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Uses of the Noncentral #-Distribution

The noncentral t—distribution is intimately tied to statistical inference procedures for

samples from normal populations.

For simple random samples from a normal population the applications of the

noncentral t—distribution include (extendable to regression situations):

basic power calculations,
variables acceptance sampling plans (MIL-STD—414)

confidence bounds for
percentiles,
tail probabilities,
statistical process control parameters Cr, Cyy and C,; and for

coefficients of variation.



Checking Normality of a Sample

Xi,...,Xy, is a random sample from A (u, (52).
CDF F(x) = P(X; < x) = ®((x—u)/c) & density f(x) = F'(x) = ¢((x—u)/0) /0.

The p-quantile of A (u, %) is Xp = U-+0zZp, Zpisthe standard normal p-quantile.

Sort the sample X1, ..., X} inincreasing order X(l) <...< X(n) assigning fractional
ranks p; € (0,1) to these order statistics in one of several ways fori =1,...,n:

-5 i i—.375

.= or = or e .
Pi n pi n-+1 pi n-+.25

Plot X(;y against the standard normal p;-quantile z, = gnorm(pi) fori=1,...,n.
We would expect X(i) R Xp; = U+ OZp,, 1.€., X(l-) should look = linear against zp,

with intercept ~ u and slope ~ ¢. Judging approximate linearity takes practice.

The third choice for p; is used by R in ggnorm (x) for a given sample vector x.

ggline (x) (invoked after ggnorm (x)) fits a line to the middle half of the data.
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mal QQ-Plot: n =8
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Normal QQ-Plot: n = 16
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Normal QQ-Plot: n = 64
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Normal QQ-Plot: n = 256
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EDF-Based Tests of Fit

Judgment?? We can also carry out formal EDF-based tests of fit for normality.
Assume X|,.... X, ~F. TestHy:F(x)=®((x—u)/c) for some uand G.

The empirical distribution function (EDF) is defined as

1 n
Fa(x) = = ) Lo q(Xi) with I q(Xj)=10r0 as X;<xorX;>x.
i=1

F(x) is the proportion of sample values < x.
Law of Large Numbers (LLN) = F,(x) =3 F(x) forall x.
Compare Fy(x) with ' (x) = ®((x — X)/S) via some discrepancy metric D(F;, F).

Using the null distribution for D(F,, F') we reject Hy whenever D(F,, F) is too large.
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Empirical Distribution Function (EDF)

n(x) = here n =4, i.e., step size 1/4
n
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proportion of sample X; < x
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Comparison of EDF & CDF
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Comparing CDFs is not as fickle as comparing histograms with densities.

There is smoothing due to averaging.
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Discrepancy Metrics

e The Kolmogorov-Smirnov metric (local discrepancy)

p=max{|fu) - (*5 ) |}

e The Cramer-von-Mises metric (cumulative discrepancies)
— 2 —
©0 A _X 1 _X
W2:/ [Fn(x)—cb(x - )] E(p(x - ) dx with @(x) =@ (x)

e The Anderson-Darling metric (cumulative but sensitive to tail behavior)

S S

(-]

Computing these metrics seems challenging, but ...

AZ:/OO {Fn(x)_q)()%)} 1(P<X_X>dx
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Computational Formulas for Discrepancy Metrics

e The Kolmogorov-Smirnov metric

; Xy —X Xn—X _
D = max [max{l—cb< (0 )},max{Cb( (0 )—l 1}]
n S S n

e The Cramer-von-Mises metric

e The Anderson-Darling metric

B 1| Xi—X
Aznnizi[(Zzl)log(CI)( S >>
+(2n+1—2i)log (1 _ (X(i)SX ))
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Installing the Package nortest

Approximate null distributions have been developed for all three metrics.

Goodness-of-Fit Techniques, (1986) ed. by R.B. D’Agostino and M.A. Stephens

Download nortest_1.0.zip from the class web site to the directory that houses

your R work space.

Under the R Packages menu item install this package.

This installation is done only once on your computer for the installed version of R.

After this installation you need to invoke library (nortest) in any R session that

wants to use the functions in the package nortest.

These functions are 1illie.test, cvm.test and ad.test and you get
documentation on them by placing a ? in front of the respective function names,

e.g., ?lillie.test.
13



Kolmogorov-Smirnov Test for Normality

> lillie.test (rnorm(7))
Lilliefors (Kolmogorov-Smirnov) normality test

data: rnorm(7)
D = 0.287, p-value = 0.08424

> lillie.test (runif (137))
Lilliefors (Kolmogorov-Smirnov) normality test

data: zrunif(137)
D =0.0877, p-value = 0.01169
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Anderson-Darling Test for Normality

> ad.test (rnorm(10))
Anderson-Darling normality test

data: rnorm(10)
A = 0.4216, p-value = 0.2572

> ad.test (runif (30))
Anderson-Darling normality test

data: runif (30)
A = 0.8551, p-value = 0.02452
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Some Comments

For n = 8 QQ-plots can exhibit strong nonlinear patterns. It improves asn .

For large n one can still expect some fluctuating behavior in the tails. That is not
unusual and should not necessarily be construed as evidence of nonlinearity and

thus nonnormality.

Intuitively such sample tail fluctuations can be understood by the fact that near the
sample extremes the data are not hemmed in quite as strongly as they are in the

main part of the sample.

When QQ-plots are not clearly linear use formal EDF goodness-of-fit tests to clarify

the issue. However, even such tests may then give an ambiguous verdict.

Do both routinely, the QQ-plot for visual impression of the data and the EDF

goodness-of-fit test (sample selection bias would invalidate the p-values).
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Definition of the Noncentral 7-Distribution

f Z~N(0,1) and V ~ x? are (statistically) independent then the ratio

Z-+90

RN

is said to have a noncentral ¢-distribution with f degrees of freedom and

noncentrality parameter 0.

Although f > 1 originally was intended to be an integer closely linked to sample
size, it is occasionally useful to extend its definition to any real f > 0.

The noncentrality parameter d may be any real number.
The cdf of Ty 5 is denoted by G ¢ 5(t) = P(Tf § <1).

0=0 = Gy o(t) isthe usual central or Student ¢ cdf.
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Properties of the Noncentral ¢-Distribution

G 5(t) increases strictly from 0 to 1 as 7 increases from —oo to +-co.

(standard property of any cdf with positive density)

G (1) decreases strictly from 1 to 0 as 6 increases from —eo to oo,

s <t> :P(Z—t V/fé—s.)

Gf’S(t)P<m_

We have the following identity relating G, _5to G 5

Gy _g(—1) = P(Z_6 g—t>=P<_Z+62t>
| VV/If VVIf
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Basic Normal Sample Situation

Assume X1, ..., Xn ~ N (u,6?)

X and S are statistically independent

X ~ N (u,6%/n) orequivalently Z=/n(X —pu)/c~ N(0,1)
V=n- 1)52/62 ~ x% with f=mn—1 degrees of freedom

V and Z are statistically independent.

21



Canonical Use of the Noncentral 7-Distribution

All one—sample applications involving the noncentral t—distribution can be reduced

to calculating the following probability

Y=P(X—aS<bh).

_ X—u/o—+/nb—u)/oc Z+8
§/o VVIf

with f =n—1,8= —/n(b—u)/c, and with Z and V as defined previously in

terms of X and S. Thus

Y=P(T; 5 < ayn) = Gy, slav/n)

<ayn <= Ty

Three of the four parameters n, a, 6 and 'y are usually given and the fourth needs
to be determined either by direct computation of G 5(t) or by root solving

techniques, using gnct or del.nct, or by iterative trial and error with n.

