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Objective of Statistical Tolerancing

Concerns itself with mass production, not custom made items.
Dimensions and properties of parts are not exactly what they should be.
Worst case tolerancing can be quite costly.

Manage variation in mechanical assemblies or systems.

Take advantage of statistical independence in variation cancelation.
Also known as statistical error propagation.

Useful when errors and system sensitivities are small.

It is more in the realm of probability than statistics (no inference).



Exchangeabillity of 757 Cargo Doors

At issue were the tolerances of gaps and lugs of hinges and their placement on the

hinge lines of aircraft body and door.
10 hinges with 12 lugs/gaps each.

That means that a lot of dimensions have to fit just about right.

0

The Root Sum Square (RSS) paradigm does not work here!



IBM Collaboration: Disk Drive Tolerances
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Main Ingredients: Mean, Variance & Standard Deviation

The dimension or property of interest, X, is treated as a random variable.

X ~ f(x) (density). CDF F(x)=P(X <x)= /_x £(t)dt
Mean: u=puy = E(X) = /_x £ (1) dt
Variance: 6> =07 =var(X)=E((X —p)?) =E(X?) -’ = /_x (t—p)? £(¢) dt

Standard Deviation: c =4/ var(X)



Rules for E(X) and var(X)

For constants ay,...,a; and random variables Xi,..., X}

we have for Y = a1 X1 +... +aiX;

E(Y) = E(a1X1 +... +aka) = alE(Xl) 4+ ... +akE(Xk)

For constants aq,...,a; and independent random variables Xj, ..., X; we have

612/ =var(Y) =var(a1 X1+ ...+ @ X;) = a%var(Xl) +... +a,%var(Xk)

It is this latter property that justifies the existence of the variance concept.

Oy = a%var(Xl) +... —|—a,%var(Xk)



Central Limit Theorem (CLT) |

e Suppose we randomly and independently draw random variables Xy,...,X},
from n possibly different populations with respective means and
standard deviations uy,...,u, and 6q,...,0p

e Suppose further that

max (62,...,02)

6t +...+ 02

i.e., none of the variances dominates among all variances

— 0, as n— o

e ThenY, = X; +...+ X, has an approximate normal distribution with mean
and variance given by

Uy = uy+...+uy and G%z(i%—i—...—l—(s%.
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Central Limit Theorem at Work
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What is a Tolerance?

Tolerances recognize that part dimensions are not what they should be.
“should be” = nominal or exact according to engineering design
Exact dimensions allow mass production assembly using interchangeable parts

Variations around nominal are controlled by tolerances.

Typical two-sided specification:  [Nominal — Tolerance, Nominal + Tolerance]

Specifications can be one-sided:
[Nominal, Nominal + Tolerance] or [Nominal — Tolerance, Nominal |

Specifications can be asymmetric:  [Nominal —Tolerance;, Nominal +Tolerance;]

16



Simple Examples

Example 1: A disk should have thickness 1/8" with &= .001” tolerance, i.e.,
the disk thickness should be in the range

125" —.001"7, .125" +.001"] = [.124”, .126"].

Example 2: A stack of ten disks should be 1.25"” high with & .01” tolerance,
l.e., the stack height should be in the range

[1.25" —.01", 1.25" +.01"] = [1.24", 1.26"] .

17



Disk Stack

1/8"=0.125+0.001"

1.25" +£0.01"
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Worst Case or Arithmetic Tolerancing

The tolerance specification in Example 1, if adhered to,
guarantees the tolerance specification in Example 2.

The reasoning is based on worst case or arithmetic tolerancing

The stack is highest when all disks are as thick as possible.
126" per disk == stack height of 10 x .126" = 1.26".

The stack is lowest when all disks are as thin as possible.
124" per disk == stack height of 10 x .124" = 1.24".

This gives the total possible stack height range as [1.24”,1.26"] .

19



disk stack/tolerance stack

worst case
low stack

worst case
high stack
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Worst Case or Arithmetic Tolerancing in Reverse

e This reasoning can be reversed.

e If the stack height has specified end tolerance +.01”,
and if the disk tolerances are to be the same for all disks (exchangeable),

then we should, by the worst case tolerancing reasoning, assign

+.01"”/10 = £.001”

tolerances to the individual disks (item tolerances).

e End tolerances can create very tight and unrealistic item tolerances. Costly!

21



Worst Case Analysis or Goal Post Mentality

nominal—tol nominal--tol

nominal

tol

Add some structure, aim for the middle

—> Statistical Tolerancing
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Statistical Tolerancing Assumption

e Statistical tolerancing assumes that disks are chosen at random,
not deliberately to make a worst possible stack, one way or the other.

e The disk thickness variation within tolerances is described by a distribution.

e The histogram, summarizing these thicknesses, is often assumed to be
~ normal or Gaussian with center up at the middle of the tolerance range
and with standard deviation such that

+3 standard deviations = 4 tolerance.

or

1
p = 3 X TOLp sothat [up—30p, up-+30p| = tolerance interval

e The normality assumption is a simplification, but is not essential.
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Normal Histogram/Distribution of Disk Thicknesses

Histogram of 10,000 Thicknesses
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Why Does Statistical Tolerancing Work

Under the normal population model —> we will see 13.5 out of 10,000
disks with thickness > .126" .

