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1 Problem Description

The following geometric problem arose in an actuator design situation and was posed
to me by Neal Huynh who also provided the illustration in Figure 1. We have a
triangle with legs A, R and B. The angle between A and R is denoted by θ. A and R
are subject to some manufacturing variation with tolerance specifications A ∈ A0±TA

and R ∈ R0±TR. The leg B, representing the actuator, can be adjusted such that the
angle θ agrees exactly with a specified value θ0. Once θ = θ0 is achieved the actuator
is in its neutral position. From there B can extend or contract by an amount ±∆ thus
changing the angle θ to a maximum and minimum value θmax and θmin, respectively.
Setting A = A0 and R = R0 will result in nominal values for θmax and θmin, denoted
by θmax,0 and θmin,0, respectively.

The question of interest is: How much variation of θmax and θmin around θmax,0 and
θmin,0 can we expect due to the variations in A and R over their respective tolerance
ranges A0 ± TA and R0 ± TR?

Any actual dimensions used in this case study are fictitious and are used for illus-
tration purposes only. Any referenced R functions can be found in the R work space
posted at

http : //www.stat.washington.edu/fritz/Stat498B.html.

The statistical analysis platform R is freely available from http://cran.r-project.org/.

∗e-mail: fscholz@u.washington.edu
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Figure 1: Actuator Geometry
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2 Geometric Considerations

Given A, R and θ0 the length of the (neutral position) actuator length can be ex-
pressed as

B = B(A, R) =
√

A2 + R2 − 2AR cos(θ0) .

When the actuator is extended/contracted by the amount x = ±∆ from the neutral
position we get the following expression for θx

θx = 2 arctan


√√√√(sx − A)(sx −R)

sx(sx −Bx)

 ,

where Bx = B(A, R)+x and sx = (A+R+Bx)/2. Note that θ∆ corresponds to θmax

and θ−∆ corresponds to θmin. We see from the above expressions that θx is affected
by A and R in a variety of ways, either directly and indirectly through B(A, R). To
express this we will also write more explicitly

θmax = θmax(A, R) and θmin = θmin(A, R) .

3 Statistical Tolerancing via Simulation

The simplest way of dealing with the variation behavior of θ∆ = θmax and θ−∆ = θmin

due to variation in A and R is through simulation. Since R allows vectorized calcu-
lations one can generate two N -vectors of A and R values from N (µA, (TA/3)2) and
N (µR, (TR/3)2), respectively, calculate the correspondingly adjusted B = B(A, R)
vector and from that the N -vector of θmax and θmin, respectively.

Here µA = A0 and µR = R0 follows the usual convention of assuming that the
variations in A and R are centered on the respective tolerance intervals, i.e., we don’t
assume mean shifts. Furthermore, the choice of σA = TA/3 and σR = TR/3 also
corresponds to the usual practice of interpreting the ±T tolerance range as a ±3σ
range of a normal distribution.

This simulation was carried out by the R function theta.simNN using N = 106.
This function produced the plot shown in Figure 2. It took just a few seconds to
run. The vertical bars on either side of the shown histograms give the ±3σ limits
and the respective estimates of the 3σ value are shown as T1 and T2, respectively.
The respective σ’s are estimated by taking the sample standard deviations of the N
simulated θmax and θmin values.
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Figure 2: Simulation of 1,000,000 Deviations of θmax and θmin from θ0

∆ = 1.6 , A ∼ N (12.8, (.12/3)2) and R ∼ N (6, (.14/3)2)
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4 Statistical Tolerancing via RSS

Here RSS stands for “Root Sum Square” which is a “simple” analytical formula for
arriving at very good approximations for T1 and T2. These formulae are given by

T1 =
√

a2
max,A × T 2

A + a2
max,R × T 2

R and T2 =
√

a2
min,A × T 2

A + a2
min,R × T 2

R ,

where

amax,A =
∂θmax

∂A
, amax,R =

∂θmax

∂R
, amin,A =

∂θmin

∂A
, and amin,R =

∂θmin

∂R

and all derivatives are evaluated at the nominal values (A0, R0) of (A, R).