All referenced R functions are part of the work space provided on the web.
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The One-Sample ¢-Test

Assuming X1, ..., Xn ~ N (u,02) consider the following testing problem.
A hypothesis H : u < ug is tested against the alternative A : u > ug.

The intuitive and in many ways optimal procedure rejects H in favor of A whenever
V(X — o) n1(1-0) S _

S Vi = 1o
t,—1(1 —a) is the (1 — a)-percentile of the central ¢-distribution with n — 1 df.

>t,_1(1—0a)  orequivalently when X —

The test has chance < « of rejecting H when u < g, i.e., when H is true.
As will become clear below, the chance of rejection is < o when u < up.
It is = oL when u = uy.

Thus o is the maximum chance of rejecting H falsely,

i.e., the maximum type | error probability.
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The Power Function of the One-Sample ¢-Test

An important characteristic of a test is its power function, which is defined as the

probability of rejecting H as a function of (u, ©), i.e.,

bl 0) = Buo (VI 51, i1 w)

For u > ug the value of 1 — B(u, o) represents the probability of falsely accepting

H,i.e., the probability of type Il error.

VX —po) X —p)/o+vnlu—m)/c ~ Z+38

S S/o VWV =1)

— Blu o) (&) =P (VT 2 (1200 ) =126y sln,1(1-0)),

strictly increasing in = 0 = /n(u—pup)/o =+/nA with A= (u—pup)/o.
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Some Comments

With increasing n the noncentrality parameter o can become arbitrarily large.

Thus we will reject H for any alternative u > ug with probability increasing to 1,

no matter how close u is to up and no matter how large o is.

Of course one should address the practical significance issue of any difference

u— up and weigh that against the cost of a large sample size.

In doing so, the magnitude of u — ugp would typically be judged in relation to the

inherent population variability ©.

B(u,0) = B(A) depends on u and G only through A = (u—up) /0.
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Minimum Sample Size Determination

What is the minimum sample size n to achieve power 3 for a specific A = A;?

This also controls the type Il error probability 1 — 3.

Problem: The power function depends on n not only through 6 = 1/nA but also

through the degrees of freedom in 7, | (1 — ) and in the cdf G,,_; 5.

The smallest n for which B(A;) = B can be found through iteration, starting with a

2
crude initial guess 7i = ((ZB — Zoc)/A1> rounded up to the next integer.
Here z, denotes the p-quantile of the standard normal distribution.

This crude initial guess is based on treating the noncentral ¢-distribution as a A((J, 1)

distribution, which it approaches as n gets large.
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Crude Initial Guess

U=Pr_(Z+6>k)=P(Z>k)

— k=21_q = —Za with zp:(b_l(p).

B="Pr (Z+8>k)=1-D(k—+/nA|) = z;_p=—z5=k—/nA

2
ZB_ZOL
— \/ﬁA1=ZB+k=ZB—Zo¢ — n= ( A )

27



The R Function min.sample.size

The R function min.sample.size (available in the R work space) carries out this
iterative process and reports the initial 77 and resulting initial power, in addition to

the final n and its achieved power > .
Please study the implementation of min. sample.size.
This function also produces the following plots.

Similarly deal with the dual problem of testing the hypothesis H' : u > ug

against the alternative A" : u < uy.

The modifications, which consist of reversing certain inequalities, e.g., rejecting H'

when /n(X —ug) /S <t,_1(a), are straightforward and are omitted.
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Two-Sided Alternatives

Testing H* : u = ug against the alternative A* : u # ug the relevant test
rejects H* in favor of A* whenever

VX — o

S Ztn—l(l_a/2)°

The power function B(u, ) of this test is

e (VE) <y 11— 0y2) or VO 5 1 ap2)

= Gy 1. 5( 11 (1= 0/2)) + 1= Gy _y 5111 0/2)) = B*(u, ©),

where & = \/n(u—pup)/o.
The power function B*(u, ) = B*(|9|) is strictly increasing in |J|.

min.sample.size = minimumn for H'vsA’ and for H* vs A*.
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Variables Acceptance Sampling Plans

Quality control applications governed by MIL-STD—414 deal with

variables acceptance sampling plans (VASP).

In a VASP the quality of sampled items is measured on a quantitative scale.

An item is judged defective when its measured quality exceeds a certain threshold.
The samples are drawn randomly from a population of items.

Objective: Make inferences about the proportion of defectives in the population.

—> acceptance or a rejection of the population quality as a whole.
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Meaning of Population

In various applications the term “population” can have different meanings.

It represents that collective of items from which the sample is drawn.

It could be a shipment, a lot or a batch or any other collective entity.

For the purpose of this discussion the term “population” will be used throughout.
Any batch, lot or shipment consists of items that come from a certain process.

If that process were to run indefinitely it would produce an infinite population of
such items. Thus the sampled items from the batch, lot or shipment could be

considered as a sample from that larger conceptual population.

If the sample indicates that something is wrong the producer would presumably

adjust the process appropriately.
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Assumptions

A VASP assumes that measurements (variables) X1, ..., Xj for a random sample

of n items from a population are available.
ltem i is defective <= X; < L, where L = given lower specification limit.
Or, item i is defective <= X; > U, where U = given upper specification limit.

The methodology of any VASP depends on the assumed underlying distribution for

the measured variables X1, ..., Xj.

Here we assume that we deal with a random sample from a normal population with

mean u and standard deviation G.
The following discussion will be in terms of a lower specification limit L.

The corresponding procedure for an upper specification limit U is only summarized

without derivation.
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Consumer/Producer Interests

If L is a lower specification limit, then

X—u L—u L—u
represents the probability that a random item in the population will be defective.
p can be interpreted as the proportion of defective items in the population.

It is in the consumer’s interest to keep the proportion p of defective items in the

population below a tolerable value p;.
Keeping the proportion p low is typically costly for the producer.

Hence the producer will try too keep p only so low as to remain cost effective but

sufficiently low as not to trigger too many costly rejections.

Hence the producer will aim for keeping p < pg (< p1, in order to provide a

sufficient margin between producer and consumer interest).
35



Producer Positioning

The consumer’s demand p < p1 does not specify how to accomplish this

in terms of u and ©.

The producer can control p < pg by either increasing u sufficiently or by

reducing o, provided u > L.

Reducing o is usually more difficult since sources of variation have to be

controlled more tightly.

Increasing u is mainly a matter of biasing the process in some way and is

usually easier to accomplish.
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Corrective Options
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The Basic VASP Process

The standard VASP consists in computing X and S from the obtained sample of n

items and in comparing X — kS with L for an appropriately chosen constant k.

If X — kS > L, the consumer accepts the population from which the sample was

drawn and otherwise it is rejected.
Rejection/acceptance is not based on the sample proportion of items with X; < L.
Such classification ignores how far above or below L each measurement X; is.

Basing decisions on just such attributes X; < L or X; > L is much less effective
than using the values X; in their entirety to estimate the underlying normal

population and from that get a better idea about p for much smaller sample size.

Attribute data should only be used when the direct measurements are not available
or not feasible. In that case one needs to employ attribute sampling plans based

on the binomial distribution, requiring typically much higher sample sizes.
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Consumer and Producer Risks

Due to the random nature of the sample there is some chance that the sample
misrepresents the population at least to some extent and thus may induce us to

take incorrect action.

The consumer’s risk is the probability of accepting the population when in fact the

proportion p of defectives in the population is greater than the acceptable limit p;.

The producer’s risk is the probability of rejecting the population when in fact the

proportion p of defectives in the population is < py.

The probability of acceptance for a given VASP(k) depends on u, o, L only through
p =®((L—u)/c), the proportion of defectives in the population.