The chance of randomly selecting such a fat or fatter disk is .00135 = 13.5/10,000

= The chance of having such bad (thick) luck ten times in a row is

00135 x ... x .00135 = (.00135)10 = 2.01 x 107%° (1)

Choosing thicknesses at random from this normal population we (justifiably)
hope that thick and thin will average out to some extent.

Make independent variation work for you, not against you!

If life gives you , make | Turn a negative into a positive!

25



The Insurance Principle of Averaging

We look forward to the day when everyone will receive
more than the average wage.
Australian Minister of Labour, 1973

The etymology of “average” derives from the Arabic: awariyah
meaning shipwreck, damaged goods, and linking it to the custom
of averaging the losses of damaged cargo across all merchants

You get the good with the bad
“Havarie” in German means: shipwreck

“Awerij” in Dutch/Afrikaans means: average, damage to ship or cargo

26



Distribution of Stack Heights

Choosing many stacks S =D;+...4+Djp of ten disks each
we get a normal population of stack heights,

with mean E(S) = E(D) +... +E(Dyg) = 10 x .125" = 1.25",

and standard deviation

Os = \/c%)l +...+c5%)10 =v10x 6p = V10 x.001" /3 = .00105"

thus S ranges over

1.25" £3 x V10 x .001” /3 = 1.25" £/10 x .001" = 1.25" 4 .00316"

00316 =10 x .001” < 10 x.001”" = .01”

27
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Root Sum Square (RSS) Method

ForS =Di+...+Dyg, withindependent disk thicknesses D;, we have

Og = \/Var(Dl‘l‘---‘l_DlO) — \/G%1+"'+G%10

Interpreting TOL; = TOLp, = 36p. and TOLg = 365 we have

— \/TOL%+...+TOL%O =+/10 x TOLp

us & 36 contains 99.73% of the S values, because S ~ N (ug, 62).
This is referred to as the Root Sum Square (RSS) Method of tolerance stacking.

Contrast with arithmetic or worst case tolerance stacking
TOLs = TOL} +...+TOL}, = 10 x TOL}

29



Some Comments on * Notation

Numerically TOL; = TOL? are the same, they are just different in what they

represent: statistical variation range versus worst case variation range.

Again, TOLg and TOL§ represent statistical and worst case variation ranges,

but they are not the same since

\/ TOLZ +...+TOL?, = \/ (TOL?})? + ...+ (TOLY,)* < TOL} +... 4 TOLX,

We get = only in the trivial cases when n=1 or

when n>1 and TOL;=...=TOL,=0.
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Statistical Tolerancing Benefits

—> stack height variation is much tighter than specified
could try to relax the tolerances on the disks,
relaxed tolerances =—> lower cost of part manufacture

take advantage of tighter assembly tolerances —> easier assembly

31



RSS for General n

When we stack n disks, replace 10 by n above:

1
TOLg = +/nxTOLp or TOLp= T x TOLg
n

As opposed to the worst case tolerancing relationships

1
TOLg=nxTOL}, or TOL} = ~ TOLg

More generally when the TOLp, are not all the same

TOLg = \/TOL% +...+TOLz  or  TOL§=TOL} +...+TOL}

Reverse engineering TOLg — TOLp. or TOL§ — TOLBZ, not so obvious.

Reduce the largest TOLp, to get greatest impact on TOLg. TOL}‘)i???

32



RSS = Pythagorean Shortcut

n+n+ﬁ>¢ﬁ+@+@

33




Benderizing

As much as RSS gives advantages over worst case or arithmetic tolerancing

it was found that the RSS tolerance buildup was often optimistic in practice.
A simple remedy was proposed by Bender (1962) and it was called Benderizing.

It consists in multiplying the RSS expression by 1.5, i.e., use

TOLg = 1.5 x \/TOL%+...+T0L,%

This still only grows on the order of /n, but provides a safety cushion.

The motivation? When shop mechanics were asked about the dimension accuracy

they could maintain, they would respond based on experience memory.

It was reasoned that a mechanic’s experience covers mainly a +26 range.

To adjust TOL; = 20; to TOL; = 30; the factor 3/2 = 1.5 was applied.
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Uniform Part Variation

Suppose that the normal variation does not adequately represent

the variation of the manufactured disks.

Assume that disk thicknesses vary uniformly over

[nominal — TOLp, nominal+TOLp| = [u—TOLp, u+TOLp| due to tool wear.

= E(D)=pu and

2 / w10 1 (t—u)*d pstituting (f — u) /TOL
0] = [ — 4 supstituting (7 — =X
D . TOL, 2TOLp, M g M D
o (11,
= TOLD/1 s dx with dt/TOLp = dx
1
3 3 3 2
X 1> (—1) TOL
= TOL% | =— | =TOL% | —— _ D
gk ]1 ? ( 0 0 > 3

— op=TOLp/v/3 or 3op=+3TOLp=cTOLp, c=+3=1.732.
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Uniform Part Variation Impact on TOLg¢

For n > 3 the distribution of S is approximately normal, i.e., S ~ 9\[(#5,6%)

see next slide.