The basis of these RSS formulae is the linearization of θx(A, R) in the neighborhood
of (A0, R0), i.e.,

θx(A, R) = θx(A0, R0) + (A− A0)×
∂θx

∂A

∣∣∣∣∣
A=A0,R=R0

+ (R−R0)×
∂θx

∂R

∣∣∣∣∣
A=A0,R=R0

,

which is then taken as an approximation for θx(A, R) near (A, R) = (A0, R0). The
quality of this approximations depends on the smoothness of either function θx =
θ∆ = θmax(A, R) and θx = θ−∆ = θmax(A, R) with respect to A and R at (A0, R0),
and it also depends on the tolerances TA and TR of the contributing variation terms,
because that determines over what range one needs to approximate the respective
functions. All this assumes of course that θx is differentiable near (A, R) = (A0, R0).
We point this out since there are tolerance situation where differentiability is an issue
and in that case the RSS paradigm does not work.

The interpretation of T1 and T2 as obtained by the RSS formula is that they represent
3σ values for θmax and θmin, respectively, just as the input tolerances represented 3σ
values for the contributing variation terms A and R. The basic principle used here
is that the variance (the square of the standard deviation σ) of a sum is the sum
of the variances when the summands are uncorrelated (or even stronger, when they
are statistically independent). Furthermore, the variance of a constant is zero and
σ2(a× A) = a2 × σ2(A), where a is a constant factor and A is a random variable.

In order to apply the RSS formula one needs to evaluate the required derivatives.
We will not give explicit formulas for amax,A, . . . , amin,R but will instead present the
stepping stones for evaluating them. We will do this simultaneously for x = ±∆. The
first stepping stone is

∂θx

∂A
=

2

1 + (sx−A)(sx−R)
sx(sx−Bx)

∂

∂A

√√√√(sx − A)(sx −R)

sx(sx −Bx)
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and

∂θx

∂R
=

2

1 + (sx−A)(sx−R)
sx(sx−Bx)

∂

∂R

√√√√(sx − A)(sx −R)

sx(sx −Bx)
.

Next we have

∂

∂A

√√√√(sx − A)(sx −R)

sx(sx −Bx)
=

2

√√√√(sx − A)(sx −R)

sx(sx −Bx)


−1

∂

∂A

(sx − A)(sx −R)

sx(sx −Bx)

and

∂

∂R

√√√√(sx − A)(sx −R)

sx(sx −Bx)
=

2

√√√√(sx − A)(sx −R)

sx(sx −Bx)


−1

∂

∂R

(sx − A)(sx −R)

sx(sx −Bx)
.

We also have the following list of derivative expressions

∂Bx

∂A
=

A−R cos(θ0)√
A2 + R2 − 2AR cos(θ0)

and
∂Bx

∂R
=

R− A cos(θ0)√
A2 + R2 − 2AR cos(θ0)

∂(sx − A)

∂A
=

1

2

(
A−R cos(θ0)

B
− 1

)
and

∂(sx −R)

∂A
=

1

2

(
A−R cos(θ0)

B
+ 1

)

∂(sx − A)

∂R
=

1

2

(
R− A cos(θ0)

B
+ 1

)
and

∂(sx −R)

∂R
=

1

2

(
R− A cos(θ0)

B
− 1

)

∂sx

∂A
=

1

2

(
A−R cos(θ0)

B
+ 1

)
and

∂sx

∂R
=

1

2

(
R− A cos(θ0)

B
+ 1

)

∂(sx −Bx)

∂A
=

1

2

(
1− A−R cos(θ0)

B

)
and

∂(sx −Bx)

∂R
=

1

2

(
1− R− A cos(θ0)

B

)
.

∂

∂A

(sx − A)(sx −R)

sx(sx −Bx)

=
1

s2
x(sx −Bx)2

{[
(sx −R)

∂

∂A
(sx − A) + (sx − A)

∂

∂A
(sx −R)

]
sx(sx −Bx)

−(sx − A)(sx −R)

[
(sx −Bx)

∂

∂A
sx + sx

∂

∂A
(sx −Bx)

]}
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∂

∂R

(sx − A)(sx −R)

sx(sx −Bx)

=
1

s2
x(sx −Bx)2

{[
(sx −R)

∂

∂R
(sx − A) + (sx − A)

∂

∂R
(sx −R)

]
sx(sx −Bx)

−(sx − A)(sx −R)

[
(sx −Bx)

∂

∂R
sx + sx

∂

∂R
(sx −Bx)

]}
.

Rather than just using these expressions as they are, it is advisable to simplify them
somewhat to avoid significance loss in the calculations. Thus we obtained the follow-
ing reduced expressions:

(sx −R)
∂

∂A
(sx − A) + (sx − A)

∂

∂A
(sx −R) =

R

2
[1− cos(θ0)] +

x

2B
[A−R cos(θ0)]

(sx −Bx)
∂

∂A
sx + sx

∂

∂A
(sx −Bx) =

R

2
[1 + cos(θ0)]−

x

2B
[A−R cos(θ0)]

(sx −R)
∂

∂R
(sx − A) + (sx − A)

∂

∂R
(sx −R) =

A

2
[1− cos(θ0)] +

x

2B
[R− A cos(θ0)]

(sx −Bx)
∂

∂R
sx + sx

∂

∂R
(sx −Bx) =

A

2
[1 + cos(θ0)]−

x

2B
[R− A cos(θ0)] .

