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The Weibull Distribution

The 2-parameter Weibull distribution function is defined as

Fα,β(x) = 1− exp
[
−
( x

α

)β
]

for x≥ 0 and Fα,β(x) = 0 for x < 0.

Write X ∼W (α,β) when X has this distribution function, i.e., P(X ≤ x) = Fα,β(x).

α > 0 and β > 0 are referred to as scale and shape parameter, respectively.

The Weibull density has the following form

fα,β(x) = F ′
α,β(x) =

d
dx

Fα,β(x) =
β

α

( x
α

)β−1
exp
[
−
( x

α

)β
]

.

For β = 1 the Weibull distribution = the exponential distribution with mean α.

In general, α represents the .632-quantile of the Weibull distribution regardless of

the value of β since Fα,β(α) = 1− exp(−1)≈ .632 for all β > 0.

1



Weibull densities

ββ1 == 0.5
ββ2 == 1
ββ3 == 1.5
ββ4 == 2
ββ5 == 3.6
ββ6 == 7
αα == 10000

αα

36.8%63.2%

Note that the Weibull distribution spread around α ↘ as β ↗.

The reason becomes clearer later when we discuss the log-transform Y = log(X).
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Moments and Quantiles

The mth moment of the Weibull distribution is

E(Xm) = α
m

Γ(1+m/β)

and thus the mean and variance are given by

µ = E(X) = αΓ(1+1/β) and σ
2 = α

2
[
Γ(1+2/β)−{Γ(1+1/β)}2

]
.

Its p-quantile, defined by P(X ≤ xp) = p, is

xp = α(− log(1− p))1/β .

For p = 1− exp(−1)≈ .632 (i.e., − log(1− p) = 1) we have xp = α for all β > 0

For that reason one also calls α the characteristic life of the Weibull distribution.

The term life comes from the common use of the Weibull distribution in modeling

lifetime data. More on this later.
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Minimum Closure Property
If X1, . . . ,Xn are independent with Xi ∼W (αi,β), i = 1, . . . ,n, then

P(min(X1, . . . ,Xn) > t) = P(X1 > t, . . . ,Xn > t) =
n

∏
i=1

P(Xi > t)

=
n

∏
i=1

exp

[
−
(

t
αi

)β
]

= exp

−tβ
n

∑
i=1

1

α
β

i


= exp

[
−
( t

α?

)β
]

with α
? =

 n

∑
i=1

1

α
β

i

−1/β

,

i.e., min(X1, . . . ,Xn)∼W (α?,β).

Similar to the closure property for the normal distribution under summation, i.e.,

if X1, . . . ,Xn are independent with Xi ∼N (µi,σ
2
i ) then

n

∑
i=1

Xi ∼N

(
n

∑
i=1

µi,
n

∑
i=1

σ
2
i

)
.
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Limit Theorems

This summation closure property is essential in proving the central limit theorem:

Sums of independent random variables (not necessarily normally distributed) have

an approximate normal distribution, subject to some mild conditions concerning the

distribution of such random variables.

There is a similar result from Extreme Value Theory that says:

The minimum of independent, identically distributed random variables

(not necessarily Weibull distributed) has an approximate Weibull distribution,

subject to some mild conditions concerning the distribution of such random

variables.

This is also referred to as the weakest link motivation for the Weibull distribution.
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Weakest Link Motivation for Weibull Modeling

The Weibull distribution is appropriate when trying to characterize the random

strength of materials or the random lifetime of some system.

A piece of material can be viewed as a concatenation of many smaller material

cells, each of which has its random breaking strength Xi when subjected to stress.

Thus the strength of the concatenated total piece is the strength of its weakest link,

namely min(X1, . . . ,Xn), i.e., approximately Weibull.

Similarly, a system can be viewed as a collection of many parts or subsystems,

each of which has a random lifetime Xi.

If the system is defined to be in a failed state whenever any one of its parts or

subsystems fails =⇒ system lifetime is min(X1, . . . ,Xn), i.e., approximately Weibull.
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Waloddi Weibull
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Weibull Distribution Popularity

The Weibull distribution is very popular among engineers. One reason for this is

that the Weibull cdf has a closed form which is not the case for the normal cdf Φ(x).

Another reason for the popularity of the Weibull distribution among engineers may

be that Weibull’s most famous paper, originally submitted to a statistics journal

and rejected, was eventually published in an engineering journal:

Waloddi Weibull (1951) “A statistical distribution function of wide applicability.”

Journal of Applied Mechanics, 18, 293-297.
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Göran W. Weibull (1981):

“. . . he tried to publish an article in a well-known British journal. At this time, the

distribution function proposed by Gauss was dominating and was distinguishingly

called the normal distribution. By some statisticians it was even believed to be the

only possible one. The article was refused with the comment that it was interesting

but of no practical importance. That was just the same article as the highly cited

one published in 1951.”

http://www.garfield.library.upenn.edu/classics1981/A1981LD32400001.pdf)
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Sam Saunders (1975):

‘Professor Wallodi (sic) Weibull recounted to me that the now famous paper of

his “A Statistical Distribution of Wide Applicability”, in which was first advocated

the “Weibull” distribution with its failure rate a power of time, was rejected by the

Journal of the American Statistical Association as being of no interrest. Thus one

of the most influential papers in statistics of that decade was published in the

Journal of Applied Mechanics. . .

(Maybe that is the reason it was so influential!)’

Novel ideas are often misunderstood.
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The Hazard Function

The hazard function for a nonnegative random variable X ∼ F(x) with density f (x)

is defined as h(x) = f (x)/(1−F(x)).

It is usually employed for distributions that model random lifetimes and it relates to

the probability that a lifetime comes to an end within the next small time increment

of length d given that the lifetime has exceeded x so far, namely

P(x < X ≤ x+d|X > x)=
P(x < X ≤ x+d)

P(X > x)
=

F(x+d)−F(x)
1−F(x)

≈ d× f (x)
1−F(x)

= d×h(x) .

Various other terms are used equivalently for the hazard function, such as hazard

rate, failure rate (function), or force of mortality.
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The Weibull Hazard Function

In the case of the Weibull distribution we have

h(x) =
fα,β(x)

1−Fα,β(x)
=

β

α

( x
α

)β−1 exp
[
−
( x

α

)β]
exp
[
−
( x

α

)β] =
β

α

( x
α

)β−1
.

The Weibull hazard rate function is

↗ in x when β > 1,

↘ in x when β < 1

and constant when β = 1 (exponential distribution with memoryless property)
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Aging & Infant Mortality

When β > 1 the part or system, for which the lifetime is modeled by a Weibull

distribution, is subject to aging in the sense that an older system has a higher

chance of failing during the next small time increment d than a younger system.

For β < 1 (less common) the system has a better chance of surviving the next small

time increment d as it gets older, possibly due to hardening, maturing, or curing.

Often one refers to this situation as one of infant mortality, i.e., after initial early

failures the survival gets better with age. However, one has to keep in mind that we

may be modeling parts or systems that consist of a mixture of defective or weak

parts and of parts that practically can live forever.

A Weibull distribution with β < 1 may not do full justice to such a mixture distribution.
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Constant Failure Rate

For β = 1 there is no aging, i.e., the system is as good as new given that it has

survived beyond x, since for β = 1 we have

P(X > x+h|X > x)=
P(X > x+h)

P(X > x)
=

exp(−(x+h)/α)
exp(−x/α)

= exp(−h/α)= P(X > h) ,

i.e., it is again exponential with same mean α.

One also refers to this as a random failure model in the sense that failures are due

to external shocks that follow a Poisson process with rate λ = 1/α.

The random times between shocks are exponentially distributed with mean α.

Given that there are k such shock events in an interval [0,T ] one can view the

k occurrence times as being uniformly distributed over the interval [0,T ],

hence the allusion to random failures.
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Location-Scale Property of Y = log(X)

A useful property, of which we will make strong use, is the following location-scale

property of the log-transformed Weibull distribution.

If X ∼W (α,β) =⇒ log(X) = Y has a location-scale distribution, namely its

cumulative distribution function (cdf) is

P(Y ≤ y) = P(log(X)≤ y) = P(X ≤ exp(y)) = 1− exp

[
−
(

exp(y)
α

)β
]

= 1− exp [−exp{(y− log(α))×β}] = 1− exp
[
−exp

(
y− log(α)

1/β

)]
= 1− exp

[
−exp

(
y−u

b

)]

with location parameter u = log(α) and scale parameter b = 1/β.
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Location-Scale Families
If Z ∼ G(z) then Y = µ+σZ ∼ G((y−µ)/σ) since

H(y) = P(Y ≤ y) = P(µ+σZ ≤ y) = P(Z ≤ (y−µ)/σ) = G((y−µ)/σ) .

The form Y = µ+σX should make clear the notion of location scale parameter,

since Z has been scaled by the factor σ and is then shifted by µ.

Two prominent location-scale families are

1. Y = µ+σZ ∼N (µ,σ2), where Z ∼N (0,1) is standard normal with cdf

G(z) = Φ(z) and thus Y has cdf H(y) = Φ((y−µ)/σ),

2. Y = u+bZ where Z has the standard extreme value distribution with cdf

G(z) = 1− exp(−exp(z)) for z ∈ R, as in our Y = log(X) Weibull

example above.
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Quantiles in Location-Scale Families

In a location-scale model there is a simple relationship between the p-quantiles of

Y and Z, namely yp = µ+σzp in the normal model

and yp = u+bwp in the extreme value model.

We just illustrate this in the extreme value location-scale model.

p = P(Z≤wp)= P(u+bZ≤ u+bwp)= P(Y ≤ u+bwp) =⇒ yp = u+bwp

with wp = log(− log(1− p)).

Thus yp is a linear function of wp = log(− log(1− p)), the p-quantile of G.
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Probability Plotting
While wp is known and easily computable from p, the same cannot be said about

yp, since it involves the typically unknown parameters u and b.

However, for appropriate pi = (i− .5)/n one can view the ith ordered sample value

Y(i) (Y(1) ≤ . . .≤ Y(n)) as a good approximation for ypi.

Thus the plot of Y(i) against wpi should look approximately linear.

This is the basis for Weibull probability plotting

(and the case of plotting Y(i) against zpi for normal probability plotting),

a very appealing graphical procedure which gives a visual impression of how well

the data fit the assumed model (normal or Weibull) and which also allows for a

crude estimation of the unknown location and scale parameters, since they relate

to the slope and intercept of the line that may be fitted to the linear point pattern.