This function will thus be denoted by y(p). It is also known as

operating characteristic or OC—curve of the VASP.
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The OC-Curve

Y(p) can be expressed in terms of G,,_; 5(t) as follows:

Y(p) = P/J,G(X—kSZL):Py76<\/ﬁ<X_'“>+ﬁ(H—L)>k\f§

o o o

o
= Huo <\/Vz/z;—1) >k\/ﬁ> =P(T,,_1,5 = kv/n)

where the noncentrality parameter

o ¢}

=—vn® (p)=—vnzp

depends on u, 6 and L only through p. This greatly streamlines such VASPs.

)
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The Choice of k for Consumer Risk
8(p)=—vnzp N inp = Y(p)=1-G,_ 5p)(kvn) \ inp
To control the consumer’s risk, y(p) has to be kept < 3 for p > py.

Since Y(p) is decreasing in p, we need to insure Y(p;) = B by proper choice of k.

The factor k is then found by solving the equation

_ - _ 1
B= l—Gn_LS(m)(k\/ﬁ) for k, i.e., k_Gn—l,S(pl)(l_B)/\/r_l'
This is accomplished in R by the command

k=qgnct (1-beta,n-1, -sqrt (n) *gqnorm(pl)) /sqrt (n) ,

where beta = 3 and p1 = p;. It is customary to choose § = .10.
gnct is not intrinsic to R, it was added by me to the supplied R work space.

OC.curve.nl shows the resulting k£ and the OC-curve when n = 20.
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The Choice of k: Controlling Consumer Risk 3
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The Choice of k for Producer Risk

This solves the problem as far as the consumer is concerned.

It does not address the producer’s risk requirements.

The producer’s risk is 1 —y(p), maximal for p < pg at p = py.

In the previous plot that risk is as high as .3575 when pp < .01.

The producer wants to limit 1 —y(pg) by some value o, customarily o = .05.

Solving

o=1-Ypo) =Gy, 5(py)(kv/n)  forkie, k=G, 5.

(0)/ V.

or k = qnct(alpha,n—1,—sqrt(n)*gnorm(p0))/sqrt(n),

— different choice of kK = a conflict. This is illustrated on the next slide.
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The Choice of k: Controlling Producer Risk o
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Conflict Resolution

This conflict can be resolved by leaving n flexible.

We then have two variables k and n to satisfy two inequalities

Y(p1) <P and Y(po) > 1—0.

Find the smallest n. One slight problem: n is an integer.

Thus it may not be possible to satisfy both equations (in < and >) exactly.

For a given value n find k = k(n) to solve y(p1) = P.
If that k(n) also yields o> Gy §(py) k(n)v/n),
then n was possibly chosen too high and a lower value of n should be tried.

If we have <Gy §(py) k(n)v/n),

then n was definitely chosen too small and a larger value of n should be tried next.
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lteration

Through iteration find the smallest sample size n such that k(n) and n satisfy both

Y(p1) <B and Y(po) > 1—o.

This iteration process will lead to a solution provided pg < pj.

If pg and py are too close to each other, very large sample sizes will be required.
Note that the search for the minimal sample size n does not involve L,u and o.
Only pg, p1, o and B are required.

Such a process is carried out by the R function OC. curve which also produces the

next plot, indicating the appropriate choice for n and k.
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Optimal Choice of n
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Some Comments

The VASP does not say how the producer accomplishes the value p < py.
This is usually based on extensive testing or the producer’s broad experience.
— upper confidence bounds for P(X < L) based on sufficient data.

This is addressed in a later section.

Also, the consumer cannot set p; arbitrarily low since there may not be a producer

that will deliver that quality or will deliver it only at exorbitant costs.
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Comparison with Attributes Acceptance Sampling Plan

We compare the VASP with the Attributes Acceptance Sampling Plan (AASP).

To understand the effect on the needed sample size n when all requirements

are kept at the same levels.

In an AASP the number X of defective items is counted and the population

is accepted when X < k.

Here k and the smallest sample size n are determined such that for given pg < pi
and o > 0, B > 0 with o+ < 1 we have

Py X<k)<Bp and Pp(X<k)>1-o.

The AASP OC-curve on the next slide was produced by the R function OC.binomn.
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Probability of Acceptance
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Tolerance Bounds or Tolerance Limits

Tolerance bounds or tolerance limits are lower or upper confidence bounds

on population percentiles or quantiles.
We assume a normal population.

The p-percentile or p-quantile x;, of A[(u, 62) can be expressed as

Xp=H+ZpO0,

where z, = <I>_1(p) is the p-quantile of the standard normal distribution.

The discussion will mainly focus on lower confidence bounds.

A 100y% lower bound £, 1 () for x), is also a 100(1 —y)% upper bound for x),.

The lower confidence bound for x, is then computed as £, .(y) =X —kS

where k satisfies Py o(X —kS <x,)=7y forall (u, o).
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Finding the k-Factor

We have
P o(X—kS<xp) = Pﬂ’6<\/ﬁ(i_u)+\/ﬁ(uﬁ_xp)Skfg)
_ Z+90
i P“"’(W/@—lf”)

— P(Tn—l, 5= k\/’;) — Gn—l,S(k\/ﬁ)
where 8 = —/n(x, —u) /6 = —/nzp.

Thussolve  G,_; s(v/nk)=y fork = k= G;_ll s(Y)/v/n.

In R this is done by invoking the command

k = qnct(gam,n—1,—sqrt(n) *qnorm(p))/sqrt(n),

where gam=Y. Avoid the variable name gamma in R since it is the intrinsic I"-function.
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Usage Background

In structural engineering the 95% lower bounds for x o; and x 1 are called A- and
B-Allowables, respectively, and are mainly used to limit material strength properties

from below.
In the lumber industry the interest is in 75% lower bounds for x 5, see page 4 of
https://www.aitc-glulam.org/shopcart/Pdf/aitc_402-2005.pdf

402.4.8. Beam Performance. The beam strength 5% tolerance limit
with 75% confidence determined in accordance with ASTM D2915

shall be a minimum of 2.1 times the design value for the beam.
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Data lllustration

As an illustration we will use some data from MIL-HDBK-5J*, see

http://www.weibull.com/mil_std/mil_hdbk_57.pdf.

In particular, we will use the TUS (tensile ultimate strength) data set, designated
as Group 5 on page 9-165. It consists of n = 100 values, measured in

KSI (1000 pounds per square inch).

See m5dat5 in the referenced R work space.

*Note that this file is about 68.5MB and consists of 1733 pages
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Test for Normality

The normal QQ-plot of this data set is shown on the next slide.

Produced by m5dat5. ggnorm, it shows no significant deviation from normality.

Formal tests for normality,
Lilliefors (Kolmogorov-Smirnov),
Cramér-von Mises, and
Anderson-Darling,

confirm this with p-values above .63 for all three discrepancy metrics.
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TUS Data (KSI)
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The Calculation of Allowables

The sample mean and standard deviation are X = 145 and S = 4.469965, respec-
tively. The k-factors for A- and B-allowables are respectively

kg = qnct(.95,99, —sqrt(100) *xqnorm(.01))/sqrt(100) = 2.683957
and

kp = qnct(.95,99, —sqrt(100) xgqnorm(.1))/sqrt(100) = 1.526749
so that the A-and B-allowables are

A=3010(.95) =X —ky x S = 145 — 2.683957 x 4.469965 = 133.0028

and

B=7%10.(.95) =X —kp x S = 145 — 1.526749 x 4.469965 = 138.1755 .

