, lot or shipment consists of items that come from a certain process.

If that process were to run indefinitely it would produce an infinite population of

such items. Thus the sampled items from the batch, lot or shipment could be

considered as a sample from that larger conceptual population.

If the sample indicates that something is wrong the producer would presumably

adjust the process appropriately.
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Assumptions
A VASP assumes that measurements (variables) X1, . . . , Xn for a random sample

of n items from a population are available.

Item i is defective⇐⇒ Xi < L, where L = given lower specification limit.

Or, item i is defective⇐⇒ Xi >U , where U = given upper specification limit.

The methodology of any VASP depends on the assumed underlying distribution for

the measured variables X1, . . . , Xn.

Here we assume that we deal with a random sample from a normal population with

mean µ and standard deviation σ.

The following discussion will be in terms of a lower specification limit L.

The corresponding procedure for an upper specification limit U is only summarized

without derivation.
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Consumer/Producer Interests
If L is a lower specification limit, then

p = p(µ,σ,L) = Pµ, σ (X < L) = Pµ, σ

(
X−µ

σ
<

L−µ
σ

)
= Φ

(
L−µ

σ

)
represents the probability that a random item in the population will be defective.

p can be interpreted as the proportion of defective items in the population.

It is in the consumer’s interest to keep the proportion p of defective items in the

population below a tolerable value p1.

Keeping the proportion p low is typically costly for the producer.

Hence the producer will try too keep p only so low as to remain cost effective but

sufficiently low as not to trigger too many costly rejections.

Hence the producer will aim for keeping p≤ p0 (< p1, in order to provide a

sufficient margin between producer and consumer interest).
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Producer Positioning

The consumer’s demand p≤ p1 does not specify how to accomplish this

in terms of µ and σ.

The producer can control p≤ p0 by either increasing µ sufficiently or by

reducing σ, provided µ > L.

Reducing σ is usually more difficult since sources of variation have to be

controlled more tightly.

Increasing µ is mainly a matter of biasing the process in some way and is

usually easier to accomplish.
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Corrective Options
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The Basic VASP Process
The standard VASP consists in computing X̄ and S from the obtained sample of n

items and in comparing X̄− kS with L for an appropriately chosen constant k.

If X̄− kS≥ L, the consumer accepts the population from which the sample was

drawn and otherwise it is rejected.

Rejection/acceptance is not based on the sample proportion of items with Xi < L.

Such classification ignores how far above or below L each measurement Xi is.

Basing decisions on just such attributes Xi < L or Xi ≥ L is much less effective

than using the values Xi in their entirety to estimate the underlying normal

population and from that get a better idea about p for much smaller sample size.

Attribute data should only be used when the direct measurements are not available

or not feasible. In that case one needs to employ attribute sampling plans based

on the binomial distribution, requiring typically much higher sample sizes.
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Consumer and Producer Risks
Due to the random nature of the sample there is some chance that the sample

misrepresents the population at least to some extent and thus may induce us to

take incorrect action.

The consumer’s risk is the probability of accepting the population when in fact the

proportion p of defectives in the population is greater than the acceptable limit p1.

The producer’s risk is the probability of rejecting the population when in fact the

proportion p of defectives in the population is ≤ p0.

The probability of acceptance for a given VASP(k) depends on µ,σ,L only through

p = Φ((L−µ)/σ), the proportion of defectives in the population.

This function will thus be denoted by γ(p). It is also known as

operating characteristic or OC–curve of the VASP.
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The OC-Curve

γ(p) can be expressed in terms of Gn−1, δ(t) as follows:

γ(p) = Pµ, σ (X̄− kS≥ L) = Pµ, σ

(√
n(X̄−µ)

σ
+

√
n(µ−L)

σ
≥ k
√

n
S
σ

)

= Pµ, σ

(
Z +δ√

V/(n−1)
≥ k
√

n

)
= P(Tn−1, δ ≥ k

√
n)

where the noncentrality parameter

δ = δ(p) =
√

n (µ−L)
σ

=−
√

n
L−µ

σ
=−
√

n Φ
−1(p) =−

√
n zp

depends on µ,σ and L only through p. This greatly streamlines such VASPs.
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The Choice of k for Consumer Risk
δ(p) =−

√
n zp ↘ in p =⇒ γ(p) = 1−Gn−1, δ(p)(k

√
n) ↘ in p

To control the consumer’s risk, γ(p) has to be kept ≤ β for p≥ p1.

Since γ(p) is decreasing in p, we need to insure γ(p1) = β by proper choice of k.

The factor k is then found by solving the equation

β = 1−Gn−1, δ(p1)
(k
√

n) for k, i.e., k = G−1
n−1, δ(p1)

(1−β)/
√

n .

This is accomplished in R by the command

k=qnct(1-beta,n-1,-sqrt(n)*qnorm(p1))/sqrt(n) ,

where beta= β and p1= p1. It is customary to choose β = .10.

qnct is not intrinsic to R, it was added by me to the supplied R work space.

OC.curve.n1 shows the resulting k and the OC-curve when n = 20.
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The Choice of k: Controlling Consumer Risk β
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The Choice of k for Producer Risk

This solves the problem as far as the consumer is concerned.

It does not address the producer’s risk requirements.

The producer’s risk is 1− γ(p), maximal for p≤ p0 at p = p0.

In the previous plot that risk is as high as .3575 when p0 ≤ .01.

The producer wants to limit 1− γ(p0) by some value α, customarily α = .05.

Solving

α = 1− γ(p0) = Gn−1, δ(p0)
(k
√

n) for k, i.e., k = G−1
n−1, δ(p0)

(α)/
√

n .

or k= qnct(alpha,n−1,−sqrt(n)∗qnorm(p0))/sqrt(n) ,

=⇒ different choice of k =⇒ a conflict. This is illustrated on the next slide.
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The Choice of k: Controlling Producer Risk α
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Conflict Resolution
This conflict can be resolved by leaving n flexible.

We then have two variables k and n to satisfy two inequalities

γ(p1)≤ β and γ(p0)≥ 1−α .

Find the smallest n. One slight problem: n is an integer.

Thus it may not be possible to satisfy both equations (in ≤ and ≥) exactly.

For a given value n find k = k(n) to solve γ(p1) = β.

If that k(n) also yields α≥ Gn−1, δ(p0)
(k(n)

√
n),

then n was possibly chosen too high and a lower value of n should be tried.

If we have α < Gn−1, δ(p0)
(k(n)

√
n),

then n was definitely chosen too small and a larger value of n should be tried next.
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Iteration

Through iteration find the smallest sample size n such that k(n) and n satisfy both

γ(p1)≤ β and γ(p0)≥ 1−α .

This iteration process will lead to a solution provided p0 < p1.

If p0 and p1 are too close to each other, very large sample sizes will be required.