For more on Weibull probability plotting we refer to

http://www.stat.washington.edu/fritz/DATAFILES498B2008/WeibullPaper.pdf
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Maximum Likelihood Estimation
There are many ways to estimate the parameters θ = (α,β) based on a random

sample X1, . . . ,Xn ∼W (α,β).

Maximum likelihood estimation (MLE) is generally the most versatile and

popular method. Although MLE in the Weibull case requires numerical methods

and a computer, that is no longer an issue in today’s computing environment.

Previously, many estimates, computable by hand, had been investigated.

They are usually less efficient than mle’s (maximum likelihood estimates).

By efficient estimates we loosely refer to estimates that have the smallest

sampling variance. mle’s tend to be efficient, at least in large samples.

Furthermore, under regularity conditions mle’s have an approximate

normal distribution in large samples.
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Maximum Likelihood Estimates
When X1, . . . ,Xn ∼ Fθ(x) with density fθ(x) then the maximum likelihood estimate

of θ is that value θ = θ̂ = θ̂(x1, . . . ,xn) which maximizes the likelihood

L(x1, . . . ,xn,θ) =
n

∏
i=1

fθ(xi)

over θ = (θ1, . . . ,θk), i.e., which gives highest local probability to the observed

sample (X1, . . . ,Xn) = (x1, . . . ,xn)

L(x1, . . . ,xn, θ̂) = sup
θ

{
n

∏
i=1

fθ(xi)

}
.

Often such maximizing values θ̂ are unique and one can obtain them by solving

∂

∂θ j

n

∏
i=1

fθ(xi) = 0 j = 1, . . . ,k ,

These above equations reflect the fact that a smooth function has a horizontal

tangent plane at its maximum (minimum or saddle point).

These equations are a necessary but not sufficient condition for a maximum.
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The Log-Likelihood

Since taking derivatives of a product is tedious (product rule) one usually resorts to

maximizing the log of the likelihood, i.e., the log-likelihood

`(x1, . . . ,xn,θ) = log(L(x1, . . . ,xn,θ)) =
n

∑
i=1

log( fθ(xi))

since the value of θ that maximizes L(x1, . . . ,xn,θ) is the same as the value that

maximizes `(x1, . . . ,xn,θ), i.e.,

`(x1, . . . ,xn, θ̂) = sup
θ

{
n

∑
i=1

log( fθ(xi))

}
.

It is a lot simpler to deal with the likelihood equations

∂

∂θ j
`(x1, . . . ,xn, θ̂) =

∂

∂θ j

n

∑
i=1

log( fθ(xi)) =
n

∑
i=1

∂

∂θ j
log( fθ(xi)) = 0 j = 1, . . . ,k

when solving for θ = θ̂ = θ̂(x1, . . . ,xn).
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MLE’s in Normal Case

In the case of a normal random sample we have θ = (µ,σ) with k = 2 and the

unique solution of the likelihood equations results in the explicit expressions

µ̂ = x̄ =
1
n

n

∑
i=1

xi and σ̂ =

√
1
n

n

∑
i=1

(xi− x̄)2 and thus θ̂ = (µ̂, σ̂) .

These are good and intuitively appealing estimates, however σ̂ is biased.

Although there are many data model situations with explicit mle’s, there are even

more where mle’s are not explicit, but need to be found numerically by computer.

In today’s world that is no longer a problem.
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Likelihood Equations in the Weibull Case
In the case of a Weibull sample we take the further simplifying step of dealing

with the log-transformed sample (y1, . . . ,yn) = (log(x1), . . . , log(xn)).

Recall that Yi = log(Xi) has cdf F(y) = 1−exp(−exp((x−u)/b)) = G((y−u)/b)

with G(z) = 1− exp(−exp(z)) with g(z) = G′(z) = exp(z− exp(z)).

=⇒ f (y) = F ′(y) =
d
dy

F(y) =
1
b

g((y−u)/b))

with log( f (y)) = − log(b)+
y−u

b
− exp

(
y−u

b

)
.

∂

∂u
log( f (y)) = − 1

b
+

1
b

exp
(

y−u
b

)
∂

∂b
log( f (y)) = − 1

b
− 1

b
y−u

b
+

1
b

y−u
b

exp
(

y−u
b

)
and thus as likelihood equations

0 = −n
b

+
1
b

n

∑
i=1

exp
(

yi−u
b

)
& 0 =−n

b
− 1

b

n

∑
i=1

yi−u
b

+
1
b

n

∑
i=1

yi−u
b

exp
(

yi−u
b

)
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Simplified Likelihood Equations
These equations can be simplified to a single equation in b and an expression for

u in terms of b. We give the latter first and then use it to simplify the other equation.

n

∑
i=1

exp
(

yi−u
b

)
= n or exp(u) =

[
1
n

n

∑
i=1

exp
(yi

b

)]b

Using both of these expressions in the second equation

we get a single equation in b

0 =
∑

n
i=1 yi exp(yi/b)

∑
n
i=1 exp(yi/b)

−b− 1
n

n

∑
i=1

yi =
n

∑
i=1

wi(b)yi−b− 1
n

n

∑
i=1

yi

with wi(b) =
exp(yi/b)

∑
n
j=1 exp(y j/b)

and ∑
n
i=1 wi(b) = 1.

∑
n
i=1 wi(b)yi−b− ȳ decreases strictly from M− ȳ > 0 to −∞ as 0

b
↗ ∞, provided

M = max(y1, . . . ,yn) > ȳ. Thus the above equation has a unique solution in b,

if not all the yi coincide. y1 = . . . = yn is a degenerate case: b̂ = 0 & û = y1.
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Do We Get MLE’s?
That this unique solution corresponds to a maximum and thus a unique global

maximum takes some extra effort and we refer to Scholz (1996) for an even more

general treatment that covers Weibull analysis with censored data and covariates.

However, a somewhat loose argument can be given as follows.

Consider L(y1, . . . ,yn,u,b) =
1
bn

n

∏
i=1

g
(

yi−u
b

)
for fixed (y1, . . . ,yn) .

Let |u| → ∞ (the location moves away from all observed data values y1, . . . ,yn)

and b with b→ 0 (the density is very concentrated near u) and b→ ∞

(all probability is diffused thinly over the half plane H = {(u,b) : u ∈ R,b > 0}).

It is then easily seen that this likelihood approaches zero in all cases.

Since L > 0 but L→ 0 near the fringes of the parameter space H , it follows that L

must have a maximum somewhere with zero partial derivatives. We showed there

is only one such point =⇒ unique maximum likelihood estimate θ̂ = (û, b̂).
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Numerical Stability Considerations

In solving

0 = ∑yi exp(yi/b)
∑exp(yi/b)

−b− ȳ

it is numerically advantageous to solve the equivalent equation

0 = ∑yi exp((yi−M)/b)
∑exp((yi−M)/b)

−b− ȳ where M = max(y1, . . . ,yn) .

This avoids overflow or accuracy loss in the exponentials for large yi.

Of course, one could have expressed the yi in terms of higher units,

say in terms of 1000’s, but that is essentially what we are doing.
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Type II Censored Data

The above derivations go through with very little change when instead of observing

a full sample Y1, . . . ,Yn we only observe the r ≥ 2 smallest sample values

Y(1) < .. . < Y(r). Such data is referred to as type II censored data.

This situation typically arises in a laboratory setting when several units are put

on test (subjected to failure exposure) simultaneously and the test is terminated

(or evaluated) when the first r units have failed. In that case we know the first r

failure times X(1) < .. . < X(r) and thus Y(i) = log(X(i)), i = 1, . . . ,r, and we know

that the lifetimes of the remaining units exceed X(r) or that Y(i) > Y(r) for i > r.

The advantage of such data collection is that we do not have to wait until all n

units have failed.
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Strategy with Type II Censored Data

If we put a lot of units on test (high n) we increase our chance of seeing our first r

failures before a fixed time y.

This is a simple consequence of the following binomial probability statement:

P(Y (r)≤ y)= P(at least r failures ≤ y in n trials)=
n

∑
i=r

(
n
i

)
P(Y ≤ y)i(1−P(Y ≤ y))n−i

which is strictly increasing in n for any fixed y and r ≥ 1.

If Bn ∼ Binomial(n, p) then

P(Bn+1 ≥ r) = P(Bn +Vn+1 ≥ r) = p×P(Bn ≥ r−1)+(1− p)×P(Bn ≥ r)

= P(Bn ≥ r)+ p×P(Bn = r−1) > P(Bn ≥ r)

where Vn+1 is the Bernoulli random variable for the (n+1)st independent trial.
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Joint Density of Y(1), . . . ,Y(r)

The joint density of Y(1), . . . ,Y(n) at (y1, . . . ,yn) with y1 < .. . < yn is

f (y1, . . . ,yn) = n!
n

∏
i=1

1
b

g
(

yi−u
b

)
= n!

n

∏
i=1

f (yi)

where the multiplier n! just accounts for the fact that all n! permutations of y1, . . . ,yn

could have been the order in which these values were observed and all of these

orders have the same density (probability).

Integrating out yn > yn−1 > .. . > yr+1(> yr) and using F̄(y) = 1−F(y) we get

the joint density of the first r failure times y1 < .. . < yr as

f (y1, . . . ,yr) = n!
r

∏
i=1

f (yi)×
1

(n− r)!
F̄n−r(yr)

= r!
r

∏
i=1

1
b

g
(

yi−u
b

)
×
(

n
n− r

)[
1−G

(
yr−u

b

)]n−r
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Likelihood Equations for Y(1), . . . ,Y(r)
Log-likelihood

`(y1, . . . ,yr,u,b) = log
(

n!
(n− r)!

)
− r log(b)+

r

∑
i=1

yi−u
b

−
r

∑
i=1

? exp
(

yi−u
b

)

where we use the notation
r

∑
i=1

? xi =
r

∑
i=1

xi+(n−r)xr . The likelihood equations are

0 =
∂

∂u
`(y1, . . . ,yr,u,b) = −r

b
+

1
b

r

∑
i=1

? exp
(

yi−u
b

)
or exp(u) =

[
1
r

r

∑
i=1

? exp
(yi

b

)]b

0 =
∂

∂b
`(y1, . . . ,yr,u,b) = − r

b
− 1

b

r

∑
i=1

yi−u
b

+
1
b

r

∑
i=1

? yi−u
b

exp
(

yi−u
b

)
∑

r
i=1

? yi exp(yi/b)
∑

r
i=1

? exp(yi/b)
−b−1

r

r

∑
i=1

yi = 0 again with unique solution for b =⇒ mle’s (û, b̂)

For computation again use
∑

r
i=1

? yi exp((yi− yr)/b)
∑

r
i=1

? exp((yi− yr)/b)
−b− 1

r

r

∑
i=1

yi = 0
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Computation of MLE’s in R

The computation of the mle’s α̂ and β̂ is facilitated by the function survreg which

is part of the R package survival. Here survreg is used in its most basic form in

the context of Weibull data (full sample or type II censored Weibull data).

survreg does a whole lot more than compute the mle’s but we will not deal with

these aspects here, at least for now.