Thus most (= 99.73%) of the S variation is within ug + 30y

TOLg = 30 = \/(361)1)2 +...+ (3csDn)2

6g=+1n6p = TOLg=305=+n306p=+nv3TOLp=+/ncTOLp,

i.e., we have a uniform distribution penalty factor ¢ = v/3 = 1.732.
Recall that under normal part variation we had: TOLg = +/n TOLp.

Here the inflation factor is motivated differently from Benderizing.
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Uniform Part Variation: Comparison with Worst Case

e Compare this to the worst case tolerancing

TOLY

n

TOL}, = or  TOLS=nx TOL},

TOLg =3 /nTOLp < TOLY=nTOL}, when3 <n.
e The above G calculation used calculus.

e What to do for other part variation models?

— More Calculus or Simulation!
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Motivating the 30 < ¢TI Link

Both 7" and ¢ capture the variability/scale of a distribution.

Increasing that scale by a factor p should increase ¢ and 7' by that same factor p.
u= T captures (almost) all of the variation range.

o is a mathematically convenient scale measure, because of RSS rule.

For a normal distribution u+ 36 captures almost all of the variation range.

There it makes sense to equate 7' = 30.

For other distributions we need a factor ¢ to make that correspondence T = 36 /c,

i.e., u=£30/c captures (almost) all of the variation in the distribution.

—> 30 =cT. The penalty or inflation factor c is found via calculus.
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Distribution Inflation Factors 1

c=1
normal density
c=1.225
triangular density
c=15

elliptical density

c=1.732

uniform density

=

c =1.369

trapezoidal density: k = .5

c = 1.306

half cosine wave density
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Distribution Inflation Factors 2

Student t density: df =4 Student t density: df = 10

a=p=3 c =2.023
% -
beta density beta density
a = =2 P=-
=B = c =1.342 c=1.512
beta density (parabolic) DIN - histogram density
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Detalls on Distribution Inflation Factors 1

The factors ¢ are chosen such that for finite range densities we have

3><GD:C><TOLD

Chormal — 1

Finite range densities can always be scaled to a range |—1, 1],
except for beta where [0, 1] is the conventional standard interval.

_ _ ./ _ _ 2
Cuniform = V3, Ctriangular = 1.5, Celliptical = 1.5, ccos =3 \/ 1-8/m

Ctrapezoidal = \/3(1 +k?)/2 where 2k is the range of the middle flat part.
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Details on Distribution Inflation Factors 2

The beta density takes the following form:

I'(a+b) 41 b1
1 — f 0<z<1 =0el
F(a)F(b)Z (1—2) or 0<z<1, andg(z) else

f(z)=

Fora = b the beta density is symmetric around .5 = cpeta = 3/V2a+ 1.

The histogram or DIN density takes the following form

( % for |z| < g,
1—
1@ =1 gty forg<ll<
.0 else
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RSS with Mixed Distribution Inflation Factors

Assume that disk thicknesses D; have different tolerance specifications
u; =TOL;, i=1,...,n and with possibly different distribution factors cy,...,cy

Again the stack dimension S = D + ...+ Dy, is approximately normally distributed
with mean and standard deviation given by

us =uy+...+u, and GS:\/G%—i—...—I—G,%

By way of 36; = ¢;TOL; we get for S the tolerance range ug = TOLg, where

TOLg = 304 = \/ (361)°+...4+ (30,)% = \/ (¢;TOL{)?+ ...+ (¢, TOL,)?
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Statistical Tolerancing by Simulation

Randomly generate part dimensions according to appropriate distributions

over respective tolerance ranges

Calculate the resulting critical assembly dimension, i.e., draw ten thicknesses

from a distribution of thicknesses and compute the stack height (sum).
Repeat the above many times, Ny, = 1000 (or Ngjy, = 1000) times.

Form the histogram of the 1000 (or more) critical dimensions.

Compare histogram with specified limits on the critical assembly dimension

(stack height).

45



Statistical Tolerancing by Simulation & lteration

e |f histogram has lots of room within assembly specification or tolerance limits

relax tolerances on the aggregating parts.

e |f histogram violates assembly specification or tolerance limits significantly,

tighten tolerances on the aggregating parts.
e Repeat process until satisfied. Opportunity for Experimental Design.
e \ectorize part dimension generation =—> critical dimension generation.

e All this can be done on a computer (e.g.,using R) in a matter of seconds
and can save a lot of waste and rework.

e There are commercial tools, e.g., VSA
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Is Linear Tolerance Stack Special?

height = thickness| + ... +thickness, or Y =X;+...+X;

From here it is a little step to
where aq, ay,..., an

They are constant as opposed to the random quantities

For example,

Call

Xl,...,Xn

inputs or input dimensions and Y

Y =aqp+a1 XX7+...+ayn XXy,
are known multipliers or coefficients.

X;.

Y =164+3xX]+2xXp+7 X X3+ (=2) x Xy

output dimension.
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Crankcase Tolerance Chain

G=L1—Ly—L3—L4—Ls—Lg=L;— (Lr+...4+Lg)
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Input/Output Black Box

e Of more general interest and applicability would be I/O relations

of the following type Y = f(X1,...,Xy)

=

Input/Output Black Box

e f describes what you have to do with the inputs X; to arrive at an output Y.

e The propagation of variation in the X; causes what variation in the output Y ?