Note that the search for the minimal sample size n does not involve L,µ and σ.

Only p0, p1,α and β are required.

Such a process is carried out by the R function OC.curve which also produces the

next plot, indicating the appropriate choice for n and k.
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Optimal Choice of n
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Some Comments

The VASP does not say how the producer accomplishes the value p≤ p0.

This is usually based on extensive testing or the producer’s broad experience.

=⇒ upper confidence bounds for P(X < L) based on sufficient data.

This is addressed in a later section.

Also, the consumer cannot set p1 arbitrarily low since there may not be a producer

that will deliver that quality or will deliver it only at exorbitant costs.
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Comparison with Attributes Acceptance Sampling Plan

We compare the VASP with the Attributes Acceptance Sampling Plan (AASP).

To understand the effect on the needed sample size n when all requirements

are kept at the same levels.

In an AASP the number X of defective items is counted and the population

is accepted when X ≤ k.

Here k and the smallest sample size n are determined such that for given p0 < p1

and α > 0, β > 0 with α+β < 1 we have

Pp1(X ≤ k)≤ β and Pp0(X ≤ k)≥ 1−α .

The AASP OC-curve on the next slide was produced by the R function OC.binom.
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AASP OC-Curve
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Zigzag Behavior of OCn(p0)
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Tolerance Bounds or Tolerance Limits

Tolerance bounds or tolerance limits are lower or upper confidence bounds

on population percentiles or quantiles.

We assume a normal population.

The p-percentile or p-quantile xp of N (µ,σ2) can be expressed as

xp = µ+ zp σ ,

where zp = Φ−1(p) is the p-quantile of the standard normal distribution.

The discussion will mainly focus on lower confidence bounds.

A 100γ% lower bound x̂p,L(γ) for xp is also a 100(1− γ)% upper bound for xp.

The lower confidence bound for xp is then computed as x̂p,L(γ) = X̄− kS

where k satisfies Pµ, σ(X̄− kS≤ xp) = γ for all (µ, σ).
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Finding the k-Factor
We have

Pµ, σ(X̄− kS≤ xp) = Pµ, σ

(√
n(X̄−µ)

σ
+

√
n(µ− xp)

σ
≤ k
√

n
S
σ

)

= Pµ, σ

(
Z +δ√

V/(n−1)
≤ k
√

n

)

= P(Tn−1, δ ≤ k
√

n) = Gn−1,δ(k
√

n)

where δ =−
√

n(xp−µ)/σ =−
√

nzp.

Thus solve Gn−1, δ(
√

nk) = γ for k =⇒ k = G−1
n−1, δ

(γ)/
√

n.

In R this is done by invoking the command

k= qnct(gam,n−1,−sqrt(n)∗qnorm(p))/sqrt(n) ,

where gam=γ. Avoid the variable name gamma in R since it is the intrinsic Γ-function.

53



Usage Background

In structural engineering the 95% lower bounds for x.01 and x.10 are called A- and

B-Allowables, respectively, and are mainly used to limit material strength properties

from below.

In the lumber industry the interest is in 75% lower bounds for x.05, see page 4 of

https://www.aitc-glulam.org/shopcart/Pdf/aitc_402-2005.pdf

402.4.8. Beam Performance. The beam strength 5% tolerance limit

with 75% confidence determined in accordance with ASTM D2915

shall be a minimum of 2.1 times the design value for the beam.

....
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Data Illustration

As an illustration we will use some data from MIL-HDBK-5J∗, see

http://www.weibull.com/mil std/mil hdbk 5j.pdf.

In particular, we will use the TUS (tensile ultimate strength) data set, designated

as Group 5 on page 9-165. It consists of n = 100 values, measured in

KSI (1000 pounds per square inch).

See m5dat5 in the referenced R work space.

∗Note that this file is about 68.5MB and consists of 1733 pages
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Test for Normality

The normal QQ-plot of this data set is shown on the next slide.

Produced by m5dat5.qqnorm, it shows no significant deviation from normality.

Formal tests for normality,

Lilliefors (Kolmogorov-Smirnov),

Cramér-von Mises, and

Anderson-Darling,

confirm this with p-values above .63 for all three discrepancy metrics.
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The Calculation of Allowables

The sample mean and standard deviation are X̄ = 145 and S = 4.469965, respec-

tively. The k-factors for A- and B-allowables are respectively

kA = qnct(.95,99,−sqrt(100)∗qnorm(.01))/sqrt(100) = 2.683957

and

kB = qnct(.95,99,−sqrt(100)∗qnorm(.1))/sqrt(100) = 1.526749

so that the A-and B-allowables are

A = x̂.01,L(.95) = X̄− kA×S = 145−2.683957×4.469965 = 133.0028

and

B = x̂.10,L(.95) = X̄− kB×S = 145−1.526749×4.469965 = 138.1755 .

The next slide shows these allowables in relation to the data and their histogram.
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Group 5 TUS Data
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Tail Probabilities

For a given threshold value x0 we are interested in the normal tail probability

p = p(x0) = p(x0,µ,σ) = Pµ, σ(X ≤ x0) = Φ

(
x0−µ

σ

)
.

For VASPs this came up as the probability p=P(X < L) of an item being defective.

Upper bounds for such probabilities p could give a producer the needed assurance

of having a proportion of defectives ≤ p0, the value used in setting up the VASP.

p̂ = Φ((x0− X̄)/S) is a natural estimate of p but it is not unbiased.

Constructing confidence bounds seems not so obvious.

Somehow one feels/suspects a connection with bounds on the p-quantile xp
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Left/Right Tail and Upper/Lower Confidence Bounds

If p̂U(γ) denotes an upper bound for p with confidence level γ, i.e., for all (µ, σ)

Pµ, σ(p̂U(γ)≥ p) = Pµ, σ(p̂U(x0,γ)≥ p(x0,µ,σ)) = γ ,

then we also have for all (µ, σ) Pµ, σ(p̂U(γ)≤ p) = 1− γ .

=⇒ p̂U(γ) = p̂L(1− γ) = p̂L(γ
′) also is a γ′ = (1− γ)-level lower bound for p.

If the upper tail probability q = 1− p of the normal distribution is of interest,

then q̂U(1− γ) = 1− p̂U(γ) is a γ-level lower bound for q

and thus a (1− γ)-level upper bound for q.

Thus it suffices to limit the discussion to upper confidence bounds for p.
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Monotone Quantile Bounds

Recall: X̄− kp(γ)S = X̄ +hγ(p)S is a 100γ% lower bounds for xp.

h(p) = hγ(p) =−kp(γ) is strictly increasing in p

thus has a well defined strictly increasing inverse h−1(·).