The following is an R function, called Weibull.mle, that uses survreg to compute

these estimates. Note that it tests for the existence of survreg before calling it.

This function is part of the R work space that is posted on the class web site.
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Weibull.mle

Weibull.mle <- function (x=NULL,n=NULL){

# This function computes the maximum likelihood estimates of alpha

# and beta for complete or type II censored samples assumed to come

# from a 2-parameter Weibull distribution. Here x is the sample,

# either the full sample or the first r observations of a type II

# censored sample. In the latter case one must specify the full

# sample size n, otherwise x is treated as a full sample.

# If x is not given then a default full sample of size n=10, namely

# c(7,12.1,22.8,23.1,25.7,26.7,29.0,29.9,39.5,41.9) is analyzed

# and the returned results should be

# $mles

# alpha.hat beta.hat

# 28.914017 2.799793

#
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Weibull.mle

# In the type II censored usage

# Weibull.mle(c(7,12.1,22.8,23.1,25.7),10)

# $mles

# alpha.hat beta.hat

# 30.725992 2.432647

if(is.null(x))x <- c(7,12.1,22.8,23.1,25.7,26.7,29.0,29.9,39.5,41.9)

r <- length(x)

if(is.null(n)){n<-r}else{if(r>n||r<2){

return("x must have length r with: 2 <= r <= n")}}

xs <- sort(x)

if(!exists("survreg"))library(survival)

# tests whether survival package is loaded, if not, then it loads

# the package survival

if(r<n){statusx <- c(rep(1,r),rep(0,n-r))

dat.weibull <- data.frame(c(xs,rep(xs[r],n-r)),statusx)



Weibull.mle

}else{statusx <- rep(1,n)

dat.weibull <- data.frame(xs,statusx)}

names(dat.weibull)<-c("time","status")

out.weibull <- survreg(Surv(time,status)˜1,dist="weibull",

data=dat.weibull)

alpha.hat <- exp(out.weibull$coef)

beta.hat <- 1/out.weibull$scale

parms <- c(alpha.hat,beta.hat)

names(parms)<-c("alpha.hat","beta.hat")

list(mles=parms)}



Computation Time for Weibull.mle

system.time(for(i in 1:1000){Weibull.mle(rweibull(10,1))})

user system elapsed

5.79 0.00 5.91

This tells us that the time to compute the mle’s in a sample of size n = 10 is roughly

5.91/1000 = .00591. This fact plays a significant role later on in the various

inference procedure which we will discuss.

For n = 100,500,1000 the elapsed times came to 8.07,15.91 and 25.87.

The relationship of computing time to n appears to be quite linear,

but with slow growth, as the next slide shows.

34



Computation Time Graph for Weibull.mle
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Location and Scale Equivariance of MLE’s

The maximum likelihood estimates û and b̂ of the location and scale parameters u

and b have the following equivariance properties which will play a strong role in the

later pivot construction and resulting confidence intervals.

Based on data z = (z1, . . . ,zn) we denote the estimates of u and b more explicitly

by û(z1, . . . ,zn) = û(z) and b̂(z1, . . . ,zn) = b̂(z). If we transform z to r = (r1, . . . ,rn)

with ri = A+Bzi, where A ∈ R and B > 0 are arbitrary constant, then

û(r1, . . . ,rn) = A+Bû(z1, . . . ,zn) or û(r) = û(A+Bz) = A+Bû(z)

and

b̂(r1, . . . ,rn) = Bb̂(z1, . . . ,zn) or b̂(r) = b̂(A+Bz) = Bb̂(z) .

These properties are naturally desirable for any location and scale estimates and

for mle’s they are indeed true.
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Proof of Equivariance of MLE’s

sup
u,b

{
1
bn

n

∏
i=1

g((zi−u)/b)

}
=

1
b̂n(z)

n

∏
i=1

g((zi− û(z))/b̂(z))

sup
u,b

{
1
bn

n

∏
i=1

g((ri−u)/b)

}
=

1
b̂n(r)

n

∏
i=1

g((ri− û(r))/b̂(r)) =

1
b̂n(r)

n

∏
i=1

g((A+Bzi− û(r))/b̂(r)) =
1

Bn
1

(b̂(r)/B)n

n

∏
i=1

g((zi− (û(r)−A)/B)/(b̂(r)/B))

& sup
u,b

{
1
bn

n

∏
i=1

g((ri−u)/b)

}
= sup

u,b

{
1
bn

n

∏
i=1

g((A+Bzi−u)/b)

}

= sup
u,b

{
1

Bn
1

(b/B)n

n

∏
i=1

g((zi− (u−A)/B)/(b/B))

}
ũ = (u−A)/B

b̃ = b/B
⇒ = sup

ũ,b̃

{
1

Bn
1
b̃n

n

∏
i=1

g((zi− ũ)/b̃)

}

=
1

Bn
1

(b̂(z))n

n

∏
i=1

g((zi− û(z))/b̂(z))
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Proof of Equivariance of MLE’s (contd)

Thus by the uniqueness of the mle’s we have

û(z) = (û(r)−A)/B and b̂(z) = b̂(r)/B

or

û(r) = û(A+Bz) = A+Bû(z) and b̂(r) = b̂(A+Bz) = Bb̂(z) q.e.d.

The same equivariance properties hold for the mle’s in the context of

type II censored samples, as is easily verified.
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Tests of Fit Based on the Empirical Distribution Function

Relying on subjective assessment of linearity in Weibull probability plots in order to

judge whether a sample comes from a 2-parameter Weibull population takes a fair

amount of experience. It is simpler and more objective to employ a formal test of fit

which compares the empirical distribution function F̂n(x) of a sample with the fitted

Weibull distribution function F̂(x) = F
α̂,β̂

(x) using one of several common

discrepancy metrics.

The empirical distribution function (EDF) of a sample X1, . . . ,Xn is defined as

F̂n(x) =
# of observations ≤ x

n
=

1
n

n

∑
i=1

I{Xi≤x}

where IA = 1 when A is true, and IA = 0 when A is false.

The fitted Weibull distribution function (using mle’s α̂ and β̂) is

F̂(x) = F
α̂,β̂

(x) = 1− exp

(
−
( x

α̂

)β̂

)
.
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Large Sample Considerations
From the law of large numbers (LLN) we see that for any x we have that

F̂n(x)−→ Fα,β(x) as n→ ∞. Just view F̂n(x) as a binomial proportion or as an

average of Bernoulli random variables.

From MLE theory we also know that F̂(x) = F
α̂,β̂

(x)−→ Fα,β(x) as n→ ∞

(also derived from the LLN).

Since the limiting cdf Fα,β(x) is continuous in x one can argue that these

convergence statements can be made uniformly in x, i.e.,

sup
x
|F̂n(x)−Fα,β(x)| −→ 0 and sup

x
|F

α̂,β̂
(x)−Fα,β(x)| −→ 0 as n→ ∞

and thus sup
x
|F̂n(x)−F

α̂,β̂
(x)| −→ 0 as n→∞ for all α > 0 and β > 0.

The last discrepancy metric can be evaluated since we know F̂n(x) and F
α̂,β̂

(x).

It is known as the Kolmogorov-Smirnov (KS) distance D(F̂n,Fα̂,β̂
).
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n = 20
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Some Comments

1. It can be noted that the closeness between F̂n(x) and F
α̂,β̂

(x) is usually more

pronounced than their respective closeness to Fα,β(x), in spite of the

sequence of the above convergence statements.

2. This can be understood from the fact that both F̂n(x) and F
α̂,β̂

(x) fit the data,

i.e., try to give a good representation of the data. The fit of the true distribution,

although being the origin of the data, is not always good due to sampling

variation.

3. The closeness between all three distributions improves as n gets larger.
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Other Discrepancy Metrics
Several other distances between cdf’s F and G have been proposed and

investigated in the literature. We will only discuss two of them,

the Cramér-von Mises distance DCvM and the Anderson-Darling distance DAD.

DCvM(F,G) =
Z

∞

−∞

(F(x)−G(x))2 dG(x) =
Z

∞

−∞

(F(x)−G(x))2 g(x) dx

and

DAD(F,G) =
Z

∞

−∞

(F(x)−G(x))2

G(x)(1−G(x))
dG(x) =

Z
∞

−∞

(F(x)−G(x))2

G(x)(1−G(x))
g(x) dx .

Rather than focussing on the very local phenomenon of a maximum discrepancy

at some point x as in DKS, these alternate “distances” or discrepancy metrics

integrate these distances in squared form over all x, weighted by g(x) in the case

of DCvM(F,G) and by g(x)/[G(x)(1−G(x))] in the case DAD(F,G).

In DAD(F,G) the denominator increases the weight in the tails of the G distribution,

i.e., compensates to some extent for the tapering off in the density g(x).
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Some Comments
Thus DAD(F,G) is favored in situations where judging distribution tail behavior is
important, e.g., in risk situations.

The integration nature gives these last two metrics a more global character.

There is no easy graphical representation of these metrics, except to suggest that

when viewing the previous figures illustrating DKS one should look at all vertical

distances (large and small) between F̂n(x) and F̂(x), square them and accumulate

these squares in the appropriately weighted fashion.

For example, when one cdf is shifted relative to the other by a small amount

(no large vertical discrepancy), these small vertical discrepancies (squared) will

add up and indicate a moderately large difference between the two compared cdf’s.

The KS distance won’t react so readily to such shifts.
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Distance?

We point out the asymmetric nature of DCvM(F,G) and DAD(F,G).

We typically have

DCvM(F,G) 6= DCvM(G,F) and DAD(F,G) 6= DAD(G,F) .

since we integrate w.r.t. to the density of the second argument.

When using these metrics for tests of fit one usually takes the cdf with a density

(the model distribution to be tested) as the one with respect to which the integration

takes place, while the other cdf is taken to be the EDF.
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Computational Formulas

As complicated as these metrics may look at first glance, their computation is quite

simple. We will give the following computational expressions (without proof):

DKS(F̂n(x), F̂(x)) = D = max
[
max

{
i/n−V(i)

}
, max

{
V(i)− (i−1)/n

}]
where V(1) ≤ . . .≤V(n) are the ordered values of Vi = F̂(Xi), i = 1, . . . ,n.

