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This note discusses and illustrates the use of Weibull probability paper for complete samples and
for the special kind of censoring known as type II censoring. In the latter case the observed lifetimes
consist of the r lowest values of the sample, the remaining unobserved lifetimes all being higher.
Three blanks for 1 Cycle Log, 2 Cycle Log and 3 Cycle Log scales on the measurement abscissa
are provided, together with two illustrative examples involving a full sample of size n = 10 and one
that treats the lowest five values of that sample as a type II censored sample.

1 Introduction

In characterizing the distribution of life lengths or failure times of certain devices one often employs
the Weibull distribution. This is mainly due to its weakest link properties, but other reasons are
its increasing1 failure rate with device age and the variety of distribution shapes that the Weibull
density offers. The increasing failure rate accounts to some extent for fatigue failures.

Weibull plotting is a graphical method for informally checking on the assumption of the Weibull
distribution model and also for estimating the two Weibull parameters. The method of Weibull
plotting is explained and illustrated here only for complete and type II censored samples of failure
times. In the latter case only the r lowest lifetimes of a sample of size n are observed. This data
scenario is useful when n items (e.g., ball bearings) are simultaneously put on test in a common
test bed and cycled until the first r fail, where r is a specified integer 2 ≤ r ≤ n. The requirement
r ≥ 2 is needed at a minimum in order to get some sense of spread in the lifetime data, or in order
to fit a line in the Weibull probability plot, since there are an infinite number of lines through a
single point. The case r = n leads back to the complete sample situation. Other types of censoring
(right censoring, interval censoring) are not considered here, although they could also benefit from
using Weibull probability paper.

It is assumed that the two-parameter Weibull distribution is a reasonable model for describing the
variability in the failure time data. If T represents the generic failure time of a device, then the
Weibull distribution function of T is given by

FT (t) = P (T ≤ t) = 1− exp

(
−
[

t

α

]β)
for t ≥ 0 .

1for Weibull shape parameter β > 1
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The parameter α is called the scale parameter or characteristic life. The latter term is motivated
by the property FT (α) = 1− exp(−1) ≈ .632, regardless of the shape parameter β. There are many
ways for estimating the parameters α and β. One of the simplest is through the method of Weibull
plotting, which used to be very popular due to its simplicity, graphical appeal, and its informal
check on the Weibull model assumption. Such plotting and the accompanying calculations could
all be done by hand for small to moderately sized samples. The availability of software and fast
computing has changed all that. Thus this note is mainly a link to the past.

2 Weibull Plotting

The basic idea behind Weibull plotting is the relationship between the p-quantiles tp of the Weibull
distribution and p for 0 < p < 1. The p-quantile tp is defined by the following property

p = FT (tp) = P (T ≤ tp) = 1− exp

(
−
[
tp
α

]β)

which leads to
tp = α [− loge (1− p)]1/β

or taking decimal logs2 on both sides

yp = log10(tp) = log10(α) +
1

β
log10 [− loge (1− p)] . (1)

Thus log10(tp), when plotted against w(p) = log10 [− loge (1− p)] should follow a straight line pat-
tern with intercept a = log10(α) and slope b = 1/β. Thus α = 10a and β = 1/b.

Plotting w(p) against yp = log10(tp), as is usually done in a Weibull plot, one should see the following
linear relationship

w(p) = β [log10(tp)− log10(α)] (2)

with slope B = β and intercept A = −β log10(α). Thus β = B and α = 10−A/B.

In place of the unknown log10-quantiles log10(tp) one uses the corresponding sample quantiles. For
a complete sample, T1, . . . , Tn, these are obtained by ordering these Ti from smallest to largest to
get T(1) ≤ . . . ≤ T(n) and then associate with pi = (i− .5)/n the pi-quantile estimate or ith sample
quantile T(i). These sample quantiles tend to vary around the respective population quantiles tpi

.
For large sample sample sizes and for pi = (i− .5)/n ≈ p with 0 < p < 1 this variation diminishes
(i.e., the sample quantile T(i) converges to tp in a sense not made precise here). For pi close to 0 or

2The explicit notation log10 and loge is used to distinguish decimal and natural logs.
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1 the sample quantiles T(i) may still exhibit high variability even in large samples. Thus one has to
be careful in interpreting extreme sample values in Weibull plots.