Proof: For p1 < p2 we have xp1 < xp2. Suppose that h(p1)≥ h(p2), then

γ = P(X̄ +h(p2)S≤ xp2) by definition of h(p) = hγ(p) =−kp(γ)

= P(X̄ +h(p1)S≤ xp2 +(h(p1)−h(p2))S)

≥ P(X̄ +h(p1)S≤ xp2) since (h(p1)−h(p2))S≥ 0

= P(X̄ +h(p1)S≤ xp1)+P(xp1 < X̄ +h(p1)S≤ xp2) = γ+δ > γ

since (X̄ ,S) has positive density over the half-plane R× (0,∞) and thus δ > 0.

=⇒ contradiction =⇒ our supposition must be wrong, i.e., =⇒ h(p1)< h(p2).
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Confidence Bounds by Inversion

Conceptually simple step =⇒ 100γ% upper confidence bounds for p(x), i.e.,

γ = P(X̄ +h(p)S≤ xp) = P(h(p)≤ (xp− X̄)/S) = P
(

p≤ h−1((xp− X̄)/S
))

for all p ∈ (0,1) and thus also for p = p(x) for all x ∈ R, i.e.,

γ = P
(

p(x)≤ h−1 ((x− X̄)/S)
)

since xp(x) = x.

Thus p̂Uγ(x) = h−1 ((x− X̄)/S) is a 100γ% upper confidence bound for p(x).

The only remaining practical problem is the calculation of h−1(y) for any y,

in particular for y = (x− x̄)/s, where (x̄,s) is the observed value of (X̄ ,S).
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A Characterization of h−1(y)

γ = P(X̄ +h(p)S≤ xp)

= P(X̄ +h(p)S≤ µ+ zpσ)

= P((X̄−µ)/σ+h(p)S/σ≤ zp)

= P(Z̄ +h(p)
√

V/(n−1)≤Φ
−1(p))

= P
(

Φ

(
Z̄ +h(p)

√
V/(n−1)

)
≤ p
)

for all p, hence also for p = h−1(y)

= P
(

Φ

(
Z̄ + y

√
V/(n−1)

)
≤ h−1(y)

)
Hence a = h−1(y) is the γ-quantile of the Φ

(
Z̄ + y

√
V/(n−1)

)
random variable.
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How to Find h−1(y)

To find a = h−1(y) we note that

γ = P
(

Φ

(
Z̄ + y

√
V/(n−1)

)
≤ a
)

= P
(

Z̄ + y
√

V/(n−1)≤Φ
−1(a)

)
= P

((√
nZ̄−

√
nΦ
−1(a)

)/√
V/(n−1)≤−

√
n y
)

= Gn−1,δ
(
−
√

n y
)

This equation needs to be solved for δ =−
√

nΦ−1(a) using del.nct.

Denote that solution by δ̂ then a = Φ(−δ̂/
√

n) = h−1(y) is our desired value.
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Using del.nct

This upper confidence bound is found by invoking the following R command

p̂Uγ(x) = pnorm(−del.nct(−sqrt(n)∗ (x−Xbar)/S,gam,n−1)/sqrt(n))

where gam= γ, Xbar= X̄ , S= S.

Again avoid gamma as a variable name.
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Relating p̂U(γ,x0) to x̂L(γ, p)
The upper bounds for left tail probabilities p(x) = P(X ≤ x) are just the inverse to

the lower bounds for the xp(x)-quantile and vice versa, see next slide.

Using a random sample of size n = 30 from N (µ,σ2) with µ = 100 and σ = 10,

it shows a QQ-plot of the sample, i.e., the ith smallest sample value X(i) is plotted

against the standard normal pi-quantile zpi, with pi = (i− .5)/n.

However, the markings on the abscissa are given in terms of p which makes it a

normal probability plot.

Expect X(i) ≈ xpi = µ+σzpi, expect an ≈ linear pattern when plotting X(i) vs zpi.

The line through the data is X̄ + zpS. The curve below that line represents either

the 95% lower bound for xp when read sideways from the curve at the p intercept,

or it represents the 95% upper bound p̂U(x) for the left tail probability p(x) when

read vertically down from the curve at the horizontal x intercept.
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Normal Probability Plot with Confidence Curve for x̂L(p) and p̂U(x)
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Some Comments

The binomial upper bound for P(X ≤ 80) = Φ((80−100)/2) = 0.02275 is based
on #{Xi ≤ 80}= 0 =⇒ qbeta(.95,1,30)=0.09503385.

This is lower than p̂U(80) = 0.1109 as obtained from X̄ and S,

The lowest sample value is somewhat high compared to the line X̄ + zpS. If it had

been ≤ 80 we would get an upper bound ≥ qbeta(.95,2,29) = 0.1485961.

1) Confidence bounds based on the same data but different methods are different.

2) Even if method A (based on X̄ and S) is generally superior to method B (binomial

method), it can happen (as in this instance) that the bound produced by B is

“better” than the bound produced by A. Both upper bounds are above 0.02275.

Interpret the 95% confidence curve point-wise, i.e., the probability for several such

upper bounds simultaneously covering their respective targets is < .95.
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Process Control Capability Indices

The process control capability indices CL, CU and Cpk are relatively new in

quality control applications. They are defined as

CL =
µ− xL

3σ
, CU =

xU −µ
3σ

and Cpk = min(CL,CU) ,

where xL and xU are given lower and upper specification limits.

Assume that process output X ∼N (µ,σ2).

Values CL ≥ 1, CU ≥ 1 and Cpk ≥ 1 indicate that the process output is at least 3σ

units on the safe side from any specification limit, since

CL ≥ 1 ⇐⇒ µ−3σ≥ xL

CU ≥ 1 ⇐⇒ µ+3σ≤ xU

Cpk ≥ 1 ⇐⇒ xL ≤ µ−3σ & µ+3σ≤ xU .
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Some Comments

Previous slide shows: there are many (µ,σ) for which these indices are are 1.

As σ↗ we need µ−L↗.

This does not work when we have a specification interval.

In order to have Cpk ≥ 1 we must have 6σ≤ xU − xL.

Typically the parameters µ and σ are unknown and only limited sample data,

say X1, . . . ,Xn, are available from this population (assumed normal).

We now address how to obtain lower confidence bounds for these indices.

Lower bounds are of primary interest here since it is typically desired to show that

the process capability index meets at least a certain threshold, say 1 or 4/3.
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Lower Confidence Bounds for CL
A natural estimate for CL is ĈL = (X̄− xL)/3S

It will be the basis for constructing 100γ% lower confidence limits for CL. We have

P
(

ĈL ≤ k
)

= P
(

X̄− xL
3S

≤ k
)

= P
(√

n(X̄−µ)/σ+
√

n(µ− xL)/σ

S/σ
≤ 3
√

nk
)

= P
(

Tn−1,3
√

nCL
≤ 3
√

nk
)
.