For the other two test of fit criteria we have

DCvM(F̂n(x), F̂(x)) = W 2 =
n

∑
i=1

{
V(i)−

2i−1
2n

}2
+

1
12n

and

DAD(F̂n(x), F̂(x)) = A2 =−n− 1
n

n

∑
i=1

(2i−1)
[
log(V(i))+ log(1−V(n−i+1))

]
.
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Null Distributions

In order to carry out these tests of fit we need to know the null distributions of

D, W 2 and A2.

Quite naturally we would reject the hypothesis of a sampled Weibull distribution

whenever D or W 2 or A2 are too large.

The null distribution of D, W 2 and A2 does not depend on the unknown parameters

α and β, being estimated by α̂ and β̂ in Vi = F̂(Xi) = F
α̂,β̂

(Xi).

The reason for this is that the Vi have a distribution that is independent of the

unknown parameters α and β.
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The Distribution of Vi (Ancillarity)

This is seen as follows. Using our prior notation we write log(Xi) = Yi = u+bZi

and since

F(x) = P(X ≤ x) = P(log(X)≤ log(x)) = P(Y ≤ y) = 1−exp(−exp((y−u)/b))

and thus

Vi = F̂(Xi) = 1− exp(−exp((Yi− û(Y))/b̂(Y)))

= 1− exp(−exp((u+bZi− û(u+bZ))/b̂(u+bZ)))

= 1− exp(−exp((u+bZi−u−bû(Z))/[bb̂(Z])))

= 1− exp(−exp((Zi− û(Z))/b̂(Z)))

and all dependence on the unknown parameters u = log(α) and b = 1/β has

canceled out.
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Simulated Null Distributions

This opens up the possibility of using simulation to find good approximations to

these null distributions for any n, especially in view of the previously reported timing

results for computing the mle’s α̂ and β̂ of α and β.

Just generate samples X? = (X?
1 , . . . ,X?

n ) from W (α = 1,β = 1) compute

the corresponding α̂? = α̂(X?) and β̂? = β̂(X?), then V ?
i = F̂(X?

i ) = F
α̂?,β̂?(X?

i )

(where Fα,β(x) is the cdf of W (α,β)) and from that the values D? = D(X?),

W 2? = W 2(X?) and A2? = A2(X?).

Calculating all three test of fit criteria makes sense since the main calculation

effort is in getting the mle’s α̂? and β̂?. Repeating this a large number of times,

say Nsim = 10000, should give us a reasonably good approximation to the desired

three null or reference distributions.
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P-Value from the Simulated Null Distributions

From these null distributions one can determine appropriate p-values for any

sample X1, . . . ,Xn for which one wishes to assess whether the Weibull distribution

hypothesis is tenable or not.

If C(X) denotes the used test of fit criterion (discrepancy metric) then the estimated

p-value of this sample is simply the proportion of C(X?
i ), i = 1, . . . ,Nsim that are

≥C(X)

P−value =
#C(X?

i )≥C(X)
Nsim

.
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P-Value Tables for A2 and W 2

Prior to the ease of current computing Stephens (1986) provided tables for the

(1−α)-quantiles q1−α of these null distributions.

For the n-adjusted versions A2(1+ .2/
√

n) and W 2(1+ .2/
√

n) these null

distributions appear to be independent of n and (1−α)-quantiles were given

by Stephens for α = .25, .10, .05, .025, .01.

Plotting log(α/(1−α)) against q1−α shows a mildly quadratic pattern which can

be used to interpolate or extrapolate the appropriate p-value (observed significance

level α) for any observed n-adjusted value A2(1+ .2/
√

n) and W 2(1+ .2/
√

n),

as is illustrated on the next 2 slides.
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P-Value Interpolation for A2
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P-Value Interpolation for W 2
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P-Value Tables for D

For
√

nD the null distribution still depends on n (in spite of the normalizing

factor
√

n) and (1−α)-quantiles for α = .10, .05, .025, .01 were tabulated for

n = 10,20,50,∞ by Stephens (1986).

Here a double inter- and extrapolation scheme is needed, first by plotting these

quantiles against 1/
√

n, fitting quadratics in 1/
√

n and reading off the four interpo-

lated quantile values for the needed n0 (the sample size at issue) and as a second

step perform the interpolation or extrapolation scheme as it was done previously,

but using a cubic this time. This is illustrated on the next 2 slides.
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Quantile Interpolation for D
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Quantile Interpolation for D

●

●

●

●

cubic interpolation & linear extrapolation in D

n ×× D

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

ta
il 

pr
ob

ab
ili

ty
 p

 o
n 

  lo
g((

p
((1

−−
p))

))   
sc

al
e

0.
00

1
0.

00
5

0.
02

5
0.

1
0.

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

tabled values
interpolated quantiles
interpolated/extrapolated values

●

●

●

●

●

●

59



R Functions for P-Values of D, A2 and W 2

Functions for computing these p-values (from Stephens’ tabled values) are given in

the Weibull R work space provided at the class web site.

They are GOF.KS.test, GOF.CvM.test, and GOF.AD.test for computing p-values

for n-adjusted test criteria
√

nD, W 2(1+ .2/
√

n) , and A2(1+ .2/
√

n), respectively.

These functions have an optional argument graphic where graphic = T

generates the interpolation graphs shown in the previous slides, otherwise only

the p-values are given.

The function Weibull.GOF.test does a Weibull goodness of fit test on any given

sample, returning p-values for all three test criteria, based on the interpolation

scheme of the tables.
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Pivots in General

A pivot is a function W = ψ(Y,ϑ) of the data and an unknown parameter ϑ of

interest, such that W has a fixed and known distribution and the function ψ is strictly

monotone in the unknown parameter ϑ, so that it is invertible with respect to ϑ.

Let ψ(Y,ϑ) be strictly increasing in ϑ and let ψ−1(·,Y) denote its inverse w.r.t. ϑ.

By ηγ denote the γ-quantile of the known W distribution, then

γ = P(W ≤ ηγ) = P(ψ(Y,ϑ)≤ ηγ) = P(ϑ≤ ψ
−1(ηγ,Y))

i.e., we can view ϑ̂U,γ = ψ−1(ηγ,Y) as a 100γ% upper bound for ϑ.

Similarly, when ψ(Y,ϑ) is strictly decreasing in ϑ, then

ϑ̂L,γ = ψ−1(ηγ,Y) is a 100γ% lower bound for ϑ, or

ϑ̂U,γ = ψ−1(η1−γ,Y) is a 100γ% upper bound for ϑ.
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Pivots Based on û(Y) and b̂(Y)

The equivariance properties of û(Y) and b̂(Y) allow pivots of the following form

W = ψ(û(Y), b̂(Y),ϑ), i.e., they depend on the data through the mle’s.

For a Weibull sample X = (X1, . . . ,Xn) we have Yi = log(Xi)∼ G((y−u)/b) with

b = 1/β and u = log(α). Then Zi = (Yi−u)/b∼G(z) = 1−exp(−exp(z)), which

is a known distribution (does not depend on unknown parameters).

It is this distribution of the Zi that drives the distribution of our pivots, i.e.,

we will show

W = ψ(û(Y), b̂(Y),ϑ) in distribution= ζ(Z)

for some function ζ(·) that does not depend on unknown parameters.
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Pivot for the Scale Parameter b

As natural pivot for the scale parameter ϑ = b we take

W1 =
b̂(Y)

b
=

b̂(u+bZ)
b

=
bb̂(Z)

b
= b̂(Z) .

The right side, being a function of Z alone, has a distribution that does not involve

unknown parameters and W1 = b̂(Y)/b is strictly monotone in b.

Note that b̂(Z) = ζ(Z) is not an explicit function of Z, but it is nevertheless a well

defined function. For each Z the likelihood equations yield a unique solution b̂(Z).
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The Pivot Distribution of b̂(Z)
How do we obtain the distribution of b̂(Z)?

An analytical approach does not seem possible.

We follow Thoman et al. (1969, 1970), Bain (1978), Bain and Engelhardt (1991).

They provided tables for this distribution (and other pivot distributions) based on

Nsim simulated values of b̂(Z) (and û(Z)), where

Nsim = 20000 for n = 5,

Nsim = 10000 for n = 6,8,10,15,20,30,40,50,75, and

Nsim = 6000 for n = 100.
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Simulation Details
In these simulations one simply generates samples Z = (Z1, . . . ,Zn)∼ G(z) and

finds b̂(Z) (and û(Z) for the other pivots discussed later) for each such sample Z.

By simulating this process Nsim = 10000 times we obtain b̂(Z1), . . . , b̂(ZNsim).

The empirical distribution function of these simulated estimates b̂(Zi), denoted by

Ĥ1(w), provides a fairly reasonable estimate of the sampling distribution H1(w) of

b̂(Z) and thus also of the pivot distribution of W1 = b̂(Y)/b.

From this simulated distribution we can estimate any γ-quantile of H1(w) to any

practical accuracy, provided Nsim is sufficiently large.

Values of γ closer to 0 or 1 require higher Nsim.

For .005≤ γ≤ .995 a simulation level of Nsim = 10000 should be quite adequate.
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Lower Confidence Bound for b

Let η1(γ) denote the γ-quantile of H1(w), i.e.,

γ = H1(η1(γ)) = P(b̂(Y)/b≤ η1(γ)) = P(b̂(Y)/η1(γ)≤ b)

We see that b̂(Y)/η1(γ) can be viewed as a 100γ% lower bound for the unknown

parameter b.

We do not know η1(γ) but we can estimate it by the corresponding quantile η̂1(γ)

of the simulated distribution Ĥ1(w) which serves as proxy for H1(w).

We then use b̂(Y)/η̂1(γ) as an approximate 100γ% lower bound to the unknown

parameter b.

For large Nsim (Nsim = 10000) this approximation is practically quite adequate.
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Upper Confidence Bound and Interval for b
A 100γ% lower bound can be viewed as a 100(1− γ)% upper bound,

since 1− γ is the chance of the lower bound falling on the wrong side of its target,

namely above.

To get 100γ% upper bounds one simply constructs 100(1− γ)% lower bounds.

Similar comments apply to later pivots.

Based on the relationship b = 1/β the respective 100γ% approximate lower and
upper confidence bounds for the Weibull shape parameter would be

η̂1(1− γ)
b̂(Y)

= η̂1(1− γ)× β̂(X) and
η̂1(γ)
b̂(Y)

= η̂1(γ)× β̂(X)

and an approximate 100γ% confidence interval for β would be[
η̂1((1− γ)/2)× β̂(X), η̂1((1+ γ)/2)× β̂(X)

]
since (1+ γ)/2 = 1− (1− γ)/2.