49



Smooth Functions f

e When the output Y varies smoothly with small changes in the Xj, then

Y=ag+a XX1+...+an, XXy,

for all small perturbations in X1,..., X, around uy,...,ux.

e The above approximation for Y = f(Xj,...,X),;) comes from

the one-term Taylor expansion of f around uy, ..., uy.

9 ey
= SO X))+ 3 T
i=1 l
using
af(,ul,,,un) < af(,Ul,,,Lln)
= and = yernsMp) — X Uj
aj i ag = f(m Hn) i; i Mi
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Good Linearization Example

1.0

1.2 1.4 1.6 1.8 2.0
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Medium Linearization Example

1.0

1.5 2.0 2.5
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Poor Linearization Example

1.0

1.5 2.0 2.5 3.0 3.5 4.0
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The Sensitivity Coefficients or Derivatives

e The sensitivity coefficient a; can then be determined by calculus or

e numerically by experimenting with the black box, making small changes in X;
near u; while holding the other X’s fixed at their y's and assessing

the rate of change in Y in each case, i.e., foreachi=1,...,n.

e The previous analysis can proceed, once we realize that

2 22 ()2 2 _
O,.xx; = d; X Oy, = (a;0;) and o, =0.
2 _ 2
GY T Ga0—|—a1><X1—|—...—|—an><Xn

= Ggo +Gg1><X1 T +ng><Xn - <a16X1)2+ SR (anGXn)z
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The General Tolerance Stack Formula

and by 3oy =c¢; Tx,

(3(5y)2 = (3a16X1)2—|—...—|—(3an6Xn>2

= (alclTX1)2 + ...+ (anCnTXn)z

CLT = Y ~ N(yy,ﬁ%), l.e., most variation of Y is within uy 4+ 3oy

TOLy = 3oy = \/(alclTOLX1>2 +...+ (anCnTOLXn)Z

| have seen engineers applying

TOLy = 36y = \/TOL% +...+TOL2

regardless of the q; and ¢;. RSS was a magic bullet they did not understand.
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Simulation for General f

Simulation of Y = f(Xj,...,X;) is an option as well.
A normal distribution for the inputs Xj is not essential.
The CLT still gives us ~ normal outputs, most of the time.

The latter depends on the sensitivities/derivatives of f

and the relative variations of the inputs.
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Sensitivities and CLT

Recall the crucial condition forY = X; +... + X, = N(yy,c%)

max (G%, . ,G,%)

67 +...+02

>0, as n— o

ForY =ap+a1 X1 +...+anXy ~ N(yy,ﬁ%) this translates to

22 22
max (alcl, s ,anGn)

>0, as n— oo
a%c%—l—...—l—a,%c,%

A large a; can mess things up, i.e., make aizcsl-2 dominant.

A small a; can dampen the effect of a large or otherwise dominant 61-2.



Mean Shifts

So far we have assumed that the distributions of part dimensions

were centered on the middle of the tolerance interval.

Why should there be that much precision in centering when the

actual inputs or part dimensions can be quite variable?

It makes sense to allow for some kind of mean shift or targeting error
while still insisting on having all or most part dimensions within

specified tolerance ranges.
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Two Strategies of Dealing with Mean Shifts

Two strategies of dealing with mean shifts:
1. stack these shifts in worst case fashion arithmetically
2. stack these shifts statistically via RSS

In either case combine this in worst case fashion or arithmetically with the

RSS part variation stack.

The reason for the last worst case stacking step is that the mean shifts
represent persistent effects that do not get played out independently and

repeatedly for each produced part dimension.
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probability density

Mean Shifts Stacked via RSS

TN

part dimension X,
part dimension X,
part dimension X,
assembly stack mean shifts add
V=X + X+ Xs >< in RSS fashion
| | | | | |
-0.6 -04 -0.2 0.0 0.2 0.4 0.6
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Mean Shifts within Tolerance Interval

For the part variation to stay within tolerance there has to be a tradeoff

between variability and mean shift.
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Mean Shifts, Variability & Cpk

The capability index C,,; measures the distance of the mean u

to the closest tolerance limit in relation to 3G.

If the tolerance interval is given by |L, U] then
C,; = min U-pp-L
Pk 36 ' 30

Cpr = 1 means that we have somewhere between .135% to .27% of part
dimensions falling out of tolerance.

However, this does not control the mean shift. We could have u ~ U and
Cpr = 1. Then all part dimensions would be near U = worst case stacking.