The idea of Weibull plotting for a complete sample is to plot w(pi) = log10 [− loge (1− pi)] against
log10(T(i)). Due to the variation of the T(i) around tpi

one should, according to equation (2), then see
a roughly linear pattern. The quality of this linear pattern should give us some indication whether
the assumed Weibull model is reasonable or not. For small samples such “linear” pattern can be
quite ragged, even when the samples come from a Weibull distribution. Thus one should not read
too much into apparent deviations from linearity. A formal test of fit is the more prudent way to
proceed.

For type II censored samples, where we only have the r lowest values T(1) ≤ . . . ≤ T(r), one simply
plots only wpi

against log10(T(i)) for i = 1, . . . , r, i.e., the censored values are not shown. They make
their presence felt only through the denominator n in pi = (i− .5)/n.

This Weibull plotting is facilitated by Weibull probability paper with a log10-transformed abscissa
with untransformed labels and a transformed ordinate scale given by w(p) = log10 [− loge (1− p)]
with labels in terms of p. Sometimes this scale is labeled in percent ( i.e., in terms of 100p%).
Three blank specimens of such Weibull probability paper are given at the end of this note. They
distinguish themselves by the number of log10 cycles (1, 2, or 3) that are provided on the abscissa
in order to simultaneously accommodate 1, 2, or 3 orders of magnitude.

For each plotting point (log10(T(i)), w(pi)) one locates or interpolates the label value of T(i) on the
abscissa and the label value pi on the ordinate, i.e., there is no need for the user to perform the
transformations log10(T(i)) and w(pi) = log10 [− loge (1− pi)].

Some authors suggest to use of p′i = (i − .3)/(n + .4) in place of pi, others use i/(n + 1). All
three choices for pi give values strictly between 0 and 1, i.e., 0 < pi < 1, in order to yield finite
values for wpi

. For large n there is little difference between these choices of pi and for small n the
inherent variability in Weibull samples makes any preference between the three methods somewhat
questionable.

3 Weibull Paper Scales

The three blanks of Weibull probability paper cover 1, 2, and 3 orders of magnitude on the abscissa,
namely from 1 to 10, from 1 to 100 and from 1 to 1000. If the observed life times cover a range
from 50 to 4000, one can simply change time units to tens and use the three log10 cycle paper from
5 to 400, which would accommodate such data. If the ranges are very large, even after scaling for
a proper time unit, one may be tempted to use Weibull paper covering more orders of magnitude.
Such higher order log10 scale Weibull paper is not given here, mainly because the graduation lines
would become quite crowded and because there is a simple transformation device around that
difficulty. It is based on the following power transformation property of the Weibull distribution.
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If T ∼ W(α, β) (i.e., T has a Weibull distribution with parameters α and β), then

T ′ = T a ∼ W(αa, β/a) =W(α′, β′) ,

since

P (T ′ ≤ y) = P (T a ≤ y) = P (T ≤ y1/a) = 1− exp

− [y1/a

α

]β


= 1− exp

(
−
[

y

αa

]β/a
)

= 1− exp

(
−
[

y

α′

]β′)

Thus one can always bring the scale of the failure times up or down (but mainly down) into the
proper range by an appropriate power transformation. After estimating (α′, β′) one can easily

transform back to (α, β) using the known value a, namely α = α′1/a and β = aβ′.

For example, if in a sample the minimum and maximum are T(1) = 5 and T(n) = 800000 respectively,
it would require 6 orders of magnitude to accommodate the full sample, namely within [1, 1000000].

However taking T 1/2 =
√

T would give T ′
(1) =

√
T(1) = 2.24 and T ′

(n) =
√

T(n) =
√

800000 = 894.43

and now the full transformed sample can be accommodated on an interval [1, 1000], i.e., on 3
cycle log10 Weibull paper. On the other hand, if T(1) = .5 and T(n) = 800000 respectively, the

above transformation does not quite work since
√

.5 = 0.71. Here one may try a = 1/3 and find
(.5)1/3 = 0.794 and 8000001/3 = 92.83. Expressing these values in units of 1/10 we get new values
7.94 and 928.3 which again can be accommodated by 3 cycle log10 Weibull paper.

4 Two Example Plots

Two example usages of Weibull probability paper are shown, one for a complete sample of size
n = 10 and the other based on a type II censored sample of the lowest five values of the previous
sample. Both are shown prior to the Weibull probability paper blanks.