The next slide shows these allowables in relation to the data and their histogram.
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Tail Probabillities

For a given threshold value xg we are interested in the normal tail probability

xXo— U
p = plso) = plaos0) = Pl <x0) =@ (22

For VASPs this came up as the probability p = P(X < L) of an item being defective.

Upper bounds for such probabilities p could give a producer the needed assurance

of having a proportion of defectives < p(, the value used in setting up the VASP.
p=®((xg—X)/S) is a natural estimate of p but it is not unbiased.
Constructing confidence bounds seems not so obvious.

Somehow one feels/suspects a connection with bounds on the p-quantile x,
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Left/Right Tail and Upper/Lower Confidence Bounds

If py7(Y) denotes an upper bound for p with confidence level v, i.e., for all (u, o)

PH,G(ﬁU(Y) > p) — P,U, G(pAU(x07Y) > p(X(),,U,G)) =7,

then we also have for all (u, 6) Py c(pu(y) <p)=1-7.

— py(y) =pL(1—7v) = pL(Y) alsois ay = (1 —7)-level lower bound for p.

If the upper tail probability g = 1 — p of the normal distribution is of interest,
then quy(1—7y) =1—py(y) isay-level lower bound for g
and thus a (1 —7)-level upper bound for g.

Thus it suffices to limit the discussion to upper confidence bounds for p.
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Monotone Quantile Bounds

Recall: X —kp(7)S = X + hy(p)S is a 1007% lower bounds for x),.
h(p) = hy(p) = —kp(Y) is strictly increasing in p

thus has a well defined strictly increasing inverse A~ !1(-).

Proof: For p; < pp we have xj, < xp,. Suppose that &(p1) > h(p>), then

Y = PX+h(p2)S<xp,) by definition of /(p) = hy(p) = —kp(Y)
= P(X+h(p1)S < xp,+ (h(p1) —h(p2))S)
> P(X+h(p1)S < xp,) since (h(p1) —h(p2))S =0
= P(X+h(p1)S <xp,)+Pxp, <X+h(p))S<xp,) =y+3>7

since (X,S) has positive density over the half-plane R x (0,0) and thus & > 0.
— contradiction = our supposition must be wrong, i.e., = h(p;) < h(p3).
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Confidence Bounds by Inversion

Conceptually simple step = 100Y% upper confidence bounds for p(x), i.e.,

y=P(X+h(p)S < xp) = P(h(p) < (xp=X)/S) = P (p < h™" ((x, = X)/5) )

for all p € (0,1) and thus also for p = p(x) for all x € R, i.e.,

Y=P (p(x) <n! ((x—X)/S)) since x,,(y) = X.

Thus pyy(x) = h1((x—X)/S) is a 1007% upper confidence bound for p(x).

The only remaining practical problem is the calculation of 27! (y) for any y,

in particular for y = (x — x) /s, where (%, s) is the observed value of (X,S).
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A Characterization of 4! (v)

Y = PX+h(p)S<xp)
= P(X+h(p)S <u+2zp0)
= P((X—p)/o+h(p)S/c <zp)
(Z+

(X —
Z+h(p)V/V/(n—1) <> L(p))
_ ( (Z+hp\/V/n—1))§p)

I
~

for all p, hence also for p = h~1(y)

— P (CID (Z+y\/V/(n— 1)) < h_l()’))

Hence a = h~!(y) is the y-quantile of the ® (Z+y\/V/(n - 1)) random variable.
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How to Find A~ 1(y)

To find @ = A~ !(y) we note that

Y = P(cI>(Z+y\/V/(n—1))ga)
— p(Z+yW/(n—1)gq>—1(a))
= P((Viz—vne(a)) [ VV/n=1) < —vny)
= G, 15(=vny)

This equation needs to be solved for § = —/n® 1 (a) using del.nct.

Denote that solution by & then a = ®(—8/+/n) = h~1(y) is our desired value.
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Using del.nct

This upper confidence bound is found by invoking the following R command

Puy(x) = pnorm(—del.nct(—sqrt(n) * (x —Xbar)/S,gam,n—1)/sqrt(n))

where gam= ", Xbar= X, S=§.

Again avoid gamma as a variable name.
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Relating ﬁU(y, xo) to XAL(va)

The upper bounds for left tail probabilities p(x) = P(X < x) are just the inverse to

the lower bounds for the x

p(x)-quantile and vice versa, see next slide.

Using a random sample of size n = 30 from A((u, %) with u = 100 and & = 10,
it shows a QQ-plot of the sample, i.e., the i smallest sample value X(l-) is plotted

against the standard normal p;-quantile z,., with p; = (i —.5) /n.

However, the markings on the abscissa are given in terms of p which makes it a

normal probability plot.
Expect X(,-) R Xp; = U+ OZp,, expect an ~ linear pattern when plotting X(l-) VS Zp;.

The line through the data is X +zpS. The curve below that line represents either
the 95% lower bound for x,, when read sideways from the curve at the p intercept,
or it represents the 95% upper bound py;(x) for the left tail probability p(x) when

read vertically down from the curve at the horizontal x intercept.
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Normal Probability Plot with Confidence Curve for £7,(p) and py (x)
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Some Comments

The binomial upper bound for P(X < 80) = ®((80 — 100)/2) = 0.02275 is based
on#{X; <80} =0 = gbeta(.95,1,30)=0.09503385.

This is lower than  py(80) =0.1109 as obtained from X and S,

The lowest sample value is somewhat high compared to the line X +2pS. If it had

been < 80 we would get an upper bound > gbeta(.95,2,29) = 0.1485961.

1) Confidence bounds based on the same data but different methods are different.
2) Even if method A (based on X and S) is generally superior to method B (binomial
method), it can happen (as in this instance) that the bound produced by B is

“better” than the bound produced by A. Both upper bounds are above 0.02275.

Interpret the 95% confidence curve point-wise, i.e., the probability for several such

upper bounds simultaneously covering their respective targets is < .95.
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Process Control Capability Indices

The process control capability indices Cz, Cy and Cp, are relatively new in
quality control applications. They are defined as

.U;(:L , CU = XU3;'U and Cpk = min(CL,CU) ,

where x;, and x; are given lower and upper specification limits.

CL =

Assume that process output X ~ N(,u,GZ).
Values Cp, > 1, Cy > 1 and C),; > 1 indicate that the process output is at least 36
units on the safe side from any specification limit, since

CL>1 < u—-30>x
Cy>1 < u+3c<xy

Coppz>21l — xy<pu—36 & u+3c<xy.
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Some Comments

Previous slide shows: there are many (u, ) for which these indices are are 1.
Asc ~“weneedu—L "

This does not work when we have a specification interval.

In order to have C),;, > 1 we must have 66 < xyy —xr.

Typically the parameters u and ¢ are unknown and only limited sample data,

say Xi,...,Xp, are available from this population (assumed normal).
We now address how to obtain lower confidence bounds for these indices.

Lower bounds are of primary interest here since it is typically desired to show that

the process capability index meets at least a certain threshold, say 1 or 4/3.
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Lower Confidence Bounds for Cy
A natural estimate for Cy is C; = (X —x7) /38

It will be the basis for constructing 100Y% lower confidence limits for C;. We have

P (GL < k) _ P (X;SXL < k)
p (VIS )17

We define k = k(Cy,) as that unique number which for given Cy, solves

P(T,o13ymc, <3VAK(CL)) =7

From the previously cited monotonicity properties of the noncentral z-distribution
we know that k(Cy) is a strictly increasing function of Cy. Thus we have

Y=P (CA’L < k(CL)) =P (k_l((/f\L) < CL) for all u and ©.
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Lower Confidence Bounds for C; (cont.)

We can treat §L =K1 (C\L) as a 100y% lower confidence bound for 7.