We define k = k(CL) as that unique number which for given CL solves

P
(

Tn−1,3
√

nCL
≤ 3
√

nk(CL)
)
= γ .

From the previously cited monotonicity properties of the noncentral t-distribution
we know that k(CL) is a strictly increasing function of CL. Thus we have

γ = P
(

ĈL ≤ k(CL)
)
= P

(
k−1(ĈL)≤CL

)
for all µ and σ.
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Lower Confidence Bounds for CL (cont.)

We can treat B̂L = k−1
(

ĈL

)
as a 100γ% lower confidence bound for CL.

How is B̂L actually computed for each such observed value ĉL of ĈL?

Rewrite the defining equation for k(CL) by taking CL = k−1(ĉL):

γ=P
(

Tn−1,3
√

nk−1(ĉL)
≤ 3
√

nk
(

k−1(ĉL)
))

=P
(

Tn−1,3
√

nk−1(ĉL)
≤ 3
√

nĉL

)
= γ .

If, for fixed ĉL, we solve the equation:

P
(

T
n−1,δ̂

≤ 3
√

nĉL

)
= γ

for δ̂, then we get the following expression for the observed value b̂L of B̂L:

b̂L = k−1 (ĉL)=
δ̂

3
√

n
= del.nct(3∗sqrt(n)∗cL.hat,gam,n−1)/(3∗sqrt(n)) ,

where gam= γ and cL.hat= ĉL.
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Lower Confidence Bounds for CU
In a similar fashion we develop lower confidence bounds for

CU =
xU −µ

3σ
, using its natural estimate ĈU =

xU − X̄
3S

.

P
(

ĈU ≤ k
)
= P

(
xU − X̄

3S
≤ k
)
= P

(
Tn−1,3

√
nCU
≤ 3
√

nk
)
.

We define k = k(CU) as that unique number which for given CU solves

P
(

ĈU ≤ k(CU)
)
= P

(
Tn−1,3

√
nCU
≤ 3
√

nk(CU)
)
= γ k(CU)↗ as CU ↗

=⇒ B̂U = k−1(ĈU) = 100γ% lower confidence bound for CU .

For an observed value ĉU of ĈU get the observed value b̂U of B̂U as δ̂/(3
√

n),

where δ̂ solves P
(

T
n−1,δ̂

≤ 3
√

n ĉU

)
= γ .

or b̂U = k−1 (ĉU)=
δ̂

3
√

n
= del.nct(3∗sqrt(n)∗cU.hat,gam,n−1)/(3∗sqrt(n)) ,

where gam= γ and cU.hat= ĉU .
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Lower Confidence Bounds for Cpk

Putting the bounds on CU and CL together, we can obtain (slightly conservative)

confidence bounds for the two-sided statistical process control parameter

Cpk = min(CL,CU) simply by taking B̂ = min
(

B̂L, B̂U

)
.

If CL ≤CU , i.e., Cpk =CL, then

P
(

min
(

B̂L, B̂U

)
≤min(CL,CU)

)
= P

(
min

(
B̂L, B̂U

)
≤CL

)
≥ P

(
B̂L ≤CL

)
= γ

and if CU ≤CL, i.e., Cpk =CU , then

P
(

min
(

B̂L, B̂U

)
≤min(CL,CU)

)
= P

(
min

(
B̂L, B̂U

)
≤CU

)
≥ P

(
B̂U ≤CU

)
= γ .
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Comments on Coverage Probability for Cpk Bounds

B̂ can be taken as lower bound for Cpk with confidence level at least γ.

The exact confidence level of B̂ is somewhat higher than γ for CL =CU

CL =CU when µ is the midpoint of the specification interval: µ = (CL+CU)/2.

As |µ− (CL+CU)/2| ↗ and as σ↘ in order to maintain a constant Cpk

then the actual confidence level of B̂ gets arbitrarily close to γ

Hence the confidence coefficient of B̂ is indeed γ.
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Getting the Message to Suppliers

The supplier may understand the meaning of Cpk

but not the impact of sampling uncertainty in Ĉpk, double whammy!

The following tables show the Ĉpk required to get a Cpk lower bound B̂

to come out at the desired value, given in the top row of that table.

For example, when n = 20 we need Ĉpk ≥ 1.298 in order to get B̂≥ 1,

i.e., to be 90% confident that the actual Cpk ≥ 1.

For n = 60 this margin can be pushed down to .150, about half of .298.

This should easily bring home the message that it pays to have a larger sample.

Of course, larger sample sizes do not guarantee better quality.

If the quality is poor we are likely to see small values of B̂ or even Ĉpk, i.e., < 1.

This becomes clearer as n↗. For small n it may hide that.
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Required Ĉpk: 90% Confidence
desired Cpk

n 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10 1.499 1.644 1.789 1.934 2.079 2.225 2.370 2.516 2.662 2.808 2.954
12 1.432 1.570 1.708 1.847 1.986 2.125 2.265 2.404 2.544 2.683 2.823
14 1.384 1.518 1.652 1.786 1.921 2.056 2.190 2.325 2.460 2.596 2.731
16 1.349 1.479 1.610 1.741 1.872 2.004 2.135 2.267 2.398 2.530 2.662
18 1.321 1.449 1.577 1.706 1.834 1.963 2.092 2.221 2.350 2.479 2.608
20 1.298 1.424 1.551 1.677 1.804 1.930 2.057 2.184 2.311 2.438 2.565
40 1.191 1.308 1.424 1.541 1.658 1.775 1.892 2.009 2.126 2.243 2.365
60 1.150 1.263 1.376 1.489 1.602 1.715 1.828 1.944 2.058 2.171 2.285
80 1.127 1.238 1.349 1.460 1.571 1.683 1.795 1.906 2.018 2.129 2.240

100 1.112 1.222 1.331 1.442 1.552 1.661 1.771 1.881 1.991 2.101 2.211
120 1.101 1.210 1.319 1.428 1.537 1.646 1.755 1.864 1.973 2.082 2.191
140 1.093 1.201 1.309 1.417 1.525 1.634 1.742 1.850 1.958 2.067 2.175
160 1.087 1.194 1.301 1.409 1.516 1.624 1.732 1.839 1.947 2.055 2.162
180 1.081 1.188 1.295 1.402 1.509 1.616 1.723 1.831 1.938 2.045 2.152
200 1.077 1.183 1.290 1.396 1.503 1.610 1.716 1.823 1.930 2.037 2.144
400 1.053 1.157 1.262 1.366 1.471 1.576 1.680 1.785 1.890 1.994 2.099