63



Bounded Mean Shifts

e Bound the mean shift A;, typically as a fraction of the tolerance T;:

Ai=mT; 0<n;<1.

e But maintain Cp,; > 1

Nil;+30; <T; = 30; < (1—-";)T;
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Arithmetically Stacking Mean Shifts

e —> Hybrid tolerance stacking formula
arithmetically combining arithmetically combined mean shifts and

statistical tolerancing

TOLy =1 |a1 |TOLX1 +... —l—T]n|Cln|TOLXn

+\/ (1-m1)%afcfTOLE, + ...+ (1 —Mn)°anc; TOLE,
e This grows on the order of n and not /n, but with a reduction factor.
e N =...=MNy=0 = RSS stacking.

e N =...=Mp=1 == Worst case arithmetical stacking.
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RSS Stacking of Mean Shifts

e —> Hybrid tolerance stacking formula
arithmetically combining RSS combined mean shifts and

statistical tolerancing

+\/(1—m) a1c}TOLE, +...+ (1 —"n)%aZcaTOLE,

e The ¢; are the penalty factors for the distributions governing the mean shifts.

The c; are the penalty factors for the distributions governing part variation.

e What is the interpretationofn; =...=mn, =17

Consistent part dimensions with system output Y = E(Y) € u+TOLy.
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Distributions with Mean Shift |

c=1.732

shifted uniform density

shifted normal density

c = 1.225

shifted trapezoidal density: a

shifted triangular density

= ' °cTre

c = 1.306

shifted elliptical density

shifted half cosine wave density
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Distributions with Mean Shift |l

c= 1 c=1
shifted Student t density: df =4 shifted Student t density: df = 10
a=pB=3
% e é T
shifted beta density shifted beta density
p = 7 , g = 4
c=1.512

c =1.342
=

DIN - histogram density

shifted beta density (parabolic)

68



Other Variants

e So far we have accommodated mean shifts at the price of reduced part

dimension variability in order to maintain Cp,; > 1.

e Rather than dividing up TOL into mean shift and a 36 range (by squeezing
down 3¢ to maintain Cp,;, > 1) we can increase TOL to the sum of the original
TOL' = 306 plus the mean shift represented as a fraction 1 of the increased
TOL, i.e.,

36; TOL!

-m; 1-m;

TOL; = 30;+1,;TOL; or TOL; =

e For details on how the stacking formulas change see the provided reports.
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Actuator

min,o —
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Actuator Case Study

The following geometric problem arose in an actuator design situation.

In the abstract: we have a triangle with legs A, R and B.

The angle between A and R is denoted by 0.

We have the following tolerance specifications A € Ao £ 74 and R € Ry = Tk.

The leg B, representing the actuator, can be adjusted such that the angle 6 agrees

exactly with a specified value 9.
Once 0 = Qg is achieved the actuator is in its neutral position.

From there B can extend or contract by an amount A thus changing the angle 6

to a maximum and minimum value Oyax and O,i,, respectively.
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The Question of Interest

A =Agp and R = Ry = nominal values for Opax and 0,,;,, denoted by

Omax,0 and Omin (, respectively.

The question of interest is:

How much variation of Omax and 0, around By, ¢ and Oy, o can we expect
due to the variations in A and R over their respective tolerance ranges

AO + TA and R() + TR?
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Geometric Considerations

Given A, R and 0 the length of the (neutral position) actuator length is

B=B(A,R) = \/A2 +R?>—2ARcos(6g) .

Extending/contracting the actuator by x = + A from the neutral position

— 0, = 2arctan \/(Sx —A)(sx—K)

Sx(Sx — Bx) 7

where By = B(A,R) +x and sy = (A+ R+ By) /2.
Note that O5 corresponds to Omax and 0_ corresponds to Oip-

0, is affected by A and R in quite a variety of ways

— Omax = Omax (A,R) and Omin = emin(A7R> .
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Statistical Tolerancing via Simulation

The simplest way of dealing with the variation behavior of 65 = Omax and

0_A = 0,5, due to variation in A and R is through simulation — R.

Get N-vectors of A and R values from A (14, (T4 /3)?) and N (ug, (Tr/3)?).

Calculate the correspondingly adjusted B = B(A, R) vector and from that

the N-vectors of Oax and 0y, respectively.
Here uy = Ag, ug = Rg and 64 = T4 /3, og = Tr/3 normal distribution.

The results using N = 1,000, 000 simulations is shown on the next slide.

It used theta.simNN and took just a few seconds to run.

Vertical bars on either side of the histograms = estimated =36 = 4T limits.

It is easy to change the distributions describing the variation in A and R.
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Density

Density

2.0 3.0

1.0

0.0

00 05 1.0 15 2.0 25

(A,R) ~ (N, N\) Simulation Output, Ny, = 10°

Gmax, 0~ 90 = 153250

-16.6

T, =0.359°
90 = 550
| | | | |
15.0 15.2 154 15.6 15.8
Bmax — 8o
emm, 0~ 90 = _159990
T,=0.467°
90 = 550
| | | | | | |
-16.4 -16.2 -16.0 -15.8 -15.6 -15.4
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Statistical Tolerancing via RSS

2 2 2 2 2 2 2 2
Iy = \/amax,A X T4+ amax g X 1R and 1= \/amin,A X Ty + min,R I,
where

. aemax . aemax _ B 86min . B aemin
dmax A — 94 Amax,R = TOR Amin A = A and Amin,R = SR

All derivatives are evaluated at the nominal values (Ag,Rg) of (A,R).