Here X = (X1, . . . ,Xn) is the untransformed Weibull sample.
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Pivot for the Location Parameter u

For the location parameter ϑ = u we have the following pivot

W2 =
û(Y)−u

b̂(Y)
=

û(u+bZ)−u
b̂(u+bZ)

=
u+bû(Z)−u

bb̂(Z)
=

û(Z)
b̂(Z)

.

It has a distribution that does not depend on any unknown parameter, since it only

depends on the known distribution of Z.

Furthermore W2 is strictly decreasing in u. Thus W2 is a pivot with respect to u.

Denote this pivot distribution of W2 by H2(w) and its γ-quantile by η2(γ).

As before this pivot distribution and its quantiles can be approximated sufficiently

well by simulating û(Z)/b̂(Z) a sufficient number Nsim times and using the

empirical cdf Ĥ2(w) of the û(Zi)/b̂(Zi) as proxy for H2(w).
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Lower Confidence Bound for u
As in the previous pivot case we can exploit this pivot distribution as follows

γ = H2(η2(γ)) = P
(

û(Y)−u
b̂(Y)

≤ η2(γ)
)

= P(û(Y)− b̂(Y)η2(γ)≤ u)

Thus we can view û(Y)− b̂(Y)η2(γ) as a 100γ% lower bound for the unknown u.

Using the γ-quantile η̂2(γ) obtained from the empirical cdf Ĥ2(w) we then treat

û(Y)− b̂(Y)η̂2(γ) as an approximate 100γ% lower bound for the unknown u.

Based on u = log(α) this translates into an approximate 100γ% lower bound

exp(û(Y)− b̂(Y)η̂2(γ))= exp(log(α̂(X))−η̂2(γ)/β̂(X))= α̂(X)exp(−η̂2(γ)/β̂(X))

for α.

Upper bounds and intervals are handled as in the case of b or β.
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Pivot for the p-quantile yp
With respect to the p-quantile ϑ = yp = u+b log(− log(1− p)) = u+bwp

of the Y distribution the natural pivot is

Wp =
ŷp(Y)− yp

b̂(Y)
=

û(Y)+ b̂(Y)wp− (u+bwp)
b̂(Y)

=
û(u+bZ)+ b̂(u+bZ)wp− (u+bwp)

b̂(u+bZ)

=
u+bû(Z)+bb̂(Z)wp− (u+bwp)

bb̂(Z)
=

û(Z)+(b̂(Z)−1)wp

b̂(Z)
.

Its distribution only depends on the known distribution of Z and not on the unknown

parameters u and b.

The pivot Wp is a strictly decreasing function of yp.

Denote this pivot distribution function by Hp(w) and its γ-quantile by ηp(γ).
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The Lower Bounds for yp

This pivot distribution and its quantiles can be approximated sufficiently well by

simulating
{

û(Z)+(b̂(Z)−1)wp
}

/b̂(Z) a sufficient number Nsim times.

Denote the empirical cdf of such simulated values by Ĥp(w) and the corresponding

γ-quantiles by η̂p(γ).

As before we proceed with

γ = Hp(ηp(γ)) = P
(

ŷp(Y)− yp

b̂(Y)
≤ ηp(γ)

)
= P

(
ŷp(Y)−ηp(γ)b̂(Y)≤ yp

)
and thus we can treat ŷp(Y)−ηp(γ)b̂(Y) as a 100γ% lower bound for yp.

Again we treat ŷp(Y)− η̂p(γ)b̂(Y) as an approximate 100γ% lower bound for yp.
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An Alternate Approach
Since

ŷp(Y)−ηp(γ)b̂(Y) = û(Y)+wpb̂(Y)−ηp(γ)b̂(Y) = û(Y)− kp(γ)b̂(Y)

with kp(γ) = ηp(γ)−wp, we could have obtained the same lower bound by the

following argument that does not use a direct pivot, namely

γ = P(û(Y)− kp(γ)b̂(Y)≤ yp)

= P(û(Y)− kp(γ)b̂(Y)≤ u+bwp)

= P(û(Y)−u− kp(γ)b̂(Y)≤ bwp)

= P

(
û(Y)−u

b
− kp(γ)

b̂(Y)
b

≤ wp

)

= P(û(Z)− kp(γ)b̂(Z)≤ wp) = P
(

û(Z)−wp

b̂(Z)
≤ kp(γ)

)

kp(γ) can be taken as the γ-quantile of the distribution of (û(Z)−wp)/b̂(Z).
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Monotonicity of yp Bounds in p

The distribution of (û(Z)−wp)/b̂(Z) can again be approximated by the empirical

cdf of Nsim simulated values (û(Zi)−wp)/b̂(Zi), i = 1, . . . ,Nsim.

Its γ-quantile k̂p(γ) serves as a good approximation to kp(γ).

It is easily seen that this produces the same quantile lower bound as before.

However, in this approach one sees one further detail, namely that h(p) =−kp(γ)

is strictly increasing in p, since wp is strictly increasing in p.
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The Monotonicity Argument

Suppose p1 < p2 and h(p1)≥ h(p2) with γ = P(û(Z)+h(p1)b̂(Z)≤ wp1) and

γ = P(û(Z)+h(p2)b̂(Z)≤ wp2)

= P(û(Z)+h(p1)b̂(Z)≤ wp1 +(wp2−wp1)+(h(p1)−h(p2))b̂(Z))

≥ P(û(Z)+h(p1)b̂(Z)≤ wp1 +(wp2−wp1)) > γ

(i.e., γ > γ, a contradiction) since

P(wp1 < û(Z)+h(p1)b̂(Z)≤ wp1 +(wp2−wp1)) > 0 .

A thorough argument would show that b̂(z) and thus û(z) are continuous functions

of z = (z1, . . . ,zn) and since there is positive probability in any neighborhood of any

z ∈ R there is positive probability in any neighborhood of (û(z), b̂(z)).
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Monotonicity is Intuitive
Of course it makes intuitive sense that quantile lower bounds should be increasing

in p since its target p-quantiles are increasing in p.

This strictly increasing property allows us to immediately construct upper

confidence bounds for left tail probabilities as is shown in the next section.

Since xp = exp(yp) is the p-quantile of the Weibull distribution we can take

exp
(
ŷp(Y)− η̂p(γ)b̂(Y)

)
= α̂(X)exp

(
(wp− η̂p(γ))/β̂(X)

)
= α̂(X)exp

(
−k̂p(γ)/β̂(X)

)
as approximate 100γ% lower bound for xp = exp(u+bwp) = α(− log(1− p))1/β.

Since α is the (1− exp(−1))-quantile of the Weibull distribution, lower bounds for

it can be seen as a special case of quantile lower bounds. Indeed, this particular

quantile lower bound coincides with the one given previously.
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Upper Confidence Bounds for p(y) = P(Y ≤ y)

A pivot for p(y) = P(Y ≤ y) is not as straightforward as in the previous three cases.

p̂(y)= G
(

y− û(Y)
b̂(Y)

)
is the natural estimate (mle) of p(y)= P(Y ≤ y)= G

(
y−u

b

)
The cdf H of this estimate depends on u and b only through p(y), namely

p̂(y) = G
(

y− û(Y)
b̂(Y)

)
= G

(
(y−u)/b− (û(Y)−u)/b

b̂(Y)/b

)
= G

(
G−1(p(y))− û(Z)

b̂(Z)

)
∼ Hp(y) .

Thus by the probability integral transform it follows that

Wp(y) = Hp(y) (p̂(y))∼U(0,1) Hp(y)(w)↗ strictly in p(y),

i.e., Wp(y) is a true pivot.

This is contrary to what is stated in Bain (1978) and Bain and Engelhardt (1991).
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Upper Confidence Bounds for p(y) = P(Y ≤ y)

Rather than using this pivot Wp(y) we will go a more direct route as was indicated

by the strictly increasing property of h(p) = hγ(p) in the previous section.

Denote by h−1(·) the inverse function to h(·). We then have

γ = P(û(Y)+h(p)b̂(Y)≤ yp)

= P(h(p)≤ (yp− û(Y))/b̂(Y))

= P
(

p≤ h−1((yp− û(Y))/b̂(Y)
))

, for any p ∈ (0,1).

For p = p(y) = P(Y ≤ y) = G((y−u)/b) we have yp(y) = y and thus also

γ = P
(

p(y)≤ h−1((y− û(Y))/b̂(Y)
))

for any y ∈ R and u ∈ R and b > 0.

Hence p̂U(y) = h−1((y− û(Y))/b̂(Y)
)

is a 100γ% upper confidence bound for

p(y) for any given threshold y.
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Computation of p̂U(y)

The only remaining issue is the computation of such bounds.

Does it require the inversion of h and the concomitant calculations of many

h(p) =−k(p) for the iterative convergence of such an inversion?

It turns out that there is a direct path just as we had it in the previous three

confidence bound situations (and in the corresponding noncentral t application).

Note that h−1(x) solves −kp = x for p.

h−1(x) is the γ-quantile of the G(û(Z)+xb̂(Z)) distribution which we can simulate

by calculating as before û(Z) and b̂(Z) a large number Nsim times.

For x we use x = (y− û(Y))/b̂(Y) which is hard to tabulate upfront.
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h−1(x) is the γ-quantile of G(û(Z)+ xb̂(Z))

For any x = h(p) we have

P(G(û(Z)+ xb̂(Z))≤ h−1(x)) = P(G(û(Z)+h(p)b̂(Z))≤ p)

= P(û(Z)+h(p)b̂(Z)≤ wp)

= P(û(Z)− kγ(p)b̂(Z)≤ wp) = γ ,

as seen in the derivations of bounds for yp.

Thus h−1(x) is the γ-quantile of the G(û(Z)+ xb̂(Z)) distribution.
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Tabulation of Confidence Quantiles η(γ)

For the pivots for b, u and yp it is possible to carry out simulations once and for all

for a desired set of confidence levels γ, sample sizes n and choices of p, and

tabulate the required confidence quantiles η̂1(γ), η̂2(γ), and η̂p(γ).

This has essentially been done (with
√

n scaling modifications) and such tables are

given in Bain (1978), Bain and Engelhardt (1991) and Thoman et al. (1969,1970).

Similar tables for bounds on p(y) are not quite possible since the appropriate

bounds depend on the observed value of p̂(y) (sample dependent).