How is §L actually computed for each such observed value ¢, of CA’L’?

Rewrite the defining equation for k(Cy.) by taking C;, = k—1(¢1):

y:P( REN = <3fk( ())) P( REW = <3\ch):

I, for fixed ¢, we solve the equation:

P(T 16<3\/CL)

n—

for g then we get the following expression for the observed value I3L of §L:

F

~ 0
b =k~ ! (¢1) = =——==del.nct(3*sqrt(n)*cL.hat,gam,n—1)/(3*sqrt(n)),

3vn

where gam=Yyand cL.hat=¢[.
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Lower Confidence Bounds for Cyy

In a similar fashion we develop lower confidence bounds for

— PR _X
Cy = xU36 s : using its natural estimate Cy = ngs .
xy — X
P(Cu<k) =P ("5 <k) =P(T, 13m0, <3Vk).

We define k = k(Cy) as that unique number which for given Cyy solves
P(Cu<k(Cw)) =P (T, 15 mcy <3VAkCY)) =1 K(Cy) / as Cy

— By =k~ 1(Cy) = 1007% lower confidence bound for Cy;.
For an observed value ¢y of Cpy get the observed value by of By as g/(3\/ﬁ)

where & solves P ( no18 S <3y/n cU)

AN

~ R )
or by= k1 (cy) ==—==del.nct(3*sqrt(n)«cU.hat,gam,n—1)/(3*sqrt(n)),

3v/n
where gam= Y and cU.hat= {.
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Lower Confidence Bounds for C ),

Putting the bounds on Cyy and C;, together, we can obtain (slightly conservative)
confidence bounds for the two-sided statistical process control parameter

Cpi = min (Cr,Cy) simply by taking B = min (§L,§U) :

It C; <y, i.e., Cpk = (y, then

P (min (B\LaB\U) < min (CL,CU)) = P (min (B\L,EU) < CL)

andif Cy <y, i.e., Cpk = Cy, then

P (min (§L7§U) < min (CL,CU)) = P (min (EL, AU) < CU>
<

1V

~
~—~

Q>
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Comments on Coverage Probability for C,,; Bounds

B can be taken as lower bound for Cpi With confidence level at least 7.
The exact confidence level of B is somewhat higher than yfor C;, = Cyy
Cr, = Cy when u is the midpoint of the specification interval: u = (Cr,+ Cy ) /2.

As |u—(CL+Cy)/2| ~ andas o™ inorderto maintain a constant C,

then the actual confidence level of B gets arbitrarily close to y

Hence the confidence coefficient of B is indeed .
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Getting the Message to Suppliers

The supplier may understand the meaning of C,;

but not the impact of sampling uncertainty in €, double whammy!

The following tables show the C’pk required to get a Cpk lower bound B

to come out at the desired value, given in the top row of that table.

For example, when n = 20 we need C’pk > 1.298 in order to get B>1,
i.e., to be 90% confident that the actual Cp; > 1.

For n = 60 this margin can be pushed down to .150, about half of .298.

This should easily bring home the message that it pays to have a larger sample.
Of course, larger sample sizes do not guarantee better quality.

If the quality is poor we are likely to see small values of B or even C’pk, e, < 1.

This becomes clearer as n . For small n it may hide that.
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Required épk: 90% Confidence

desired Cpy

n 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10 | 1.499 1644 1.789 1934 2.079 2225 2370 2516 2.662 2.808 2.954
12 | 1432 1570 1.708 1.847 1986 2125 2265 2404 2544 2683 2.823
14 |1 1384 1518 1.652 1.786 1.921 2.056 2.190 2.325 2460 2.596 2.731
16 | 1.349 1479 1610 1.741 1872 2.004 2135 2267 2398 2530 2.662
18 | 1.321 1449 1577 1.706 1.834 1963 2.092 2221 2350 2479 2.608
20 | 1.298 1424 1551 1.677 1804 1.930 2.057 2184 2.311 2438 2.565
40 | 1191 1.308 1.424 1541 1658 1.775 1.892 2.009 2.126 2.243 2.365
60 | 1.150 1263 1376 1489 1602 1.715 1828 1944 2058 2171 2.285
80 | 1.127 1238 1349 1460 1571 1683 1.795 1906 2.018 2.129 2.240
100 | 1.112 1222 1331 1.442 1552 1661 1.771 1881 1991 2101 2.211
120 | 1101 1.210 1319 1428 1537 1646 1.755 1864 1973 2.082 2.191
140 | 1.093 1.201 1309 1417 1525 1.634 1.742 1850 1.958 2.067 2.175
160 | 1.087 1.194 1301 1409 1516 1.624 1.732 1.839 1.947 2.055 2.162
180 | 1.081 1.188 1295 1.402 1509 1.616 1.723 1.831 1.938 2.045 2.152
200 | 1.077 1183 1290 139 1.503 1.610 1.716 1.823 1.930 2.037 2.144
400 | 1.053 1.157 1262 1366 1471 1576 1680 1.785 1890 1.994 2.099

Seehttp://www.boeing.com/companyoffices/doingbiz/supplier/d1-9000-1.pdf on page
196 in Boeing’s AQS D1-9000-1 Advanced Quality Systems Tools document for suppliers.
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Required épk: 95% Confidence

desired Cpy

n 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

10 | 1.686 1.847 2.009 2171 2333 2496 2659 2.822 2985 3.148 3.312
12 | 1.588 1.740 1.892 2.045 2.198 2351 2505 2659 2812 2966 3.121
14 | 1520 1.665 1.811 1958 2105 2252 2399 2546 2693 2.841 2.989
16 | 1469 1610 1.752 1894 2036 2178 2320 2463 2.606 2.748 2.891
18 | 1430 1.568 1.706 1.844 1982 2121 2260 2.399 2538 267/ 2.816
20 | 1.399 1534 1669 1804 1939 2075 2211 2347 2483 2619 2.756
40 | 1.252 1373 1495 1617 1739 1862 1984 2107 2229 2.352 2.487
60 | 1.197 1313 1430 1547 1665 1.782 1.899 2.023 2.141 2259 2377

80 | 1.166 1280 1.394 1509 1.623 1.741 185 1971 2.086 2.201 2.317
100 | 1.1146 1258 1371 1486 1599 1.712 1825 1938 2.051 2.164 2.2/8
120 | 1.132 1.243 1356 1.467 1579 1.691 1802 1914 2026 2.138 2.250
140 | 1121 1232 1.343 1453 1564 1.675 1.785 1.896 2.007 2.118 2.229
160 | 1.113 1223 1332 1442 1552 1.662 1.772 1882 1992 2102 2212
180 | 1.106 1.215 1324 1433 1542 1652 1.761 1870 1980 2.089 2.199
200 | 1.100 1.208 1317 1426 1534 1643 1.762 1861 1969 2.07/8 2.187

400 | 1.069 1174 1280 1386 1492 1598 1.704 1810 1916 2.022 2.128
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Coefficient of Variation Confidence Bounds

Coefficient of variation = ratio of standard deviation to mean, i.e., as v = G/,u.
It expresses measurement variability relative to what is being measured.

We will instead give confidence bounds for its reciprocal p = 1/v = u/a.
Reason: X ~ 0 in the natural estimate S/X for v could cause certain problems.

If the coefficient of variation is sufficiently small, usually the desired situation, then
the distinction between it and its reciprocal is somewhat immaterial since typical

bounds for v can be inverted to bounds for p and vice versa.

This is easily recognized by the sign of the upper or lower bound, respectively.
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When Do We Have Problems?