These RSS formulae come from the linearization of 6,(A,R) near (A, Ry), i-.e

00, d0,
YA -+ (R RO) X 35 ’

GX(A,R) eX(A()aRO)_'_(A AO)
0A A=Ap,R=Ry oR A=Aqy,R=Ry

which is then taken as an approximation for 6(A,R) near (A,R) = (Ao, Ry)-
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Approximation Quality

The approximation quality depends on the smoothness of the function 0,

with respectto A and R at (Ag,Rp).

The approximation quality also depends on the tolerances 74 and Tg.

T4 and Tr determine over what range 0, is approximated.
When T4 or Ti get too large, quadratic terms may come into play = normality???
All this assumes of course that 0, is differentiable near (A,R) = (Ag,Rg).

There are tolerance situation where differentiability is an issue and in that case the
RSS paradigm does not work.
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The Derivatives

20, I d \/ (52 —A)(sx — R)
0A (sx—A)(sx—R) JA sx(sxy — By
1 T Sx(sx_Bx) ( )
and
00, B 1 d [(sx—A)(sx—R)
oR 14+ (Sx_(A)(Sg_)R) oR Sx(Sx—Bx) .

Next we have

~1
d \/(SXA)(SXR) _ {2\/(SXA)(SXR)} d (sy—A)(sy—R)
0A sx($sx — Bx) sx(sx — By) dA  sx(sx— By)
and

~1
d \/(SXA)(SXR){2\/(SXA)<sxR>} 9 (sx—A)(sx —R)
oOR sx(sx — By) sx(sx — By) OR  sx(sy—By)
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More Derivatives

We also have the following list of derivative expressions
0By A — Rcos(6p) By R — Acos(0)

= and - =
0A \/A2 + R? —2ARcos(8)) oR \/A2 + R?> —2ARcos(8y)

d _ -
an OR 2

d(sx—A) 1 [A—Rcos(6g) d(sx—R) 1 [A—Rcos(6p)
A 2 ( 5 ) A o T3 5 !
d(sx—A) 1 (R—Acos(6p) d(sx—R) 1 [R—Acos(8p)
R 2 ( g 1) ad TR T3 5!
dsy 1 (A—Rcos(8p) dsy 1 (R—Acos(8p)

I(sx—By) 1 (1 } R—ACBOS(GO)) |
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And More Derivatives

d (sx—A)(sx—R)
dA  sx(sx— By)

0 0

: B,)? { [(Sx R Fa A F sy = A) 5 s _R)} salss— B

S)%(Sx_
0 %)
—(sx —A)(sx —R) |(sx— Bx)a—Asx + Sxa_A(Sx _Bx)] }
d (sx—A)(sx—R)
dR SX(SX _Bx)
S2(Sx 1_ Bx>2 { [(Sx — R)aiR(Sx _A) + (Sx —A)a%(sx — R):| Sx(Sx — Bx)

—(sx—A)(sx—R) | (sx— Bx)aiRSx + sxa%(sx — Bx)} } .



And More Derivatives

Rather than just using these expressions as they are it is advisable to simplify them

somewhat to avoid significance loss in the calculations.

Thus we obtained the following reduced expressions:

(56— R) (s~ A) + (s~ A) o (s~ B) = S[1 — cos(@)] + 2[4 ~ Reos(6)]
(55 — Bx)a%sx + sxa%(sx —By) = g[l +cos(8p)] — %[A — Rcos(8p)]

(56— R) s A) (51— ) 52— R) = 51— os(8)] + 2[R~ Acos(p)]
(56~ Be) s + Scmn (s~ Br) = 311 +cos(80)] ~ 2[R ~ Acos(8g)]
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RSS Calculations

The R function deriv.theta produced the following derivatives for Ag = 12.8,
Ry =16,0p=55°andA=1.6

a%fzax = —.00006636499  and agj;m = —.004038650
and
90 00,
Sp = —0.04473785  and  —7E=0.05810921 .

The RSS calculation using normal variation for A and R then gives the following
values for 77 and 7> based on Ty = .12 and T = .14

T; =0.3588609 and T = 0.4669441

which agree remarkably well with the simulated quantities.

The derivatives of Oax and 0,,;, with respect to A are smaller than
the derivatives with respect to R by at least an order of magnitude.

Important when considering other distributions governing the variation of A and R.
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Numerical Differentiation

The derivation of the derivatives was quite laborious, but R code is compact.
Useful in understanding the variation propagation in the tolerance analysis.
An obvious alternative approach is numerical differentiation.

It requires the evaluation of the function 0y, used in the simulation anyway.

The respective derivatives are approximated numerically at (A,R) = (Ao, Rg) by

difference quotients for very small values of o

96y . 8x(A0 +8,Ro) — 8x(A0,Ro)
0A |A—Ay R=R, 0

% -~ 9x<A0,R0—|—6) —ex(A(),R())
OR |A—A, R=R, 0
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Numerical Differentiation Example

For 6 = .00001 the R function deriv.numeric gives

p 00 ;
Omax ~ —.00006636269  and min ~ —.004038651
0A A=Ay,R=Ry 0A A=Ap,R=Ry
and
00n;
Bmax ~—0.04473777  and o ~0.05810908 .
OR A=Ao,R=Ry oR A=Ap,R=Ry

These agree very well with the derivatives obtained previously via calculus.
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Revisit RSS for Linear Combinations

A linear combination Y of independent, normal variation terms X;

Y =ap+a1X1+...+anX, with known constants ag,ay,...,an,

Is normally distributed.