Instead Bain (1978), Bain and Engelhardt (1991) and Thoman et al. (1970) tabulate

confidence bounds for p(y) for a reasonably fine grid of values for p̂(y), which can

then serve for interpolation purposes with the actually observed value of p̂(y).
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Usage of the Tables

It should be quite clear that all this requires extensive tabulation.

The use of these tables is not easy and often still requires interpolation.

Table 4 in Bain (1978) does not have a consistent format and using these tables

would require delving deeply into the text for each new use, unless one does this

kind of calculation all the time.

In fact, in the second edition, Bain and Engelhardt (1991), Table 4 has been greatly

reduced to just cover the confidence factors dealing with the location parameter

u, and it now leaves out the confidence factors for general p-quantiles.
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Usage of the Tables (continued)

For the p-quantiles they referred to the interpolation scheme that is needed when

getting confidence bounds for p(y), using Table 7 in Bain and Engelhardt (1991).

The example that they present (page 248) would have benefitted by showing some

intermediate steps in the interpolation process.

They point out that the resulting confidence bound for xp is slightly different (14.03)

from that obtained using the confidence quantiles of the original Table 4, namely

13.92. They attribute the difference to round-off errors or other discrepancies.

Possibly different simulations were involved.
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Typos in the Tables

Some entries in the tables given in Bain (1978) seem to have typos.

Presumably they were transcribed by hand from computer output, just as the book

(and its second edition) itself is typed and not typeset.

We give just give a few examples. In Bain (1978) Table 4A, p.235, bottom row,

the second entry from the right should be 3.625 instead of 3.262.

This discrepancy shows up clearly when plotting the row values against

log(p/(1− p)), see a similar plot for a later example.

In Table 3A, p.222, row 3 column 5 shows a double minus sign (still present in

the 1991 second edition).

83



Typos in the Tables (continued)

In comparing the values of these tables with our own simulation of pivot distribution

quantiles, just to validate our simulation for n = 40, we encountered an apparent

error in Table 4A, p. 235 with last column entry of 4.826. Plotting log(p/(1− p))

against the corresponding row value (γ-quantiles) one clearly sees a change in

pattern, see next slide. We suspect that the whole last column was calculated for

p = .96 instead of the indicated p = .98.

The bottom plot shows our simulated values for these quantiles as solid dots with

the previous points (circles) superimposed.

The agreement is good for the first 8 points. Our simulated γ-quantile was 5.725

(corresponding to the 4.826 above) and it fits quite smoothly into the pattern of the

previous 8 points. Given that this was the only case chosen for comparison it leaves

some concern in fully trusting these tables.
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The R Function WeibullPivots
Rather than using these tables we will resort to direct simulations ourselves since

computing speed has advanced sufficiently over what was common prior to 1978.

Furthermore, computing availability has changed dramatically since then.

It may be possible to further increase computing speed by putting the loop over

Nsim calculations of mle’s into compiled form rather than looping within R for each

simulation iteration.

For example, using qbeta in vectorized form reduced the computing time to almost

1/3 of the time compared to looping within R itself over the elements in the

argument vector of qbeta.

However, such an increase in speed would require writing C-code (or Fortran code)

and linking that in compiled form to R. Such extensions of R are possible, see

chapter 5 System and foreign language interfaces in the Writing R Extensions

manual available under the toolbar Help in R.
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Computation Time for WeibullPivots
For the R function Weibull.Pivots (available within the R work space for Weibull

Distribution Applications on the class web site) the call

system.time(WeibullPivots(Nsim = 10000,n = 10,r = 10,graphics = F))

gave an elapsed time of 59.76 seconds.

The default sample size n = 10 was used, and r = 10 (also default) indicates that

the 10 lowest sample values are given and used, i.e., in this case the full sample.

Also, an internally generated Weibull data set was used, since the default in the call

to WeibullPivots is weib.sample=NULL.

For sample size n = 100 with r = 100 and n = 1000 with r = 1000 the

corresponding calls resulted in elapsed times of 78.22 and 269.32 seconds.

These three computing times suggest strong linear behavior in n (next slide).
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The intercept 57.35 and slope of .2119 given here are fairly consistent with the

intercept .005886 and slope of 2.001×10−5 given for Weibull.mle.
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What Does WeibullPivots Do?

For all the previously discussed confidence bounds all that is needed is the set of

(û(zi), b̂(zi)) for i = 1, . . . ,Nsim.

Can construct confidence bounds and intervals for u and b, for yp for any collection

of p values, and for p(y) and 1− p(y) for any collection of threshold values y.

Do this for any confidence levels that make sense for the simulated distributions.

No need to run the simulations over and over for each target parameter, confidence

level γ, p or y, unless one wants independent simulations for some reason.
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Usage of WeibullPivots

Proper use of this function only requires understanding the calling arguments,

purpose, and output of this function, and the time to run the simulations.

The time for running the simulation should easily beat the time spent in dealing

with tabulated confidence quantiles η(γ) in order to get desired confidence bounds,

especially since WeibullPivots does such calculations all at once for a broad

spectrum of yp and p(y) and several confidence levels without greatly impacting

the computing time.

Furthermore, WeibullPivots does all this not only for full samples but also for

type II censored samples, for which appropriate confidence factors are available

only sparsely in tables.
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Calling Sequence of WeibullPivots

WeibullPivots(weib.sample=NULL,alpha=1000,beta=1.5,n=10,r=10,

Nsim=1000,threshold=NULL,graphics=T)

Here Nsim = Nsim has default value 1000 which is appropriate when trying to get

a feel for the function for any particular data set.

The sample size is input as n = n and r = r indicates the number of smallest

sample values available for analysis. When r < n we are dealing with a type II

censored data set.

We need r > 1 and at least two distinct observations among X(1), . . . ,X(r) in order

to estimate any spread in the data.
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Other Inputs to WeibullPivots

The available sample values X1, . . . ,Xr (not necessarily ordered) are given as

vector input to weib.sample.

When weib.sample=NULL (the default), an internal data set is generated as input

sample from from W (α,β) with alpha= 10000 (default) and beta= 1.5 (default),

either by using the full sample X1, . . . ,Xn or a type II censored sample X1, . . . ,Xr

when r < n is specified.

The input thresh (= NULL by default) is a vector of thresholds y for which we

desire upper confidence bounds for p(y).

The input graphics (default T) indicates whether graphical output is desired.
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Output of WeibullPivots
Confidence levels γ are set internally as

.005, .01, .025, .05, .10, .02, .8, .9, .95, .975, .99, .995

and these levels indicate the coverage probability for the individual one-sided bounds.

A .025 lower bound is reported as a .975 upper bound, and a pair of .975 lower and

upper bounds constitute a 95% confidence interval.

The values of p for which confidence bounds or intervals for xp are provided are

also set internally as .001, .005, .01, .025, .05, .1,(.1), .9, .95, .975, .99, .995, .999.

The output from WeibullPivots is a list with components:

$alpha.hat, $alpha.hat, $alpha.beta.bounds, $p.quantile.estimates,

$p.quantile.bounds, $Tail.Probability.Estimates, $Tail.Probability.Bounds

The structure and meaning of these components will become clear from the

example output given below.
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Sample Output Excerpts of WeibullPivots

$alpha.hat
(Intercept)

8976.2

$beta.hat
[1] 1.95

$alpha.beta.bounds
alpha.L alpha.U beta.L beta.U

99.5% 5094.6 16705 0.777 3.22
99% 5453.9 15228 0.855 3.05
...

$p.quantile.estimates
0.001-quantile 0.005-quantile 0.01-quantile 0.025-quantile ...

259.9 593.8 848.3 1362.5 ...
....
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Sample Output Excerpts of WeibullPivots

$p.quantile.bounds
99.5% 99% 97.5% 95% 90% 80%

0.001-quantile.L 1.1 2.6 6.0 12.9 28.2 60.1
0.001-quantile.U 1245.7 1094.9 886.7 729.4 561.4 403.1
0.005-quantile.L 8.6 16.9 31.9 57.4 106.7 190.8
0.005-quantile.U 2066.9 1854.9 1575.1 1359.2 1100.6 845.5
....
$Tail.Probability.Estimates
p(6000) p(7000) p(8000) p(9000) p(10000) p(11000) p(12000) ...
0.36612 0.45977 0.55018 0.63402 0.70900 0.77385 0.82821 ...

...

$Tail.Probability.Bounds
99.5% 99% 97.5% 95% 90% 80%

p(6000).L 0.12173 0.13911 0.16954 0.19782 0.23300 0.28311
p(6000).U 0.69856 0.67056 0.63572 0.59592 0.54776 0.49023
....
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The Call that Produced Previous Output

WeibullPivots(threshold = seq(6000,15000,1000),

Nsim = 10000,graphics = T)

Because of graphics=T we also got 2 pieces of graphical output.

The first gives the two intrinsic pivot distributions of û/b̂ and b̂ (next slide).

The second gives a Weibull plot of the generated sample with a variety of

information and with several types of confidence bounds (slide after next).
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Weibull Regression Models

Here the location parameter ui of log(Xi) = Yi can vary as follows in relation to

known covariates ci, j:

ui = ζ1ci,1 + . . .+ζkci,k , i = 1, . . . ,n ,

The regression coefficients ζ′ = (ζ1, . . . ,ζk) and the common scale parameter b

are unknown.

Thus we have the following model for Y1, . . . ,Yn

Yi = ui +bZi = ζ1ci,1 + . . .+ζkci,k +bZi , i = 1, . . . ,n ,

with independent Zi ∼ G(z) = 1− exp(−exp(z)), i = 1, . . . ,n.

In terms of the Weibull random variables Xi the characteristic life αi = exp(ui)

is modeled in multiplicative dependence in relation to the covariates

αi = exp(ui) = exp(ζ1ci,1 + . . .+ζkci,k) = exp(ζ1ci,1)× . . .× exp(ζkci,k)
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MLE’s

Two concrete examples of this general linear model will be discussed in detail later.

The first is the simple linear regression model and the other is the k-sample

model, which exemplifies ANOVA situations.

It can be shown that the mle’s ζ̂′ = (ζ̂1, . . . , ζ̂k) and b̂ of ζ and b exist and are

unique, provided the covariate matrix C, consisting of the rows c′i = (ci,1, . . . ,ci,k),

i = 1, . . . ,n, has full rank k and n > k.