The R function deriv.theta produced the following derivatives for A0 = 12.8, R0 =
6, θ0 = 55◦, and ∆ = 1.6

∂θmax

∂A
= −.00006636499 and

∂θmin

∂A
= −.004038650

and
∂θmax

∂R
= −0.04473785 and

∂θmin

∂R
= 0.05810921 .

The RSS calculation using normal variation for A and R then gives the following
values for T1 and T2 based on TA = .12 and TR = .14

T1 = 0.3588609 and T2 = 0.4669441 ,

which agree remarkably well with the simulated quantities shown in Figure 2.

Note that the derivatives of θmax and θmin with respect to A are smaller than the
derivatives with respect to R by at least an order of magnitude. This will play an
important role later on when we consider other distributions governing the variation
of A and R.
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5 Numerical Differentiation

Clearly, the derivation of the derivatives was quite laborious although the R code for
their calculation is relatively compact. However, these derivatives are quite useful
in understanding the variation propagation in the tolerance analysis. We therefore
point out an obvious alternative approach, namely that of numerical differentiation.
This involves simply the evaluation of the function θx that is involved in the simu-
lation approach anyway. The respective derivatives are approximated numerically at
(A, R) = (A0, R0) by calculating the following respective difference quotients for very
small values of δ

∂θx

∂A

∣∣∣∣∣
A=A0,R=R0

≈ θx(A0 + δ, R0)− θx(A0, R0)

δ

∂θx

∂R

∣∣∣∣∣
A=A0,R=R0

≈ θx(A0, R0 + δ)− θx(A0, R0)

δ
.

For δ = .00001 we got the following numerical derivatives using the R function
deriv.numeric.

∂θmax

∂A

∣∣∣∣∣
A=A0,R=R0

≈ −.00006636269 and
∂θmin

∂A

∣∣∣∣∣
A=A0,R=R0

≈ −.004038651

and

∂θmax

∂R

∣∣∣∣∣
A=A0,R=R0

≈ −0.04473777 and
∂θmin

∂R

∣∣∣∣∣
A=A0,R=R0

≈ 0.05810908 .

These agree very well with the derivatives obtained previously.

6 RSS for Non-Normal Variation Contributors

The RSS method for statistical tolerancing is a reexpression of the fact that the
variance of a sum of independent random variables, Y = X1 + . . . + Xn, is the sum
of the variances, i.e.

σ2
Y = σ2

X1
+ . . . + σ2

Xn

Furthermore, if the summands are reasonably well behaved, i.e., the variance of none
of them dominates the variances of the others, which is expressed by the condition
that

max

{
σ2

X1

σ2
X1

+ . . . + σ2
Xn

, . . . ,
σ2

Xn

σ2
X1

+ . . . + σ2
Xn

}
is small,
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then one can appeal to the Central Limit Theorem (CLT) and expect that the dis-
tribution of the aggregate Y is approximately normally distributed. Thus most of
the variation of Y will fall within ±3σY of the mean µY of Y and thus we equate
TY = 3σY to express the tolerance for the sum.

When the contributing terms Xi are normally distributed with mean µXi
and variance

σ2
Xi

it is similarly customary to equate Ti = 3σXi
for the specified tolerances of Xi

around their respective nominal values µXi
. Then the above variance addition formula

yields
T 2

Y = (3σY )2 = (3σX1)
2 + . . . + (3σXn)2 = T 2

1 + . . . + T 2
n

or
TY =

√
T 2

1 + . . . + T 2
n ,

which is the RSS formula for simple additive tolerance stacking of variation.

More commonly Y is a linear combination of input variation terms Xi, i.e.,

Y = a0 + a1X1 + . . . + anXn with known constants a0, a1, . . . , an .