Most of the Y variation falls within =36y of its mean uy = ap+aux, +. .. +anux,-

2 2 2 2.2 2 2
GY :Ga1X1—|—...+Gaan 2016X1++ClnGXn .

For X; ~ N\ equate 3ox, = T;, i.e., most of the X; variation falls within u; +- 30,

—> general RSS tolerance stacking formula

Ty =30y = \/a%(3csxl)2+ ...+a>(30x,)* = \/a%T12+ 4 alT?

applicable for linear approximations to smooth functions of normal inputs.
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CLT and Adjustment Factors

Y =apg+a1X1+...+anX, with known constants ag,ay,...,an,
is approximately normally distributed provided

2

max{ 10K, nOX, } is small
22 22 77T 252 22 ’
aiox, + ... +anGXn aiox, + ... —i—anGXn

i.e., none of the al-zcsi2 terms dominates the others.

Making use of adjustment factors, chosen such that 36; = ¢;T;, get

Ty = 30y = \/a%(3GX1) +...4a (3GX )2 = \/ClalTl + .. 4dlT? .

applicable for linear approximations to smooth functions of any random inputs,

subject to above CLT condition.

The T; should be small for linearization to be reasonable.



Simulations with Other Distributions for A and R

The next few slides show simulations with 6 = 55° and A = 1.6 and
e (A,R)~ (U(12.8—.12,12.8+.12),A((6,(.14/3)?) using sim.thetaUN
o (A,R)~ (N(12.8,(.12/3)?), U(6 — .14,6 + .14)) using sim.thetaNU
e (A,R)~(U(12.8—.12,12.8+.12),U(6—.14,6+.14)) using sim.thetalU

e (A,R)~(U(12.8—.012,12.84.012), U(6—.014,64-.014)) using sim.thetalU

87



Density

Density

1.0 2.0 3.0

0.0

(A;R) ~ (U, N)

Gmaxy 0~ 90 =15.325°

Ngim = 10°

15.0 15.2 154 15.6 15.8
9max_eo
emin, 0~ 90 = _15.9990
90 = 550
[ [ [ |
-16.4 -15.6 -154

-16.6
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(A,R) ~ (N[, U) Simulation Output, Ngjy, = 10°

Density

Density

2.0

15

1.0

0.5

0.0

2.0

15

1.0

0.5

0.0

T, =0.622°

14.5 15.0 15.5 16.0
Omax — 6o
emin’ o— 90 =—-15.99 T2 = 08090
90 = 550
[ I | I ]
—17.0 —16.5 —16.0 —15.5 —15.0

emin - eO
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Density

Density

(A,R) ~ (U, U) Simulation Output, Ngjy, = 10°

2.0

15

1.0

0.5

0.0

2.0

15

1.0

0.5

0.0

Omax, 0 — 6o = 15.325°,

T, =0.622°

14.5 15.0 15.5 16.0
emax_eo
Bmin. o — 6o = —15.99 T, =0.81°
90 = 550
[ I | I ]
—17.0 —16.5 —16.0 —15.5 —15.0

emin - eO
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Density

Density

A,R) ~ (U, U) Simulation Output, Ngi;y = 10°

o
N

15

10

20

15

10

emax’ o— 90 =15.325

90 = 550

T, =0.0622°

15.25 15.30 15.35 15.40
Omax — 6o
emin’ o— 90 =—-15.99 T2 = 008090
90 = 550
[ I I I ]
—16.10 —16.05 —16.00 —15.95 —15.90

emin - eO
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RSS Calculation with Inflation Factors

Applying the RSS formula assuming a uniform distribution for both A and R we get

360
T) = \/ (—.00006636269)% -3 - .12% + (—.04473777)% -3 - .14%. = 0.6215642°

T

and

360
T = \/(—.004038651)2 :3-.12% 4 (.05810908)% -3 - .14% . ~- =0.8087691°

using the inflation factor ¢ = \@ and the numerical derivatives in both cases.
Reasonable agreement with the values .622° and .81° from simulation.

Not surprising when linearization is good. We are simply using the variance rules.
However, T; and 7> do not capture the variation range of 0y, since the CLT fails.

Tightening the tolerances in last case =—> echoes the uniform distribution of R.