See http://www.boeing.com/companyoffices/doingbiz/supplier/d1-9000-1.pdf on page

196 in Boeing’s AQS D1-9000-1 Advanced Quality Systems Tools document for suppliers.
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Required Ĉpk: 95% Confidence

desired Cpk

n 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10 1.686 1.847 2.009 2.171 2.333 2.496 2.659 2.822 2.985 3.148 3.312
12 1.588 1.740 1.892 2.045 2.198 2.351 2.505 2.659 2.812 2.966 3.121
14 1.520 1.665 1.811 1.958 2.105 2.252 2.399 2.546 2.693 2.841 2.989
16 1.469 1.610 1.752 1.894 2.036 2.178 2.320 2.463 2.606 2.748 2.891
18 1.430 1.568 1.706 1.844 1.982 2.121 2.260 2.399 2.538 2.677 2.816
20 1.399 1.534 1.669 1.804 1.939 2.075 2.211 2.347 2.483 2.619 2.756
40 1.252 1.373 1.495 1.617 1.739 1.862 1.984 2.107 2.229 2.352 2.487
60 1.197 1.313 1.430 1.547 1.665 1.782 1.899 2.023 2.141 2.259 2.377
80 1.166 1.280 1.394 1.509 1.623 1.741 1.856 1.971 2.086 2.201 2.317

100 1.146 1.258 1.371 1.486 1.599 1.712 1.825 1.938 2.051 2.164 2.278
120 1.132 1.243 1.356 1.467 1.579 1.691 1.802 1.914 2.026 2.138 2.250
140 1.121 1.232 1.343 1.453 1.564 1.675 1.785 1.896 2.007 2.118 2.229
160 1.113 1.223 1.332 1.442 1.552 1.662 1.772 1.882 1.992 2.102 2.212
180 1.106 1.215 1.324 1.433 1.542 1.652 1.761 1.870 1.980 2.089 2.199
200 1.100 1.208 1.317 1.426 1.534 1.643 1.752 1.861 1.969 2.078 2.187
400 1.069 1.174 1.280 1.386 1.492 1.598 1.704 1.810 1.916 2.022 2.128
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Coefficient of Variation Confidence Bounds

Coefficient of variation = ratio of standard deviation to mean, i.e., as ν = σ/µ.

It expresses measurement variability relative to what is being measured.

We will instead give confidence bounds for its reciprocal ρ = 1/ν = µ/σ.

Reason: X̄ ≈ 0 in the natural estimate S/X̄ for ν could cause certain problems.

If the coefficient of variation is sufficiently small, usually the desired situation, then

the distinction between it and its reciprocal is somewhat immaterial since typical

bounds for ν can be inverted to bounds for ρ and vice versa.

This is easily recognized by the sign of the upper or lower bound, respectively.
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When Do We Have Problems?

If ρ̂L as lower bound for ρ is positive, then ν̂U = 1/ρ̂L is an upper bound for ν > 0.

If ρ̂U as upper bound for ρ is negative, then ν̂L = 1/ρ̂U is a lower bound for ν < 0.

In either case ρ is bounded away from zero which implies that the reciprocal

ν = 1/ρ is bounded.

If ρ̂L as lower bound for ρ is negative, then ρ is not bounded away from zero

and the reciprocal values could be arbitrarily large.

In that case ν̂U = 1/ρ̂L is useless as an upper bound for ν since no finite upper

bound on the values of ν can be derived from ρ̂L.
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Lower and Upper Bounds for ρ

To construct a lower confidence bound for ρ = µ/σ consider

√
n

X̄
S
=

√
n(X̄−µ)/σ+

√
nµ/σ

S/σ
= Tn−1, δ

with δ =
√

nµ/σ. =⇒ U = Gn−1, δ(
√

n X̄/S) = Gn−1, δ(Tn−1, δ)∼U(0,1)

γ = P(U ≤ γ) = P(Gn−1, δ(
√

n X̄/S)≤ γ) = P(δ̂L ≤ δ)

where δ̂L is the solution of Gn−1, δ̂L
(
√

n X̄/S)= γ

ρ̂L
def
= δ̂L/

√
n = del.nct(sqrt(n)∗Xbar/S,gam,n−1)/sqrt(n)

= 100γ% lower confidence bound for ρ = µ/σ. Here Xbar= X̄ and gam= γ.

To obtain an upper bound for ρ with confidence level γ one finds δ̂U as solution of

Gn−1, δ̂U
(
√

n X̄/S) = 1− γ

ρ̂U
def
= δ̂U/

√
n = del.nct(sqrt(n)∗Xbar/S,1−gam,n−1)/sqrt(n)

= 100γ% upper bound for ρ = µ/σ. Here Xbar= X̄ and gam= γ.
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Batch Effects

Eventually these methods were also used in the context of composite materials

where batch effects can be quite significant.

Chemical compositions change for each batch of material.

A good portion of the strength variation of tested specimens from that material

is due to the variation from batch to batch.

It does not help to have lots of observations from few batches!

At least in the early production stage the tendency is to make do with few batches.

Make up for this deficiency by sampling each batch many times (questionable!).
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Two Extreme Situations

1. The variation from batch to batch is insignificant.

Treat all specimen strengths as one big sample of size N = n1+ . . .+nk,

k is the number of batches involved

ni is the number of strength measurements from the ith batch.

2. Batch to batch variation� within batch variation

It is a wasted effort to have more than one observation per batch.

It is like writing down same observation ni times.

Having ni > 1 can only confirm variability mismatch.

Treating all N = n1+ . . .+nk as one large random sample greatly inflates

the “effective” sample size.
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Effective Sample Size Solution

This problem was addressed by Scholz and Vangel (1998) by interpolating

between these two extreme situations. See class web site for preprint.

The problem was reduced to that of a simple random sample with some

“effective” sample size N? somewhere between k and N.

N? reflects the ratio of within to between batch variability.

This reduced a rather messy situation in a simple and intuitive fashion

to the previous process for a pure random sample.

The effective sample size concept was intuitively very appealing to the customer.

Solutions were developed for tolerance bounds and capability index bounds.

We deal only with tolerance bounds here (see paper for the other bounds).
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Measurement Variation Model

Xi j = µ+bi+ ei j, j = 1, . . . ,ni, and i = 1, . . . ,k ,

where bi ∼ N (0,σ2
b) (between batch variation effect)

and ei j ∼ N (0,σ2
e) (within batch variation effects) .

bi and {ei j} are assumed to be mutually independent =⇒ Xi j ∼N (µ,σ2
b+σ2

e)

for j 6= j′ cov(Xi j,Xi j′) = cov(bi+ ei j,bi+ ei j′) = cov(bi,bi) = σ
2
b .

The correlation of two different observations within the same batch is

ρ =
cov(Xi j,Xi j′)√

var(Xi j)
√

var(Xi j′)
=

σ2
b

σ2
b+σ2

e

which can range anywhere within [0,1].
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Typical Industrial Statistics Example

The individual sample sizes ni from each batch can vary.

However, in developing the ultimate solution we were guided strongly by the special

case n1 = . . .= nk. Even in that case we invoked an interpolation approximation.