It is customary that the first column of C is a vector of n 1’s. Alternatively, one can

also only specify the remaining k−1 columns and implicitly invoke the default

option in survreg that augments those columns with such a 1-vector. These two

usages are illustrated in the function WeibullReg which is given on the next slides.
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WeibullReg

WeibullReg <- function (n=50,x=NULL,alpha=10000,beta=1.5,slope=.05)

{

# We can either input our own covariate vector x of length n

# or such a vector is generated for us (default).

#

if(is.null(x)) x <- (1:n-(n+1)/2)

uvec <- log(alpha)+slope*x

b <- 1/beta

# Create the Weibull data

time <- rweibull(n,beta,alpha*exp(slope*x))

# Creating good vertical plotting limits

m <- min(uvec)+b*log(-log(1-1/(3*n+1)))

M <- max(uvec)+b*log(-log(1/(3*n+1)))

plot(x,log(time),ylim=c(m,M))

dat <- data.frame(time,x)
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WeibullReg

out <- survreg(Surv(time)˜x,data=dat,dist="weibull")

# The last two lines would give the same result as the

# next four lines after removing the # signs.

# x0 <- rep(1,n)

# dat <- data.frame(time,x0,x)

# survreg(formula = Surv(time) ˜ x0 + x - 1, data = dat,

# dist = "weibull")

# Here we created the vector x0 of ones explicitly and removed

# the implicit vector of ones by the -1 in ˜ x0+x-1.

# Note also, that we did not use a status vector (of ones) in the

# creation of dat, since survreg will use status = 1 for each

# observation, i.e, treat the given time as a failure time as default.

abline(log(alpha),slope) #true line

# estimated line

abline(out$coef[1],out$coef[2],col="blue",lty=2)



WeibullReg

# Here out has several components, of which only

# out$coef and out$scale are of interest to us.

# The estimate out$scale is the mle of b=1/beta

# and out$coef is a vector that gives the mle’s

# of intercept u=log(alpha) and the regression slope.

out

}



Comments on WeibullReg

It is very instructive to run this function as part of the following call:

{\tt system.time(for(i in 1:1000)WeibullReg())} ,

i.e., we execute the function WeibullReg a thousand times in close succession.

The rapidly varying plots give a good visual image of the sampling uncertainty and

the resulting sampling variation of the fitted lines. The fixed line represents the true

line with respect to which the Weibull data are generated by simulation.

The plotted log-Weibull data show a more transparent relationship in relation to the

true line. It is instructive to see the variability of the data clouds around the true

line, but also the basic stability of the overall cloud pattern as a whole.

On my laptop the elapsed time ≈ 15 seconds, ≈ 9 seconds without plotting.

=⇒ reasonable behavior w.r.t. the anticipated computing times for the confidence

bounds to be discussed below.
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Example Plot from WeibullReg
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Equivariance Properties of MLE’s
Existence and uniqueness of the mle’s =⇒ the following equivariance properties

ζ̂(r) = a+σζ̂(z) and b̂(r) = σb̂(z) for r = Ca+σz.

The proof is similar to the location/scale case. With ri = c′ia+σzi we have

sup
b,ζ

{
n

∏
i=1

1
b

g
(

ri− c′iζ
b

)}
=

1
σn sup

b,ζ

{
n

∏
i=1

1
b/σ

g
(

zi− c′i(ζ−a)/σ

b/σ

)}

using ζ̃ = (ζ−a)/σ and b̃ = b/σ =
1

σn sup
b̃,ζ̃

{
n

∏
i=1

1
b̃

g

(
zi− c′iζ̃

b̃

)}

=
1

σn

n

∏
i=1

1
b̂(z)

g

(
zi− c′iζ̂(z)

b̂(z)

)

sup
b,ζ

{
n

∏
i=1

1
b

g
(

ri− c′iζ
b

)}
=

n

∏
i=1

1
b̂(r)

g

(
ri− c′iζ̂(r)

b̂(r)

)

=
1

σn

n

∏
i=1

1
b̂(r)/σ

g

(
zi− c′i(ζ̂(r)−a)/σ

b̂(r)/σ

)
q.e.d.

The equivariance claim follows from the existence/uniqueness of the mle’s.
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Pivot Properties of MLE’s
Equivariance properties =⇒ (ζ̂−ζ)/b̂ and b̂/b have distributions that do not

depend on any unknown parameters, i.e., b and ζ.

The log-transformed Weibull data have the following regression structure

Y = Cζ+bZ, where Z = (Z1, . . . ,Zn)′ with Zi ∼ G(z) = 1− exp(−exp(z)) i.i.d.

From the equivariance property we have that

ζ̂(Y ) = ζ+b ζ̂(Z) and b̂(Y ) = b b̂(Z) .

=⇒ ζ̂(Y )−ζ

b̂(Y )
=

b ζ̂(Z)
b b̂(Z)

=
ζ̂(Z)
b̂(Z)

and
b̂(Y )

b
=

b b̂(Z)
b

= b̂(Z) ,

which have a distribution free of any unknown parameters.

This distribution can be approximated to any desired degree via simulation, just

as in the location scale case, except that we will need to incorporate the known

covariate matrix C in the call to survreg in order to get the Nsim simulated

parameter vectors (ζ̂(Z?
1), b̂1(Z?

1)), . . . ,(ζ̂(Z?
Nsim

), b̂(Z?
Nsim

)) and thus the empirical

distribution of (ζ̂(Z?
1)/b̂1(Z?

1), b̂1(Z?
1)), . . . ,(ζ̂(Z?

Nsim
)/b̂(Z?

Nsim
), b̂(Z?

Nsim
)).
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Confidence Bounds for c′0ζ

The distribution of (c′0ζ̂(Y )− c′0ζ)/b̂(Y ) is free of unknown parameters for any

target covariate vector c′0 = (c0,1, . . . ,c0,k), since

c′0ζ̂(Y )− c′0ζ

b̂(Y )
=

c′0ζ̂(Z)

b̂(Z)

We use the simulated values (c0
′ζ̂(Z?

i ))/b̂(Z?
i ), i = 1, . . . ,Nsim, to approximate this

parameter free distribution.

If η̂2(γ,c0) denotes the γ-quantile of this simulated distribution, then we can view

c0
′ζ̂(Y )− η̂2(γ,c0)b̂(Y ) as an approximate 100γ% lower bound for c′0ζ.

This is demonstrated as in the location/scale case for the location parameter u.

Here c′0ζ is the log of the characteristic life at the covariate vector c0.
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Confidence Bounds for b

Similarly, if η̂1(γ) is the γ-quantile of the simulated b̂(Z?
i ), i = 1, . . . ,Nsim,

then we can view b̂(Y )/η̂1(γ) as approximate 100γ% lower bound for b.

We note here that these quantiles η̂1(γ) and η̂2(γ,c0) depend on the original

covariate matrix C, i.e., they differ from those used in the location/scale case.

The same comment applies to the other confidence bound procedures

following below.
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Confidence Bounds for yp(c0) and P(Y (c0)≤ y0)

For a given covariate vector c0 we can target the p-quantile yp(c0) = c′0ζ+bwp

of the Y distribution with covariate dependent location parameter u(c0) = c′0ζ

and scale parameter b.

Calculate c′0ζ̂(Y )− k̂p(γ)b̂(Y ) as an approximate 100γ% lower bound for yp(c0),

where k̂p(γ) is the γ-quantile of the simulated (c′0ζ̂(Z?
i )−wp)/b̂(Z?

i ), i = 1, . . . ,Nsim.

For the tail probability p(y0) = G((y0− c′0ζ)/b) with given threshold y0 and

covariate vector c0 we obtain an approximate 100γ% upper bound by using the

γ-quantile of the simulated values

G(c′0ζ̂(Z?
i )− xb̂(Z?

i )), i = 1, . . . ,Nsim ,

where x = (y0− c′0ζ̂(y)/b̂(y) and y is the originally observed sample vector,

obtained under the covariate conditions specified through C.
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The Simple Linear Regression Model

Here we assume the following simple linear regression model for the Yi = log(Xi)

Yi = ζ1 +ζ2ci +bZi , i = 1, . . . ,n with Zi ∼ G(z).

In matrix notation this becomes

Y =

 Y1
...

Yn

=

 1 c1
... ...
1 cn

( ζ1
ζ2

)
+b

 Z1
...

Zn

= Cζ+b Z .

Here ζ1 and ζ2 represent the intercept and slope parameters in the straight line

regression model for the location parameter and b represents the degree of scatter

(scale) around that line.

In the context of the general regression model we have k = 2 here and c1,i = 1 and

c2,i = ci for i = 1, . . . ,n. The conditions for existence and uniqueness of the mle’s

are satisfied when the covariate values c1, . . . ,cn are not all the same.
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WeibullRegSim

The R function call system.time(WeibullRegSim(n=20,Nsim=10000))

(done twice and recording an elapsed time of about 76 seconds each)

produced each of the following plots.

Each call generates its own data set of 20 points using 5 different levels of covariate

values. The data are generated from a true Weibull distribution with a known true

regression line relationship for log(α) in relation to the covariates, as shown in

the plots. Also shown in these plots is the .10-quantile line.

Estimated lines are indicated by the corresponding color coded dashed lines.

We repeated this with n = 50 with elapsed time of 85 seconds per plot.
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Regression Plot 1 (n = 20)
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Regression Plot 2 (n = 20)
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Regression Plot 3 (n = 50)
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Regression Plot 4 (n = 50)
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p-Quantile Lower Bound Curve

In contrast, the quantile lower confidence bounds based on Nsim = 10000

simulations are represented by a curve.

This results from the fact that the factor k̂p(γ) used in the construction of the

lower bound, ζ̂1(Y )+ ζ̂2(Y )c− k̂p(γ)b̂(Y ), is the γ-quantile of the simulated values

(c′0ζ̂(Z?
i )−wp)/b̂(Z?

i ), i = 1, . . . ,Nsim, and these values change depending on

which c′0 = (1,c) is involved.

This curvature adjusts to some extent to the sampling variation induced swivel

action in the fitted line.

The fitted line will deviate more strongly from the true line the farther away we are

from the data scatter used in the mle fitting.

Note the crossing of the true quantile line by the confidence curve in the last plot.
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The k-Sample Problem

Here we deal with k = 3 samples with same scale but possibly different locations.

The modifications for k 6= 3 should be obvious. In matrix notation this model is

Y =



Y1
...

Yn1...
Yn1+1

...
Yn1+n2

Yn1+n2+1
...

Yn1+n2+n3


=



1 0 0
... ... ...
1 0 0
1 1 0
... ... ...
1 1 0
1 0 1
... ... ...
1 0 1



 ζ1
ζ2
ζ3

+b



Z1
...

Zn1...
Zn1+1

...
Zn1+n2

Zn1+n2+1
...

Zn1+n2+n3


= Cζ+b Z .