If p;. as lower bound for p is positive, then ¥y = 1/p is an upper bound for v > 0.
If pyy as upper bound for p is negative, then V; = 1/py is a lower bound for v < 0.

In either case p is bounded away from zero which implies that the reciprocal

v = 1/p is bounded.

If o7, as lower bound for p is negative, then p is not bounded away from zero

and the reciprocal values could be arbitrarily large.

In that case Vyy = 1/py is useless as an upper bound for v since no finite upper

bound on the values of v can be derived from fy.
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Lower and Upper Bounds for p

To construct a lower confidence bound for p = u/c consider

X _ VnX-—p)/o+nu/c
\/ﬁg_ S/c =15

with 8 = Vnu/6. = U=G,_| 5(vV/nX/S) =G, 1 5(T,_1,5) ~U(0,1)
Y=P(U <¥) = P(Gy1,5(VnX/S) <7) = P(5, <3
where & is the solution of G, SL(\/E)_(/S) =y

Pr def 81//n = del.nct(sqrt(n) «Xbar/S,gam,n — 1)/sqrt(n)

= 100y% lower confidence bound for p = u/G. Here Xbar= X and gam=.

To obtain an upper bound for p with confidence level y one finds SU as solution of

Gn_l,SU(\/ﬁX/S) =1-y

Pu def Sy /+/n = del.nct(sqrt(n)«Xbar/S,1 — gam,n—1)/sqrt(n)

= 100Y% upper bound for p = u/c. Here Xbar= X and gam= Y.
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Batch Effects

Eventually these methods were also used in the context of composite materials
where batch effects can be quite significant.

Chemical compositions change for each batch of material.

A good portion of the strength variation of tested specimens from that material

is due to the variation from batch to batch.

It does not help to have lots of observations from few batches!

At least in the early production stage the tendency is to make do with few batches.
Make up for this deficiency by sampling each batch many times (questionable!).
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Two Extreme Situations

1. The variation from batch to batch is insignificant.
Treat all specimen strengths as one big sample of size N =n| +... +ng,
k is the number of batches involved

n; is the number of strength measurements from the i batch.

2. Batch to batch variation > within batch variation

It is a wasted effort to have more than one observation per batch.

It is like writing down same observation n; times.
Having n; > 1 can only confirm variability mismatch.

Treating all N = ny + ...+ n; as one large random sample greatly inflates

the “effective” sample size.
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Effective Sample Size Solution

This problem was addressed by Scholz and Vangel (1998) by interpolating

between these two extreme situations. See class web site for preprint.

The problem was reduced to that of a simple random sample with some

“effective” sample size N* somewhere between k and M.
N* reflects the ratio of within to between batch variability.

This reduced a rather messy situation in a simple and intuitive fashion

to the previous process for a pure random sample.
The effective sample size concept was intuitively very appealing to the customer.

Solutions were developed for tolerance bounds and capability index bounds.

We deal only with tolerance bounds here (see paper for the other bounds).
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Measurement Variation Model

Xij=u+bi+ej;, j=1,...,n;; and i=1,... k,
where  b; ~ N(O,G%) (between batch variation effect)

and  e;; ~ 9\[(0,63) (within batch variation effects) .

b; and {¢;;} are assumed to be mutually independent = X;; ~ 57\[(;1,6[% +02)

for j £ j cov(X;j, X; 1) = cov(bi+e;j,bi+e;i1) =cov(b;,b;) = G% :

The correlation of two different observations within the same batch is

cov(X;;, X; ) 0]%

)
var(X;;) /var(X; ) o} +0;

which can range anywhere within [0, 1].
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Typical Industrial Statistics Example

The individual sample sizes n; from each batch can vary.

However, in developing the ultimate solution we were guided strongly by the special

case n| = ... = ng. Even in that case we invoked an interpolation approximation.

This was augmented with a further approximation (Satterthwaite) when allowing

the n; to be different.
Simulations validated these approximations as reasonable.

This problem arose when a supplier was trying to build his case based on one large

sample N = n; + ... 4+ n without accounting for the possible batch effects.

After confirming the significance of that effect it was essential to find a middle

ground, which was easily captured by the “effective sample size” concepit.

It reduced the calculations in a simple manner to a previously accepted method.
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Equivalent/Effective Sample Size

Conceptualize a pure random sample X7, ..., X, from A (u, (5% + Gg)
that carries the “same kind of information” as the original data.

N™ then represents the “equivalent sample size.”
X=X YL Xij/N~N(u,05) and X+ =10 X /N* ~ N(1,0%.)

we choose N* to match the variances of X and X*, i.e., find N* such that

_ Zi’c—lnibi‘i‘Z;{—ery_leij TN 1
var(X) = Var<,u—|— — — = 26% (—l) +02—
N =N N
2 2
_ O, +0O
b
= var(X") = ——

Gl% k (ni)Z 1 o2

2 N N <2
c;+02/ =1 \N/  Noj;+032

zlpLHl—p)H_l

:}N*:
f+1

where we write 1 /(f+1) = Zé‘zl (nj/N)? for reasons to become clear later.

Note that N* is the weighted harmonic mean of f+ 1 and N.
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Some Comments

P=0= N"=Nandp=1= N"=f+1 (=k whenn;=...=ng).

When ny = ... = ny, the effective sample size formula for N* agrees with our
previous notion of what the effective sample size should be in these two

extreme situations, namely N and k.

N* may not be an integer, but an actual conceptual sample X7, ..., Xy is never

used in our procedure.

All calculations are based on the original batch data {X;;}.
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Estimated Equivalent/Effective Sample Size

The within batch correlation p is unknown. Find reasonable estimates from the

data as follows. Compute the between batch and error sums of squares

k
SSb—ZZX ~X)*=Y m(X. —-X)* and SSe—ZZ i —Xi.)?
=1

i=1j= i=1j=
Take 62 = SS. /(N — k) as unbiased estimate of 62 and 4> = §S;,/(k— 1) as

unbiased estimate of
k

N ni\ 2 N f
2 5 5 Z l 52 52
B 1 ( ) B )
t b _ 1< . N ) € bk—lf—l—l

=1

= 6% = (%2 — 63) (k—1)(f+1)/(N f) as unbiased estimate for G]%.

Redefine 6% = max(O,cASlz)), it will no longer be unbiased.

Estimate p by p = 6]%/(6,% +62).
This estimate is used in place of p in estimating N* by N* = N*(p).
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Tolerance Bounds with No Between Batch Variation

Here assume 6, =0 and 6, > 0, i.e, p =0, = X;; are mutually independent.

X ~ A((11,6%/N) and SS7 = SSj, + S = (N — 1)S2 ~ 6% %3,_,

and both are independent of each other.

It was shown that 100Y% lower tolerance bounds are of the form X — k S, where k

k= ko(N) = — Syl 1
o O( )_ﬁtN_la_Zp\/Nay_ N 1/N_1Z’N_17_Zp\/ﬁay’ ()

where tN—l,—zp\/N,y is the y-quantile of TN—l,—zp\/ZV'
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No Within Batch Variation: Satterthwaite Approximation

Here assume 6, >0 and 6, =0, i.e,p =1,
62 = G% and all observations within each batch are identical.

= SS. =0, and thus §* =SS,/ (N —1).

Using Satterthwaite’s method approximate the distribution of SS7 =SS, by a - xg,

where a and g are determined to match mean and variance on either side.
1 —Y w?)? N N
= g= 5 ( 23’) 75 and a——Gb 1—Zw = ;%L,
Yws =2y w4+ (Lwy) g f+

where w; = n;/N and summations are over i = 1,...,k. (Notes Appendix A)

The Satterthwaite approximation is exact when the n; are all the same.