Linearity was not good with wider tolerances —> “tilted uniform.”
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theta.simUuuuU

Here we let 4 inputs vary with result shown on next slide.

o A~ U(12.8—.22,12.8+.22)

o R~ U6—.15,6+.15)

o A~ U(1.6—.05,1.6+.05)

o O}~ U55—.5,55+.5)

Try other tolerances in these uniform distributions.
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Density

Density

1.0

0.8

0.6

0.0

1.0

0.8

0.6

0.0

Varying A, R, 63 and A Uniformly

Omax, 0 — O = 15.325° T,=1.38°
90 = 550
I T T 1
14 15 16 17
emax - eO
Omin, 0 — 0o = —15.999° T, =1.59°
90 = 550
I T I T 1
—-17 —-16 —-15 —-14 94

—18

emin - eO



Final Comments

This actuator example has been very instructive. It showed

e the importance of dominant variability by a single input

e the effect of the CLT when sufficiently many contributing inputs are involved

e the importance of simulation

e the importance of derivatives

e the effect of the variability ranges on the linearization approximation quality.
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Voltage Amplifier

R2
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Output Voltage V)

The amplified output voltage is a function of 6 variables,

2 input voltages E, and E> and 4 resistances Ry,..., Ry

R
EI(I_I_R_%) Ey- Ry
Vo= f(E1,E,R1,Ry, R3,Ry) = Ry R
l—l-IT4 1

Nominal values:

Ey = 1V, Ey, = —1V, Ry = 10€2, Ry = 100€2, R3 = 10€2, and Ry = 100€2.

— Vp =20V.

97



The Derivatives

R
Vo _ 1R M _ R
0E; 1487 dE, Ry
Ry
L
BVO_ k1 R2|E2-R2 %_ R| _@
BRI l_l_% R% R% ) aRz 1+IR§_431 R1
R R,
o, i (1+R_?) I vy (1+R_1) R3
oR; R:\2 Ry ORy R;\2 R2
(1) (8 "
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V.amp.s1imN2U4 (del=.1)

> V.amp.simN2U4 (del=.1)

SV0
[1]

20

Sdelta

[1]

0.1

Sderivatives

[1]

10.000000000 -10.000000000 -1.909090909

+ -0.090909091  0.009090909

Ssigmas

[1]

+ 0.

0.33314890 0.33326565 1.10195837 1.10243208
05248074 0.05246410

Snominals

[1]

1 -1 10 100 10 100

0.190909091
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Density

0.25
|

0.20

0.15

0.10

0.05

0.00

V.amp.s1imN2U4 (del=.1)

Ei~ N(w, (31)%), Ri~U(mi=[du, 1+ou)

14

Vo
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V.amp.s1imN2U4 (del=.05)

> V.amp.simN2U4 (del=.05)
SV0
[1] 20

Sdelta
[1] 0.05

Sderivatives
[1] 10.000000000 -10.000000000 -1.909090909 0.190909091
+ -0.090909091 0.009090909

Ssigmas
[1] 0.16657056 0.16676230 0.55079156 0.55108759
+ 0.02627634 0.02624854

Snominals
[1] 1 -1 10 100 10 100
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Density

0.5

0.3

0.2

0.1

0.0

V.amp.s1imN2U4 (del=.0)5)

Ei~ N(w, (31)%), Ri~U(mi=[du, 1+ou)

6=0.05 ‘f

23
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V.amp.simUb (del=.1)

> V.amp.simUb6 (del=.1)
SV0
[1] 20

Sdelta
[1] 0.1

Sderivatives
[1] 10.000000000 -10.000000000 -1.909090909 0.190909091
+ -0.090909091 0.009090909

Ssigmas
[1] 0.57739282 0.57698360 1.10221137 1.10199967
+ 0.05251682 0.05253420

Snominals
[1] 1 -1 10 100 10 100
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Density

0.20
|

0.15
|

0.10
|

0.05

0.00

V.amp.simUb (del=.1)

Ei~ U=, pi+[Bu) , Ri~U(wi=oul, i+ dui)

14
Vo
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V.amp.simNb6 (del=.1)

> V.amp.simNb6 (del=.1)
SVOQ
[1] 20

Sdelta
[1] 0.1

Sderivatives
[1] 10.000000000 -10.000000000 -=1.909090909 0.1909090091
+ -0.090909091 0.009090909

Ssigmas
[1] 0.33348276 0.33332256 0.63653780 0.63714909
+ 0.03031808 0.03029352

Snominals
[1] 1 -1 10 100 10 100
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Density

0.4
|

0.2

0.1

0.0

V.amp.simNb6 (del=.1)

B~ N(ui, (8)%) . R~ N(w;, (8u7)°)
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V.amp.simNb6 (del=.05)

> V.amp.simNb6 (del=.05)
SVOQ
[1] 20

Sdelta
[1] 0.05

Sderivatives
[1] 10.000000000 -10.000000000 -=1.909090909 0.1909090091
+ -0.090909091 0.009090909

Ssigmas
[1] 0.16656830 0.16669687 0.31840687 0.31774622
+ 0.01514106 0.01513453

Snominals
[1] 1 -1 10 100 10 100
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Density

0.8

0.6

0.4

0.2

0.0

V.amp.simNb6 (del=.05)

Ei~ N(w, (31)?) . Ri~ N, (8)%)

Vo
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Some Final Comments

R3 and R4 appear to have negligible effect.
Normal variations on all 6 inputs produce approximately normal V{; distributions.
The linearizations appears to be a mild issue here.

E; ~ N\ and R; ~ U show much stronger deviations from normality,
but not too bad as far as the =7y, = £30y,, range is concerned.

Distributions appear nearly triangular, because of dominance of Ry and R».

For E; ~ U and R; ~ ‘U the distribution seems similar to previous case.

The main terms Ry and R, are not as dominant compared to £7 and E».
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