Then the above formulation of the CLT translates to approximate normality for Y
provided that

max

{
a2

1σ
2
X1

a2
1σ

2
X1

+ . . . + a2
nσ

2
Xn

, . . . ,
a2

nσ
2
Xn

a2
1σ

2
X1

+ . . . + a2
nσ

2
Xn

}
is small,

i.e., none of the a2
i σ

2
i terms dominates the others. Again most of the Y variation will

fall within ±3σY of its mean µY = a0 + a1µX1 + . . . + anµXn . Invoking again the
addition property for the variance of a sum of independent summands and also the
scaling property σ2

aiXi
= a2

i σ
2
Xi

we have

σ2
Y = σ2

a1X1
+ . . . + σ2

anXn
= a2

1σ
2
X1

+ . . . + a2
nσXn

2 .

For normal Xi we again equate 3σXi
= Ti and get the more general RSS tolerance

stacking formula

TY = 3σY =
√

a2
1(3σX1)

2 + . . . + a2
n(3σXn)2 =

√
a2

1T
2
1 + . . . + a2

nT
2
n (1)

applicable for linear approximations to smooth functions. Of course, for normally
distributed Xi we do not need to invoke the CLT to conclude that Y has a normal
distribution as well.

9



The contributing terms Xi are not always normally distributed and sometimes ex-
hibit other variation behavior. One such variation behavior (common in tool wear
situations and also in sorting of electrical components by properties) is described by a
uniform distribution over the ±Ti range around the nominal value for Xi. Of course,
other distributions for the Xi variations are possible. Because of the CLT effect the
RSS method can be extended to cover such situations as well. All it takes is to cal-
culate the correction factor ci = 3σXi

/Ti which amounts to calculating the standard
deviation of the specified distribution covering the tolerance range. For a uniform
distribution over the ±Ti range this factor is

√
3 = 1.732. Such factors are calculated

for various distributions in Tolerance Stack Analysis Methods, A Critical Review1, by
Fritz Scholz (1995).

Making use of such adjustment factors, equation (1) then becomes

TY = 3σY =
√

a2
1(3σX1)

2 + . . . + a2
n(3σXn)2 =

√
c2
1a

2
1T

2
1 + . . . + c2

na
2
nT

2
n . (2)

Figure 3 illustrates the CLT effect when adding 3 independent uniform random vari-
ables U1, U2, U3 over the range (−1, 1), respectively. Superimposed in the case of U1

and Y = U1 + U2 + U3 are the normal densities with the same standard deviation,
1/
√

3 and 1, respectively. While the normal density does not fit well with the uniform
distribution, it does quite well with the distribution of Y = U1 + U2 + U3.

Figure 4 shows the corresponding situation when adding just two uniform random
variables. The CLT effect is certainly weaker here since we just get a triangular
distribution for Y . This would roughly be the situation for the actuator problem
if A and R were uniformly distributed over equal width intervals. However, in the
linearization of θx(A, R) around (A0, R0) the coefficients corresponding to A and R
are of different orders of magnitude and since the tolerance ranges for A and R were
somewhat comparable this means that the variation of R will swamp the variation of
A. Thus the R distribution will dominate the distribution of θx(A, R).

When the contributing terms A and R both have a normal distribution then any linear
combination of them also has a normal distribution. Thus one would then expect that
the target distributions of θmax(A, R) and θmax(A, R) are also approximately normally
distributed. Here the dominant variation in R has no effect on the shape of the Y = θx

distribution. This was clearly illustrated in Figure 2.

1http://www.stat.washington.edu/fritz/Stat498B.html
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Figure 3: Simulation of Uniform Deviations U1, U2, U3

and their Corresponding Sums Y = U1 + U2 + U3

N = 1, 000, 000 Simulations Each
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Figure 4: Simulation of Uniform Deviations U1, U2

and their Corresponding Sums Y = U1 + U2

N = 1, 000, 000 Simulations Each
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It is quite straightforward to change the distributions describing the variation in A
and R. For example, to have A ∼ U(A0−TA, A0 +TA) and R ∼ N (A0, (TA/3)2), only
lines 4 and 5 in the theta.simNN code need to be changed. The resulting function is
called theta.simUN. The result is shown in Figure 5 and the distribution shape for
θx is again well approximated by a normal distribution. The reason for this is that
the dominant variation part R has a normal distribution.

The functions theta.simNU and theta.simUU simulate the distribution combinations
A ∼ N (A0, (TA/3)2), R ∼ U(R0 − TR, R0 + TR) and A ∼ U(A0 − TA, A0 + TA),
R ∼ U(R0 − TR, R0 + TR), respectively. The results are shown in Figures 6 and 7.
The shape of the θx distribution is no longer normal, but seems closer to a uniform
distribution. This is caused by the dominant uniform behavior of R. However, a
linear combination of uniform random variables should have a triangular or more
generally a trapezoidal density. This is not the case here.