This was augmented with a further approximation (Satterthwaite) when allowing

the ni to be different.

Simulations validated these approximations as reasonable.

This problem arose when a supplier was trying to build his case based on one large

sample N = n1+ . . .+nk without accounting for the possible batch effects.

After confirming the significance of that effect it was essential to find a middle

ground, which was easily captured by the “effective sample size” concept.

It reduced the calculations in a simple manner to a previously accepted method.

88



Equivalent/Effective Sample Size
Conceptualize a pure random sample X?

1 , . . . ,X
?
N? from N (µ,σ2

b+σ2
e)

that carries the “same kind of information” as the original data.

N? then represents the “equivalent sample size.”

X̄ = ∑
B
i=1 ∑

ni
j=1 Xi j/N ∼N (µ,σ2

X̄) and X̄? = ∑
N?

i=1 X?
i /N? ∼N (µ,σ2

X̄?)

we choose N? to match the variances of X̄ and X̄?, i.e., find N? such that

var(X̄) = var

(
µ+

∑
k
i=1 nibi+∑

k
i=1 ∑

ni
j=1 ei j

N

)
= σ

2
b

k

∑
i=1

(ni
N

)2
+σ

2
e

1
N

= var(X̄?) =
σ2

b+σ2
e

N? .

=⇒ N? =

[
σ2

b
σ2

b+σ2
e

k

∑
i=1

(ni
N

)2
+

1
N

σ2
e

σ2
b+σ2

e

]−1

=

[
ρ

1
f +1

+(1−ρ)
1
N

]−1
,

where we write 1/( f +1) = ∑
k
i=1(ni/N)2 for reasons to become clear later.

Note that N? is the weighted harmonic mean of f +1 and N.
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Some Comments

ρ = 0 ⇒ N? = N and ρ = 1 ⇒ N? = f +1 ( = k when n1 = . . .= nk).

When n1 = . . .= nk the effective sample size formula for N? agrees with our

previous notion of what the effective sample size should be in these two

extreme situations, namely N and k.

N? may not be an integer, but an actual conceptual sample X?
1 , . . . ,X

?
N? is never

used in our procedure.

All calculations are based on the original batch data {Xi j}.
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Estimated Equivalent/Effective Sample Size

The within batch correlation ρ is unknown. Find reasonable estimates from the

data as follows. Compute the between batch and error sums of squares

SSb =
k

∑
i=1

ni

∑
j=1

(X̄i·− X̄)2 =
k

∑
i=1

ni(X̄i·− X̄)2 and SSe =
k

∑
i=1

ni

∑
j=1

(Xi j− X̄i·)
2 .

Take σ̂2
e = SSe/(N− k) as unbiased estimate of σ2

e and τ̂2 = SSb/(k−1) as

unbiased estimate of

τ
2 = σ

2
e +σ

2
b

N
k−1

(
1−

k

∑
i=1

(ni
N

)2
)

= σ
2
e +σ

2
b

N
k−1

f
f +1

.

⇒ σ̂2
b =

(
τ̂2− σ̂2

e

)
(k−1)( f +1)/(N f ) as unbiased estimate for σ2

b.

Redefine σ̂2
b = max(0, σ̂2

b), it will no longer be unbiased.

Estimate ρ by ρ̂ = σ̂2
b/(σ̂

2
b+ σ̂2

e).

This estimate is used in place of ρ in estimating N? by N̂? = N?(ρ̂).
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Tolerance Bounds with No Between Batch Variation

Here assume σb = 0 and σe > 0, i.e, ρ = 0,⇒ Xi j are mutually independent.

X̄ ∼N (µ,σ2/N) and SST = SSb+SSe = (N−1)S2 ∼ σ2 ·χ2
N−1

and both are independent of each other.

It was shown that 100γ% lower tolerance bounds are of the form X̄− k S, where k

k = k0(N) =
1√
N

tN−1,−zp
√

N,γ =

√
N−1

N
1√

N−1
tN−1,−zp

√
N,γ , (1)

where tN−1,−zp
√

N,γ is the γ-quantile of TN−1,−zp
√

N .
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No Within Batch Variation: Satterthwaite Approximation

Here assume σb > 0 and σe = 0, i.e, ρ = 1,

σ2 = σ2
b and all observations within each batch are identical.

⇒ SSe = 0, and thus S2 = SSb/(N−1).

Using Satterthwaite’s method approximate the distribution of SST = SSb by a ·χ2
g,

where a and g are determined to match mean and variance on either side.

⇒ g =
(1−∑w2

i )
2

∑w2
i −2∑w3

i +(∑w2
i )

2
and a =

N
g

σ
2
b

(
1−

k

∑
i=1

w2
i

)
=

N
g

σ
2
b

f
f +1

,

where wi = ni/N and summations are over i = 1, . . . ,k. (Notes Appendix A)

The Satterthwaite approximation is exact when the ni are all the same.

g can be approximated very well by f =
(

∑w2
i

)−1
−1. (Notes Appendix B)
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Tolerance Bounds: No Within Batch Variation

With f replacing g we have a≈ N σ2
b/( f +1) and we can treat

V 2 =
SST
a f

=
SSb
a f

= S2 (N−1)( f +1)
f N σ2

b

as an approximate χ2
f/ f random variable.

Further, X̄ ∼N (µ,τ2) with τ2 = σ2
b ·∑

k
i=1 w2

i = σ2
b/( f +1),

=⇒ Z =
√

f +1 (X̄−µ)/σb ∼N (0,1).

When all samples sizes ni are the same (= n), then f = k−1 and a = nσ2
b.

In that case SSb actually is exactly distributed like nσ2
b ·χ

2
k−1 and then SST = SSb

is independent of X̄ . When the samples sizes are not the same, then SST is

approximately distributed like the above chi-square multiple aχ2
f and the strict

independence property no longer holds. We will ignore this latter flaw in our

derivation below. The simulations show that this is of no serious consequence.
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Tolerance Bounds: No Within Batch Variation

Again we have

γ = P
(
X̄− k S≤ xp

)
= P

(√
f +1 (X̄−µ)

σb
−
√

f +1 (xp−µ)
σb

≤ k
√

f +1 S
σb

)

= P

(
Z− zp

√
f +1

V
≤ k

√
f N

N−1

)

= P

(
Tf ,−zp

√
f+1 ≤ k

√
f N

N−1

)
leading to

k = k1(N) =

√
N−1

N
1√

f
t f ,−zp

√
f+1,γ . (2)
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Tolerance Bounds: The Interpolation Step

We note the strong parallelism between equations (1) and (2) for the k-factor.

Common factor
√
(N−1)/N in both.

The rest of the expressions match via N ↔ f +1.

Note that the actual tolerance bound = X̄− kS in both these extreme cases.