Here the Yi have location u1 = ζ1 for the first n1 observations, u2 = ζ1 +ζ2 for the

next n2 observations and u3 = ζ1 +ζ3 for the last n3 observations.
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Comments on Parameters

u1 = ζ1 is the baseline location (represented by the first n1 observations).

ζ2 can be considered as the incremental change from u1 to u2.

ζ3 is the incremental change from u1 to u3.

If we were interested in the question whether the three samples come from the

same location/scale model we would consider testing the hypothesis

H0 : ζ2 = ζ3 = 0 or equivalently H0 : u1 = u2 = u3.
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Testing H0 : ζ2 = ζ3 = 0

Instead of using the likelihood ratio test, which invokes the χ2
k−1 = χ2

2 distribution

as approximate null distribution, we will employ the test statistic suggested in

Lawless (1982) (p. 302, equation (6.4.12)) for which the same approximate null

distribution is invoked.

Our reason for following this choice is its similarity to the standard test statistic

used in the corresponding normal distribution model, i.e., when Zi ∼Φ(z) instead

of Zi ∼ G(z) as in the above regression model.

Also, the modification of this test statistic for general k(6= 3) is obvious.

Which test statistic?
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The Test Statistic

The formal definition of the test statistic proposed by Lawless is as follows:

Λ1 = (ζ̂2, ζ̂3)C
−1
11 (ζ̂2, ζ̂3)

t ,

where C11 is the asymptotic 2×2 covariance matrix of (ζ̂2, ζ̂3).

Without going into the detailed derivation one can give the following alternate and

more transparent expression for Λ1

Λ1 =
3

∑
i=1

ni(ûi(Y )− û(Y ))2/b̂(Y )2 ,

where

û1(Y ) = ζ̂1(Y ) , û2(Y ) = ζ̂1(Y )+ ζ̂2(Y ) , û3(Y ) = ζ̂1(Y )+ ζ̂3(Y )

and û(Y ) =
3

∑
i=1

ni
N

ûi(Y ) , with N = n1 +n1 +n3.

119



The Normal Case Parallel

In the normal case Λ1 reduces to the traditional F-test statistic (except for a

constant multiplier, namely (n− k)/((k−1)n) = (n−3)/(2n)) when writing

ûi(Y ) = Ȳi., i = 1,2,3 and û(Y ) = Ȳ.. = (n1/N)Ȳ1.+(n2/N)Ȳ2.+(n3/N)Ȳ3.
and

b̂(Y )2 =
1
n

k

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2 ,

which are the corresponding mle’s in the normal case.

However, in the normal case one uses the Fk−1,N−k distribution as the exact null

distribution of the properly scaled Λ1 and the uncertainty in b̂(Y )2 is not ignored by

simply referring to the χ2
k−1 distribution, using a large sample argument.
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The Null Distribution of Λ1

The null distribution of Λ1 (in the log-Weibull case) is free of any unknown

parameters and can be simulated to any desired degree of accuracy.

This is seen as follows from our equivariance properties. Recall that

û1(Y )−u1

b̂(Y )
=

ζ1(Y )−ζ1

b̂(Y )
,

ûi(Y )−ui

b̂(Y )
=

ζ1(Y )+ζi(Y )− (ζ1 +ζi)
b̂(Y )

, i = 2,3

have distributions free of unknown parameters.

Under the hypothesis H0 when u1 = u2 = u3(= u) we thus have that

ûi(Y )−u
b̂(Y )

,
û(Y )−u

b̂(Y )
, and thus

ûi(Y )− û(Y )
b̂(Y )

=
ûi(Y )−u

b̂(Y )
− û(Y )−u

b̂(Y )
have distributions free of any unknown parameters which in turn implies the above

claim about Λ1.
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Simulating the Null Distribution of Λ1
Thus we can estimate the null distribution of Λ1 by using the Nsim simulated values

of ζ̂i(Z?
j)/b̂(Z?

j) to create

û1(Z?
j)

b̂(Z?
j)

=
ζ̂1(Z?

j)

b̂(Z?
j)

,
ûi(Z?

j)

b̂(Z?
j)

=
ζ̂1(Z?

j)+ ζ̂i(Z?
j)

b̂(Z?
j)

, i = 2,3

and
û(Z?

j)

b̂(Z?
j)

=
∑

3
i=1 niûi(Z?

j)/N

b̂(Z?
j)

and thus

Λ1(Z
?
j) =

∑
3
i=1 ni(ûi(Z?

j)− û(Z?
j))

2

b̂(Z?
j)

2
j = 1, . . . ,Nsim .

The distribution of these Nsim values Λ1(Z?
j) will give a very good approximation

for the true null distribution of Λ1.

The accuracy of this approximation is entirely controllable by the choice of Nsim.

Nsim = 10000 should be sufficient for most practical purposes.
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The Λ1 Null Distribution and its χ2
2 Approximation

The following plots examine the χ2
2 approximation to the Λ1 null distribution in the

case of 3 samples of respective sizes n1 = 5, n2 = 7 and n3 = 9.

This is far from qualifying for a large sample situation.

The histogram (next slide) is based on Nsim = 10000 simulated values of Λ1(Z?).

The χ2
2 density is similar in character but there are severe differences.

Using the χ2
2 distribution would result in much smaller p-values than appropriate

when these are on the low side.

We would strongly overstate the significance of some test results when using χ2
2.
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The Λ1 Null Distribution and its χ2
2 Approximation
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QQ-Plot of Λ1 Null Distribution and χ2
2
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QQ-Plot of Normal Theory F Distribution and its χ2
2 Approximation
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Comments on QQ-Plots
In the QQ-plots each point on the curve corresponds to a particular value of p.

The QQ-curve bends away from the main diagonal to the right.

This indicates that the p-quantile for the abscissa distribution is further out than the

p-quantile of the χ2
2 ordinate distribution.

Pick an abscissa value x0, move up to the quantile curve and read off its probability

value p on the χ2
2 ordinate probability scale. =⇒ x0 = xp.

To see what probability value the approximating χ2
2 distribution associates with x0

we just go up to the main diagonal from the x0 abscissa value and then read off

the p from the χ2
2 ordinate probability scale to the left.

For Λ?
1 a .95-quantile becomes a .993-quantile on the χ2

2 scale, i.e., a p-value of

.05 gets falsely turned into a much more significant p-value of .007.
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Goodness of Fit Tests for Weibull Regression Data

As in the location/scale case we can exploit the equivariance properties of the mle’s

in the general regression model to carry out the previously discussed goodness of

fit tests by simulation.

Using the previous computational formulas for the D, W 2 and A2 we only need to
define the appropriate Vi, namely

Vi = G

(
Yi− c′iζ̂(Y )

b̂(Y )

)
, i = 1, . . . ,n .

Pierce and Kopecky (1979) showed that the asymptotic null distributions of D, W 2

and A2, using the sorted values V(1) ≤ . . .≤V(n) of these modified versions of Vi,

are respectively the same as in the location/scale case, i.e., they do not depend

on the additional covariates that may be present.

This assumes that the covariate matrix C contains a vector of ones.
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Goodness of Fit by Simulation

However, for finite sample sizes the effects of these covariates may still be relevant.

The effect of using the small sample tables (location/scale) given by

Stephens (1986) is not clear.

However, one can easily simulate the null distributions of these statistics since they

do not depend on any unknown parameters.

Using the data representation Yi = c′iζ + bZi with i.i.d. Zi ∼ G(z), or Y = Cζ + bZ
this is seen from the equivariance properties as follows

Yi− c′iζ̂(Y )

b̂(Y )
=

c′iζ+bZi− c′i(ζ+bζ̂(Z))

bb̂(Z)
=

Zi− c′iζ̂(Z)

b̂(Z)

and thus Vi = G

(
Yi− c′iζ̂(Y )

b̂(Y )

)
= G

(
Zi− c′iζ̂(Z)

b̂(Z)

)
.
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The Null Distributions of D, W 2 and A2

For any covariate matrix C and sample size n the null distributions of D, W 2 and

A2 can be approximated to any desired degree.

All we need to do is generate vectors Z? = (Z1, . . . ,Zn)′ i.i.d. ∼ G(z), compute

the mle’s ζ̂(Z), b̂(Z), and from that V ? = (V ?
1 , . . . ,V ?

n )′, followed by D? = D(V ?),

W 2? = W 2(V ?) and A2? = A2(V ?).

Repeating this a large number of times, say Nsim = 10000, would yield values

D?
i ,W

2?
i ,A2?

i , i = 1, . . . ,Nsim. Their respective empirical distributions would

serve as excellent approximations to the desired null distributions of these

test of fit criteria.
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Weibull Regression Data
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Goodness of Fit Tests for Weibull Regression Data
n == 100  ,   Nsim == 10000
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Comments on the Weibull Regression Example

The solid sloped line in the Weibull regression data plot indicates the true

log(characteristic life) while the dashed line represents its estimate.

The histograms on the previous slide show the results of the Weibull goodness of

fit tests in relation to the simulated null distributions of D, W 2 and A2.

Based on the shown p-values the hypothesis of a Weibull lifetime distribution

cannot be rejected by any of the three test of fit criteria.

This example was produced by the R function WeibullRegGOF available in the R

workspace on the class web site. It took 105 seconds on my laptop.

This function performs Weibull goodness of fit tests for any supplied regression

data set. When this data set is missing it generates its own Weibull regression

data set.
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Normal Regression Data
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Goodness of Fit Tests for Normal Regression Data
n == 100  ,   Nsim == 10000
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Comments on the Normal Regression Example

Here Xi = exp(Yi) would be viewed as the failure time data.

Such data would have a log-normal distribution.

This data set was produced within WeibullRegGOF by modifying the line that

generated the original data sample, so that Zi ∼Φ(z), i.e., Z <- rnorm(n,0,1).

The simulation of the test of fit null distributions remains essentially unchanged

except that a different random number starting seed was used.

The solid sloped line indicates the mean of the normal regression data while the

dashed line represents the estimate according to an assumed Weibull model.

Note the much wider discrepancy here compared to the previous case.

The reason for this wider gap is that the fitted line aims for the .632-quantile

and not the mean/median of that data set.
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Comments on the Normal Regression Example (contd)

Here the p-values clearly indicate that the hypothesis of a Weibull distribution

should be rejected, although the evidence in the case of D is not very strong.

However, for W 2 and A2 there should be no doubt in the (correct) rejection of the

hypothesis of a Weibull distribution.

Any slight differences in the null distributions shown here and in the previous

example are due to a different random number seed being used in the two cases.

Finis
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