—1
g can be approximated very well by f = (Zwiz) — 1. (Notes Appendix B)
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Tolerance Bounds: No Within Batch Variation

With f replacing g we have a ~ NG]%/(f—F 1) and we can treat

y2_SST _85p _ @ (N=1)(f+1)
af af ch%

as an approximate x% / f random variable.

Further, X ~ A((u,7%) with T2 = G]% : Zé‘zl w? = G%/(f%— 1),
= Z=f+1(X—p)/op~N(0,1).

When all samples sizes n; are the same (=n),then f =k—1anda = ncsi.

In that case S5, actually is exactly distributed like nG[% -x,%_l and then $S7 =S5,
is independent of X. When the samples sizes are not the same, then SS7 is
approximately distributed like the above chi-square multiple ax? and the strict
independence property no longer holds. We will ignore this latter flaw in our

derivation below. The simulations show that this is of no serious consequence.
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Tolerance Bounds: No Within Batch Variation

Again we have

_ 1 (X— V+1(xp,— kv/f+1S8
Y=P(X—-kS<xp) = P( f+c5,(9 W _ VS Gixp ‘u>_ J;b >
(ZZp\/f+1 fN)
= P < ky | ——
1% N—1
fN

leading to

N—-1 1
k=ki(N)= N T tf,—Zp\/m,Y' (2)
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Tolerance Bounds: The Interpolation Step

We note the strong parallelism between equations (1) and (2) for the k-factor.

Common factor /(N —1)/N in both.

The rest of the expressions matchvia N « f+ 1.

Note that the actual tolerance bound = X — &S in both these extreme cases.

For batch effect situations that are positioned between these two extreme cases
we propose to use the previously developed estimated effective sample size N* as

a simple interpolation between f +1 and N and use as k-factor in the general case

oy N1
N =N ot WV
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Batch Data

batch n; sample data Xi.

1 1 50.5 50.5

2 1 50.2 50.2

3 4 50.7,50.8,51.4,51.3 51.05
4 1 493 49.3

5 3 51.0,51.2,53.4 51.867
6 3 50.9,51.6,51.8 51.433
7 1 493 49.3

8 3 48.6,48.2,46.6 47.8

9 2 50.4,49.9 50.15
10 2 48.2,47.5 47.85
11 3 50.5,48.2,49.5 49.4
12 3 49.7,51.4,50.6 50.567
13 4 49.6,51.1,51.1,52.5 51.075
14 4 48.4,50.2,48.8, 49.1 49.125
15 4 48.8,49.8,50.0, 50.5 49.775
16 5 49.3,50.2,49.8,48.9,48.7 49.38
17 4 49.3,47.5,49.4,484 48.65
18 4 47.8,47.7,48.8,49.9 48.55
19 3 50.0,495, 493 49.6
20 4 485,49.2,48.3,47.8 48.45
21 4 47.9,49.6,49.8,49.0 49.075
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Calculations of A-Allowables (Without Batch Effect)

The Table gives composite material property data for 21 batches.
—> X =49.638 and S = 1.320.

Ilgnoring the batch effects and assuming that we deal with N = 63 independent

observations we obtain as k-factor for the A-allowable

kg =qnct(.95,63 — 1, —gnorm(.01) x sqrt(63))/sqrt(63) = 2.793392
andthus A = X — ks S = 49.638 — 2.793392 % 1.320 = 45.95072 as A-allowable.

The data plot shows strong batch effects.
The above A-allowable may not be appropriate.
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Calculations of A-Allowables (Using N*)

When adjusting by the “effective” sample size we obtain

SSp, =78.921, S8S,=129.148, [f=17.123, 6% =.6939, 6,=1.093
and thus p = .6116 and N* = 25.056. As k-factor for the A allowable we now get
ky = sqrt((63—1)/63)*qnct(.95,25.056 —1,
—qnorm(.01) xsqrt(25.056))/sqrt(25.066 — 1) = 3.195986
and thus A = X — ks S = 49.638 — 3.195986 % 1.320 = 45.4193 as A-allowable.

If the threshold, against which these allowables are compared, had been 45 then

the allowables by either analysis fall on the same side of 45, namely above.

If the threshold had been 45.5 then the allowables fall on opposite sides of 45.5.
The one accounting for the batch effect falls a little bit short. This may be mainly

because of the “effective” sample size being too small.
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Closer Examination

The data plot suggests that the measured values stabilize from batch 14 onward.

Prior to that point the batch to batch variation seems quite strong.

Also, there may have been selective decisions on how many data points to gather,
depending on the first and/or second measurement in each batch.

Such a selection bias would put in doubt any of the calculations made so far.

If we disregard these first 13 batches and obtain an A-allowable from the remaining
8 batches with a total of 32 observations we find X = 49.06875 (not much changed)
and § = 0.8133711 (quite a bit smaller) and the k-factor becomes

qnct(.95,32 — 1, —qnorm(.01) xsqrt(32))/sqrt(32) = 3.033847
with resulting A-allowable A =49.06875-3.033847*0.8133711=46.60111.

Using the above interpolation method we find N* = 22.44343, k4 = 3.243241
and A = 46.43079, which is not that much different from 46.60111 and both values

are significantly higher than the previous ones based on the full data set.
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Validation Simulation

Simulations of the above process were run for the corresponding bounds on C .
Since these were not discussed here we will only show one plot.

For various magnitudes of batch effects we observed the coverage rate of these
bounds and found that the actual coverage came close to the nominal one,

if not a bit higher.

The coverage probability of the method that ignored the batch effect fell off strongly

as the batch variation became more and more dominant.

For details see the reference or the posted preprint.
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observed confidence observed confidence observed confidence

observed confidence

0.80 0.90 1.00 0.70 0.80 0.90 1.00 0.70 0.80 0.90 1.00 0.70 0.80 0.90 1.00

0.70

5 batches of sizes 2 & 3 each

| average effective total sample size
1 22.6 19.6 16.5 13.6 11.3 9.6
i rho :
0‘.0 012 014 016 018 110
15 batches of sizes 2 & 3 each
| average effective total sample size
1 69.9 578 468 __________ 3 89332 28.8
i rho
0‘.0 012 014 016 018 110
5 batches of sizes 3& 5 each
| average effective total sample size
184 266 »»»»»»»»» %?.5 14.8 11.6 9.4
i rho o N N
o‘.o 012 014 016 018 110
15 batches of sizes 3 &5 each
| average effective total sample size
1 1109 761 541 41T 337 28.2
N N
| rho s S~ N

observed confidence observed confidence observed confidence

observed confidence

0.80 0.90 1.00 0.70 0.80 0.90 1.00 0.70 0.80 0.90 1.00 0.70 0.80 0.90 1.00

0.70

10 batches of sizes 2 & 3 each

average effective total sample size
4 46 38.7 31.7 26.2 22.2 19.2
| rho
0.0 0.2 0.4 0.6 0.8 1.0
20 batches of sizes 2 & 3 each
average effective total sample size
4 93.9 77.6 62.5 51.9 44.2 38.5
| rho
0.0 0.2 0.4 0.6 0.8 1.0
10 batches of sizes 3 &5 each
average effective total sample size
4 732 51.7 37 28.3 22.7 18.8
> N
N
- N
N
| rho N
0.0 0.2 0.4 0.6 0.8 1.0
20 batches of sizes 3 &5 each
average effective total sample size
4 1491 100.2 71.4 55.2 44.8 37.6
i rho T~ -
0.0 0.2 0.4 0.6 0.8 1.0
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Tolerance Bounds in Regression

Applications of the noncentral ¢-distribution can easily be extended to

more complex data situations, such as to regression.