For batch effect situations that are positioned between these two extreme cases

we propose to use the previously developed estimated effective sample size N̂? as

a simple interpolation between f +1 and N and use as k-factor in the general case

k?(N) =

√
N−1

N
1√

N̂?−1
tN̂?−1,−zp

√
N̂?,γ

.
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Batch Data

batch ni sample data X̄i·
1 1 50.5 50.5
2 1 50.2 50.2
3 4 50.7, 50.8, 51.4, 51.3 51.05
4 1 49.3 49.3
5 3 51.0, 51.2, 53.4 51.867
6 3 50.9, 51.6, 51.8 51.433
7 1 49.3 49.3
8 3 48.6, 48.2, 46.6 47.8
9 2 50.4, 49.9 50.15
10 2 48.2, 47.5 47.85
11 3 50.5, 48.2, 49.5 49.4
12 3 49.7, 51.4, 50.6 50.567
13 4 49.6, 51.1, 51.1, 52.5 51.075
14 4 48.4, 50.2, 48.8, 49.1 49.125
15 4 48.8, 49.8, 50.0, 50.5 49.775
16 5 49.3, 50.2, 49.8, 48.9, 48.7 49.38
17 4 49.3, 47.5, 49.4, 48.4 48.65
18 4 47.8, 47.7, 48.8, 49.9 48.55
19 3 50.0, 49.5, 49.3 49.6
20 4 48.5, 49.2, 48.3, 47.8 48.45
21 4 47.9, 49.6, 49.8, 49.0 49.075
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Batch Data
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Calculations of A-Allowables (Without Batch Effect)

The Table gives composite material property data for 21 batches.

=⇒ X̄ = 49.638 and S = 1.320.

Ignoring the batch effects and assuming that we deal with N = 63 independent

observations we obtain as k-factor for the A-allowable

kA = qnct(.95,63−1,−qnorm(.01)∗sqrt(63))/sqrt(63) = 2.793392

and thus A = X̄−kAS = 49.638−2.793392∗1.320= 45.95072 as A-allowable.

The data plot shows strong batch effects.

The above A-allowable may not be appropriate.
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Calculations of A-Allowables (Using N̂?)

When adjusting by the ”effective” sample size we obtain

SSb = 78.921 , SSe = 29.148 , f = 17.123 , σ̂
2
e = .6939 , σ̂

2
b = 1.093

and thus ρ̂ = .6116 and N? = 25.056. As k-factor for the A allowable we now get

kA = sqrt((63−1)/63)∗qnct(.95,25.056−1,
−qnorm(.01)∗sqrt(25.056))/sqrt(25.056−1) = 3.195986

and thus A = X̄− kAS = 49.638−3.195986∗1.320= 45.4193 as A-allowable.

If the threshold, against which these allowables are compared, had been 45 then

the allowables by either analysis fall on the same side of 45, namely above.

If the threshold had been 45.5 then the allowables fall on opposite sides of 45.5.

The one accounting for the batch effect falls a little bit short. This may be mainly

because of the “effective” sample size being too small.
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Closer Examination

The data plot suggests that the measured values stabilize from batch 14 onward.

Prior to that point the batch to batch variation seems quite strong.

Also, there may have been selective decisions on how many data points to gather,

depending on the first and/or second measurement in each batch.

Such a selection bias would put in doubt any of the calculations made so far.

If we disregard these first 13 batches and obtain an A-allowable from the remaining

8 batches with a total of 32 observations we find X̄ = 49.06875 (not much changed)

and S = 0.8133711 (quite a bit smaller) and the k-factor becomes

qnct(.95,32−1,−qnorm(.01)∗sqrt(32))/sqrt(32) = 3.033847

with resulting A-allowable A =49.06875-3.033847*0.8133711=46.60111.

Using the above interpolation method we find N? = 22.44343, kA = 3.243241

and A = 46.43079, which is not that much different from 46.60111 and both values

are significantly higher than the previous ones based on the full data set.
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Validation Simulation

Simulations of the above process were run for the corresponding bounds on Cpk.

Since these were not discussed here we will only show one plot.

For various magnitudes of batch effects we observed the coverage rate of these

bounds and found that the actual coverage came close to the nominal one,

if not a bit higher.

The coverage probability of the method that ignored the batch effect fell off strongly

as the batch variation became more and more dominant.

For details see the reference or the posted preprint.
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Tolerance Bounds in Regression

Applications of the noncentral t-distribution can easily be extended to

more complex data situations, such as to regression.

Standard linear regression model: Responses Y1, . . . ,Yn are observed under

respectively varying but known conditions x′1 =(x11, . . . ,x1p), . . ., x′n =(xn1, . . . ,xnp)

Yi = xi1β1+ . . .+ xipβp+ ei = x′iβ+ ei , i = 1, . . . ,n .

β1, . . . ,βp are unknown parameters, to be estimated from the data (Y1,x′1), . . . ,(Yn,x′n).

The terms e1, . . . ,en are the error terms that capture to what extent the observed

values Yi differ from the model values x′iβ.

It is typically assumed that these error terms are statistically independent with

common N (0,σ2) distribution, where the variance σ2 is also unknown, to be

estimated from the data as well.
104



A Composite Material Example

Consider the tensile strength of coupons of composite materials.

These consist of laminates, i.e., are built up from layers of lamina, typically using

lamina with varying fiber ply orientations, such as 90◦, 45◦ and 0◦.

Such laminates are usually characterized by the percent of lamina in each

orientation. Since these percentages have to add up to 100% it is only necessary

to specify k−1 = 2 percentages when k = 3 orientations are involved.

The response Y = the coupon tensile strength.

x = (x1,x2) gives the two percentages for lamina at 45◦ and 0◦ orientation.

In addition to the simple linear model in the covariates (x1,x2) one may also want

to explore any quadratic effects, i.e., x3 = x2
1,x4 = x2

2,x5 = x1x2.
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Testing Is Costly

Testing such coupons is costly.

Many possible lay-up orientation combinations make it prohibitive

to test all these combinations extensively.

Test coupons in moderate numbers for several such combinations, carefully chosen

to cover the space of lay-up percentages reasonably well.

Upfront it is not known which lay-up combination will give the best strength results.

It is entirely possible that coupons at such an optimal combination have not been

tested at all for the initial experiment. However, such test runs can be added later

in confirmatory testing or in order to tighten up the tolerance bounds.
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Sources of Variation

The full data set would then consist of (Y1,x11,x21), . . . ,(Yn,x1n,x2n).

For the quadratic model this expands to (Y1,x11, . . . ,x51), . . . ,(Yn,x1n, . . . ,x5n).

Much of the variation in the strength measurement Y comes from testing itself.

Both the orientation at which the stress is applied and the orientation of the coupon

as it is cut from the manufactured laminate can vary⇒ significant strength impact.