Something else must have affected the distribution of θx. The only other factor that
could account for this is that the linearization is not very good, i.e., a quadratic
component is having some influence over the R variation range. To probe this we ran
theta.simUU again, this time with tolerances tightened by a factor .1. This produced
the plot in Figure 8 which shows a histogram that looks like a very narrow shouldered
trapezoid, confirming our conjecture.

Applying the RSS formula (2) while assuming a uniform distribution for both A and
R we get

T1 =
√

(−.00006636269)2 × 3× .122 + (−.04473777)2 × 3× .142 × 360

2π
= 0.6215642◦

and

T2 =
√

(−.004038651)2 × 3× .122 + (.05810908)2 × 3× .142 × 360

2π
= 0.8087691◦

where we used the inflation factor c =
√

3 and the numerically obtained derivatives
in both cases. These two values are in reasonable agreement with the values .622◦

and .81◦ shown in Figure 7.

This understanding of the variation behavior of θmax and θmin with respect to the input
variations of A and R was definitely influenced by understanding the underlying linear
approximations and the relative magnitude of the derivatives since they influence the
variances of the summed random terms in the linear combination. The simulation
approach would not have given us an easy understanding of the visible effects.
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Figure 5: Simulation of 1,000,000 Deviations of θmax and θmin from θ0

∆ = 1.6 , A ∼ U(12.8− .12, 12.8 + .12) and R ∼ N (6, (.14/3)2)
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Figure 6: Simulation of 1,000,000 Deviations of θmax and θmin from θ0

∆ = 1.6 , A ∼ N (12.8, (.12/3)2) and R ∼ U(6− .14, 6 + .14)
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Figure 7: Simulation of 1,000,000 Deviations of θmax and θmin from θ0

∆ = 1.6 , A ∼ U(12.8− .12, 12.8 + .12) and R ∼ U(6− .14, 6 + .14)

16



θθmax −− θθ0

D
en

si
ty

15.25 15.30 15.35 15.40

0
5

10
15

20

T1 == 0.0622oθθmax,,  0 −− θθ0 == 15.325o

θθ0 == 55o

θθmin −− θθ0

D
en

si
ty

−16.10 −16.05 −16.00 −15.95 −15.90

0
5

10
15

20

T2 == 0.0809oθθmin,,  0 −− θθ0 == −15.999o

θθ0 == 55o

Figure 8: Simulation of 1,000,000 Deviations of θmax and θmin from θ0

∆ = 1.6 , A ∼ U(12.8− .012, 12.8 + .012) and R ∼ U(6− .014, 6 + .014)
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It should also be clear from Figures 6 and 7 that the normal distribution does not give
a good portrayal of the variation of Y = θx. Thus a TY = ±3σY is not an adequate
measure for the Y variation. The CLT certainly has not yet come into play. In this
particular case ±3σY is much too wide. This is due to the fact that R is dominant
and when it is not normally distributed then a tolerance TY = ±3σY is inappropriate.
In that case only simulation will give an adequate description of the Y = θx variation.

7 Further Extensions

So far we have considered only two contributors in the tolerance analysis, namely A
and R. This can easily extend to three by setting tolerances on the actual θ that
is achieved during the adjustment process when trying to aim for θ0. Denote this
achieved value by θ?

0. Thus we may want to specify that θ?
0 should fall within θ0± Tθ

after the adjustment process. One can then ask about the tolerance ranges of θmax

and θmin.

A further extension (to four contributors) concerns a possible uncertainty in the
amount of extension or retraction ±∆, i.e., one may want to specify ∆0 ± T∆ for the
range of possible realized values ∆.

Given the rather lengthy derivations of the previous formal derivatives it seems appro-
priate to deal with these extended problems only via simulation and/or linearization
using numerical derivatives. We show in Figure 9 the simulation result as produced
by theta.simUUUU, using uniform distributions for all 4 contributors. Here the CLT
seems to have taken effect to some extent.

8 Final Comments

This actuator example has been very instructive. It showed

• the importance of dominant variability by a single input

• the effect of the CLT when sufficiently many contributing inputs are involved

• the importance of simulation

• the importance of derivatives

• the effect of the variability ranges on the linearization approximation quality.
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Figure 9: Simulation of 1,000,000 Deviations of θmax and θmin from θ0 = 55◦

A ∼ U(12.8− .22, 12.8 + .22) and R ∼ U(6− .15, 6 + .15)

∆ ∼ U(1.6− .05, 1.6 + .05) and θ?
0 ∼ U(55− .5, 55 + .5)

19