Standard linear regression model: Responses Y7, ...,Y, are observed under

respectively varying but known conditions x’1 = (X115 s X1p)s -+ o X = (Xp1s-- s Xnp)

Yl-:xilﬁl—|—...—l—xip[5p+ei:x§[5—|—e,-, i=1,...,n.

B1,...,Bp are unknown parameters, to be estimated from the data (¥1,x}), ..., (Yu,Xy,).

The terms ey, ..., e, are the error terms that capture to what extent the observed

values Y; differ from the model values x’.

It is typically assumed that these error terms are statistically independent with

2

common A((0,6?) distribution, where the variance 62 is also unknown, to be

estimated from the data as well.
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A Composite Material Example

Consider the tensile strength of coupons of composite materials.

These consist of laminates, i.e., are built up from layers of lamina, typically using

lamina with varying fiber ply orientations, such as 90°, 45° and 0°.

Such laminates are usually characterized by the percent of lamina in each
orientation. Since these percentages have to add up to 100% it is only necessary

to specify k — 1 = 2 percentages when k = 3 orientations are involved.
The response Y = the coupon tensile strength.
x = (x1,x2) gives the two percentages for lamina at 45° and 0° orientation.

In addition to the simple linear model in the covariates (x1,x2) one may also want

to explore any quadratic effects, i.e., x3 = x%,x4 = x%,x5 = X1X?.
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Testing Is Costly

Testing such coupons is costly.

Many possible lay-up orientation combinations make it prohibitive

to test all these combinations extensively.

Test coupons in moderate numbers for several such combinations, carefully chosen

to cover the space of lay-up percentages reasonably well.
Upfront it is not known which lay-up combination will give the best strength results.

It is entirely possible that coupons at such an optimal combination have not been
tested at all for the initial experiment. However, such test runs can be added later

in confirmatory testing or in order to tighten up the tolerance bounds.
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Sources of Variation

The full data set would then consist of (Y1,x11,%21),---» (Y, X152, X25)-
For the quadratic model this expands to (Y1,x11,---,X51)s- s (Vs X105 - -, X55)-
Much of the variation in the strength measurement Y comes from testing itself.

Both the orientation at which the stress is applied and the orientation of the coupon

as it is cut from the manufactured laminate can vary = significant strength impact.
Other factors can cause response variation, e.g., chemical batch effects.
We confine ourselves to the pure regression model.

It should be possible to blend the batch effect methods with the

solution for this pure regression model.
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Matrix Notation

The pure regression model can be written more concisely in matrix notation

Yy x11B1+ -+ x1Bp el
y=| 2| = X2151+--.-+X2p5p | @
Yy, Xp1B1 4. +XHPBP €n

X11 X12 .- Xip By e

B X21 X22 ... X2p B2 4 €2 = XB+e.

It is usually assumed that n > p and that the matrix X is of full rank p, i.e.,

its p columns x1,...,x, € R" are linearly independent.

This means that the equation ajx + ...+ apx, = 0 only admits the solution
d = (ay,...,ap) =(0,...,0) = p x p matrix X’X has full rank p as well,

since X'Xu=0 = uX'Xu=0 — Xu=0 — u=0.

108



The Solution Process

— the equation X’Xa = b has a unique solution a = (X’X) ™15 for each b.

Here (X'X) ™! is the inverse matrix to X'X.

A p X p matrix A is the inverse to a p X p matrix B if AB =1 = Ip, where I, is a

p X p matrix with 1's on the diagonal and O’s off the diagonal.

Multiplying the above matrix data model by X’ and then by (X’X)~! we get

XY =XXBp+X'e =
X'x)"'xy = X'X)7X'XBp+ (X'x)"'Xe
= B+(X'X)"Xe

B=PB+(X'X)"'X'e where p=xX'x)"'X"Y

A

B is also known as the least squares estimate of f3.
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The Least Squares Solution

B is the vector 3 that minimizes the following sum of squares

Xn:(Yi_inBI _xlpo Xn: Y — XB

i=1 i=1
= (Y =XB)'(Y —XB) = (¥ —XB+XB—XB)'(Y - XB+Xp—XB)
= (Y =XB)(¥ —XB)+ (¥ —XB)'(xB—XB)
+(XB—XB)' (Y —XB) + (XB— XB)'(XB — XB)

= (Y —XB)'(Y —XB)+(XB—XB)'(XB—XB) (3)

A

since (Y —XB)(XB—XPB) =¥ —x(X'X)"'X'Y)'X(B—B)
= V(X -X(X'X)"'XX)B-B) =Y (X -X)(B-B)=0.
The second term in (3) is minimized by taking p = [3 as is seen from

(XB—XB) (XB—XB)=(X(B—PB)X(B-B)=B-B)X'X(B-p)>0,
with equality if and only it X(B—PB) =0, i.e., it B—p = 0.

'@>

The other term in (3) does not depend on f.
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The Response Y (x()
Y (x0) = (x01-- -, X0p) B+ € = xpB + e ~ N(xB, 6°)
The natural estimate of x( is

¥ (x0) = x0B = xpB+x5 (X'X) ™' Xe ~ N (3B, 67xp(X'X) ' xg) = A ((x0), 7 (x0)) ,
where the mean u(xg) = x( derives from the fact that E(e;) =0 fori=1,...,n

and the variance expression t2(xp) = G xO(X X)~Lxy comes from
Var(xé)(X/X)_lX'e) = var(de) 2Zu = 6%uu

= oXxj(X'X)” IXX(XX) xo = 6xp(X'X) 7!

The unknown parameter 62 can be estimated by the unbiased estimator
n 1 n R 1 n >

(Y; — e:
i—1 S n—p i; l - P i; l

7; = x| = fitted values and &; = Y; — ¥; = residuals, i = 1,.

(n—p)S?/c% ~ x%_p is independent of B, i.e., also independent of ¥ (xp) = x6B.
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Tolerance Bounds at x(

The p-quantile of the response Y (xg) is y,(xg) = u(xp) + 02p
Its natural estimate is ¥ (xg) +Szp. X —kS = ¥ (xq) — k(x)S.

Note that the k-factor here depends on x.

Y(x0) —pu(xg) ¥ (x0) —u(xo)
Z= _ ~N(0.1
’C(XO) G\/Xé(X’X)_lx ( )

are independent. Abbreviating k(xg) = \/xé(X’X )~Ixg we continue with
Y=P(¥(x0) —kS < yp(x0)) = P(¥ (xo) — kS < u(x9) + 02p)

_ o (Yo)—pxo)—0zp _ kS \ _(Z—zp/x(xo) _ K

-7 ( ox(r) - m<<x0>> - (Wmn_p) = K(x0)>

= P (T o) < K/5(0)) = G pisag (k/K(0)) - B(x0) = ~2p/x(x0)

Thus k = K(x())Gn_1 8(x0) (7)= kappa*qgnct(gam,n —p,delta),
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reg.tolbd and poly.tolbd

The R workspace contains a function reg. tolbd that calculates such 100Y% lower

confidence bounds for y,(xq) for any specified (7, p,xg).

The intercept covariate is not input into this function, it is created internally.
A 100(1 — )% lower bound is a 100Y% upper bound for y,(xo)

The documentation to reg.tolbd is given in the function body.

poly.tolbd is tailored to polynomial fits using a univariate explanatory variable.

Y; = xjoBo+xi1B1+... +xpBr+ei, with x;;=1x/, j=0,1,... .k

The data are (x1,Y}),..., (xn,Yy)
poly.tolbd has graphical output, see next slides.

Example data taken from Graybill (1976), pp. 274-276.
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Linear Fit
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Quadratic Fit
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