Other factors can cause response variation, e.g., chemical batch effects.

We confine ourselves to the pure regression model.

It should be possible to blend the batch effect methods with the

solution for this pure regression model.
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Matrix Notation

The pure regression model can be written more concisely in matrix notation

Y =


Y1
Y2
...

Yn

 =


x11β1+ . . .+ x1pβp
x21β1+ . . .+ x2pβp

...
xn1β1+ . . .+ xnpβp

+


e1
e2
...

en



=


x11 x12 . . . x1p
x21 x22 . . . x2p

... ... ...
xn1 xn2 . . . xnp




β1
β2
...

βp

+


e1
e2
...

en

= Xβ+ e .

It is usually assumed that n > p and that the matrix X is of full rank p, i.e.,

its p columns x1, . . . ,xp ∈ Rn are linearly independent.

This means that the equation a1x1+ . . .+apxp = 0 only admits the solution

a′ = (a1, . . . ,ap) = (0, . . . ,0) =⇒ p× p matrix X ′X has full rank p as well,

since X ′Xu = 0 =⇒ u′X ′Xu = 0 =⇒ Xu = 0 =⇒ u = 0.
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The Solution Process

=⇒ the equation X ′Xa = b has a unique solution a = (X ′X)−1b for each b.

Here (X ′X)−1 is the inverse matrix to X ′X .

A p× p matrix A is the inverse to a p× p matrix B if AB = I = Ip, where Ip is a

p× p matrix with 1’s on the diagonal and 0’s off the diagonal.

Multiplying the above matrix data model by X ′ and then by (X ′X)−1 we get

X ′Y = X ′Xβ+X ′e =⇒
(X ′X)−1X ′Y = (X ′X)−1X ′Xβ+(X ′X)−1X ′e

= β+(X ′X)−1X ′e

β̂ = β+(X ′X)−1X ′e where β̂ = (X ′X)−1X ′Y

β̂ is also known as the least squares estimate of β.
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The Least Squares Solution
β̂ is the vector β that minimizes the following sum of squares

n

∑
i=1

(Yi− xi1β1− . . .− xipβp)
2 =

n

∑
i=1

(Yi− x′iβ)
2

= (Y −Xβ)′(Y −Xβ) = (Y −X β̂+X β̂−Xβ)′(Y −X β̂+X β̂−Xβ)

= (Y −X β̂)′(Y −X β̂)+(Y −X β̂)′(X β̂−Xβ)

+(X β̂−Xβ)′(Y −X β̂)+(X β̂−Xβ)′(X β̂−Xβ)

= (Y −X β̂)′(Y −X β̂)+(X β̂−Xβ)′(X β̂−Xβ) (3)

since (Y −X β̂)′(X β̂−Xβ) = (Y −X(X ′X)−1X ′Y )′X(β̂−β)

= Y ′(X−X(X ′X)−1X ′X)(β̂−β) = Y ′(X−X)(β̂−β) = 0 .

The second term in (3) is minimized by taking β = β̂ as is seen from

(X β̂−Xβ)′(X β̂−Xβ) = (X(β̂−β))′X(β̂−β) = (β̂−β)′X ′X(β̂−β)≥ 0 ,

with equality if and only if X(β̂−β) = 0, i.e., if β̂−β = 0.

The other term in (3) does not depend on β.
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The Response Y (x0)
Y (x0) = (x01. . . . ,x0p)β+ e = x′0β+ e∼N (x′0β,σ2)

The natural estimate of x′0β is

Ŷ (x0)= x′0β̂= x′0β+x′0(X
′X)−1X ′e∼N (x′0β,σ2x′0(X

′X)−1x0)=N (µ(x0),τ
2(x0)) ,

where the mean µ(x0) = x′0β derives from the fact that E(ei) = 0 for i = 1, . . . ,n

and the variance expression τ2(x0) = σ2x′0(X
′X)−1x0 comes from

var(x′0(X
′X)−1X ′e) = var(u′e) = σ

2
n

∑
i=1

u2
i = σ

2u′u

= σ
2x′0(X

′X)−1X ′X(X ′X)−1x0 = σ
2x′0(X

′X)−1x0 .

The unknown parameter σ2 can be estimated by the unbiased estimator

S2 =
1

n− p

n

∑
i=1

(Yi− x′iβ̂)
2 =

1
n− p

n

∑
i=1

(Yi− Ŷi)
2 =

1
n− p

n

∑
i=1

ê2
i ,

Ŷi = x′iβ̂ = fitted values and êi = Yi− Ŷi = residuals, i = 1, . . . ,n.

(n− p)S2/σ2 ∼ χ2
n−p is independent of β̂, i.e., also independent of Ŷ (x0) = x′0β̂.
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Tolerance Bounds at x0
The p-quantile of the response Y (x0) is yp(x0) = µ(x0)+σzp

Its natural estimate is Ŷ (x0)+Szp. X̄− kS =⇒ Ŷ (x0)− k(x0)S.

Note that the k-factor here depends on x0.

Z =
Ŷ (x0)−µ(x0)

τ(x0)
=

Ŷ (x0)−µ(x0)

σ

√
x′0(X

′X)−1x0

∼N (0,1) and V =
S2(n− p)

σ2 ∼ χ
2
n−p

are independent. Abbreviating κ(x0) =
√

x′0(X
′X)−1x0 we continue with

γ = P(Ŷ (x0)− kS≤ yp(x0)) = P(Ŷ (x0)− kS≤ µ(x0)+σzp)

= P

(
Ŷ (x0)−µ(x0)−σzp

σκ(x0)
≤ kS

σκ(x0)

)
= P

(
Z− zp/κ(x0)√

V/(n− p)
≤ k

κ(x0)

)

= P
(

Tn−p,δ(x0)
≤ k/κ(x0)

)
= Gn−p,δ(x0)

(k/κ(x0)) , δ(x0) =−zp/κ(x0)

Thus k = κ(x0)G
−1
n−p,δ(x0)

(γ)= kappa∗qnct(gam,n−p,delta),
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reg.tolbd and poly.tolbd

The R workspace contains a function reg.tolbd that calculates such 100γ% lower

confidence bounds for yp(x0) for any specified (γ, p,x0).

The intercept covariate is not input into this function, it is created internally.

A 100(1− γ)% lower bound is a 100γ% upper bound for yp(x0)

The documentation to reg.tolbd is given in the function body.

poly.tolbd is tailored to polynomial fits using a univariate explanatory variable.

Yi = xi0β0+ xi1β1+ . . .+ xikβk + ei , with xi j = x j
i , j = 0,1, . . . ,k

The data are (x1,Y1), . . . ,(xn,Yn)

poly.tolbd has graphical output, see next slides.

Example data taken from Graybill (1976), pp. 274-276.
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Linear Fit
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Quadratic Fit
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