The complete sample consists of 7,12.1,22.8,23.1,25.7,26.7,29.0,29.9,39.5,41.9 drawn from
a W(30, 3) distribution and rounded to one decimal. The Weibull plot for this example shows three
lines. The red line corresponds to maximum likelihood estimates (m.l.e.) of α and β. These esti-
mates are given as α̂MLE = 28.9 and β̂MLE = 2.8 near the bottom of the plot. The other two lines
(green and orange) represent least squares fits (the formulas for which will be given later). These
two least squares fits differ with respect to which axis variable is fitted as a linear function of the
other axis variable. Here α̂LS1 = 29.3 and β̂LS1 = 2.33, shown near the bottom of the plot, refers
to the least squares estimates of the parameters α and β when the abscissa is viewed as a linear
function of the ordinate, while α̂LS2 = 29.8 and β̂LS2 = 2.18 refers to the least squares estimates of
the same parameters when the ordinate is viewed as a linear function of the abscissa.
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The process for finding the m.l.e.’s is more complicated and is usually accomplished via computer,
using any of several available software programs. The solution process is described elsewhere.

We point out the sensitivity of the least squares fits to the two lower extreme values. This is
not surprising since the method of least squares, as applied here, treats all data equally. It does
not know that the data come from a Weibull distribution and that the values are ordered and thus
correlated. The method of maximum likelihood employs the fact that the data come from a Weibull
model and knows how to properly weigh the various observations, i.e., stragglers as they show up
in this example Weibull probability plot will not be given undue influence. Trying to fit a line by
eye that allows for such stragglers is inherently somewhat subjective.

As pointed out above, the plotted log10(T(i)) values are monotone increasing and thus correlated.
Such properties are not consistent with the usual data model invoked in least squares fitting. One
should view least squares fitting in this case as just a simple way of fitting a line through data, but
one should not rely on any of the usual good properties that accompany least squares estimates. In
particular, one should not attempt to construct confidence intervals around the fitted line that are
based on normal variation models.

Since p = 0.632 yields w(p) = 0 or log10(T )− log10(α) = 0 one can read off an estimate for α from
the abscissa scale where the fitted line intercepts the ordinate level 0.632. For this purpose Weibull
paper shows a level line at the ordinate p = 0.632.

The scale to the left of the ordinate scale runs from zero to ten and is a nomographic device for
reading off the estimated shape parameter associated with the lines fitted to the plotted data. To
obtain it one draws a line parallel to the respective fitted line and through the solid dot at the
upper right end of that nomographic shape scale, see the illustration.

The second example does the same for the type II censored sample consisting of the five lowest
observations in the previous sample. The least squares estimates do not account for the omitted
or censored sample values, except through the n in pi = (i − .5)/n. It is clear that any straggling
variation behavior in the low sample values will have an even stronger effect on the least squares
estimates in the type II censored situation. Here we have as maximum likelihood estimates α̂MLE =
30.7 and β̂MLE = 2.43, while for the least squares estimates we get α̂LS1 = 37.5 and β̂LS1 = 1.77 and
α̂LS2 = 39.1 and β̂LS2 = 1.69, respectively.

5 Least Squares Estimates

The least squares calculations, when fitting the ordinate w(pi) = log10(− loge(1 − pi)) (with pi =
(i− .5)/n) as linear function of Y(i) = log10(T(i)), use the following formulas

B̂ = β̂LS2 =

∑r
i=1 w(pi)(Y(i) − Y )∑r

i=1(Y(i) − Y )2
with Y =

1

r

n∑
i=1

Y(i)
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and

Â = −β̂LS2 log10(α̂LS2) = w − β̂LS2 Y or α̂LS2 = 10Y −w/β̂LS2 with w =
1

r

r∑
i=1

w(pi) .

Here r = n when a full sample is involved.

Since the variability is in the Y(i) and not in the w(pi) one may prefer doing the least squares
calculations with abscissa and ordinate reversed, i.e., according to the model (1). In that case one
obtains

b̂ =
1

β̂LS1

=

∑r
i=1(w(pi)− w)Y(i)∑r

i=1(w(pi)− w)2
with w =

1

r

r∑
i=1

w(pi)

and

â = log10(α̂LS1) = Y − w/β̂LS1 or α̂LS1 = 10Y −w/β̂LS1 with Y =
1

r

r∑
i=1

Y(i) .

Again, r = n when a full sample is involved.
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