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Abstract

This report deals with the specific problem of deriving maximum likeli-
hood estimates of the regression model parameters when the residual errors
are governed by a Gumbel distribution. As an additional complication the ob-
served responses are permitted to be type I or multiply censored. Since the
log-transform of a 2-parameter Weibull random variable has a Gumbel distri-
bution, the results extend to Weibull regression models, where the log of the
Weibull scale parameter is modeled linearly as a function of covariates. In the
Weibull regression model the covariates thus act as multiplicative modifiers of
the underlying scale parameter.

A general theorem for establishing a unique global maximum of a smooth
function is presented. The theorem was previously published by Mékeldinen et
al. (1981) with a sketch of a proof. The proof presented here is much shorter
than their unpublished proof.

Next, the Gumbel/Weibull regression model is introduced together with its
censoring mechanism. Using the above theorem the existence and uniqueness of
maximum likelihood estimates for the posed specific Weibull/Gumbel regression
problem for type I censored responses is characterized in terms of sufficient and
easily verifiable conditions, which are conjectured to be also necessary.

As part of an efficient optimization algorithm for finding these maximum
likelihood estimates it is useful to have good starting values. These are found
by adapting the iterative least squares algorithm of Schmee and Hahn (1979)
to the Gumbel/Weibull case. FORTRAN code for computing the maximum
likelihood estimates was developed using the optimization routine HDNLPR.
Some limited experience of this algorithm with simulated data is presented as
well as the results to a specific example from Gertsbakh (1989).



1 Introduction

In the theory of maximum likelihood estimation it is shown, subject to regularity
conditions, that the likelihood equations have a consistent root. The problems that
arise in identifying the consistent root among possibly several roots were discussed
by Lehmann (1980). It is therefore of interest to establish, whenever possible, that
the likelihood equations have a unique root. For example, for exponential family
distributions it is easily shown, subject to mild regularity conditions, that the log-
likelihood function is strictly concave which in turn entails that the log-likelihood
equations have at most one root. However, such global concavity cannot always be
established. Thus one may ask to what extent the weaker property of local concavity
of the log-likelihood function at all roots of the likelihood equations implies that
there can be at most one root. Uniqueness arguments along these lines, although
incomplete, may be found in Kendall and Stuart (1973, p. 56), Turnbull (1974), and
Copas (1975), for example.

However, it also was pointed out by Tarone and Gruenhage (1975) that a function of
two variables may have an infinity of strict local maxima and no other critical points,
i.e. no saddle points or minima. To resolve this issue, a theorem is presented which
is well known to mathematicians as a special application of Morse Theory, cf. Milnor
(1963) and also Arnold (1978) p. 262. Namely, on an island the number of minima
minus the number of saddle points plus the number of maxima is always one. The
specialization of the theorem establishing conditions for a unique global maximum
was first presented to the statistical community by Maékeldinen et al. (1981). Since
Morse Theory is rather deep and since Mékelainen et al. only give an outline of
a proof, leaving the lengthy details to a technical report, a short (one page) and
more accessible proof is given here. It is based on the elementary theory of ordinary
differential equations.

It is noted here that although Makeldainen et al. have priority in publishing the
theorem presented here, a previous version of this paper had been submitted for
publication, but was withdrawn and issued as a technical report (Scholz, 1981), when
the impending publication of Makelainen et al. became known. Aside from these
two independent efforts there was a third by Barndorff-Nielsen and Bleesild (1980),
similarly preempted, which remained as a technical report. Their proof of the result
appears to depend on Morse Theory. Similar results under weaker assumptions may
be found in Gabrielsen (1982, 1986). Other approaches, via a multivariate version of
Rolle’s theorem were examined in Rai and van Ryzin (1982).



2 The Uniqueness Theorem

In addition to the essential strict concavity at all critical points the uniqueness the-
orem invokes a compactness condition which avoids the problems pointed out by
Tarone and Gruenhage (1975) and which are illustrated in Figure 1. The theorem
can be stated as follows:

Theorem 1 Let G be an open, connected subset of R" and let f : G — R be
twice continuously differentiable on GG with the following two properties:

i) For any x € G with grad f(x) = 0 the Hessian D?f(x) is negative definite, i.e.
all critical points are strict local maxima.

ii) For any x € G the set {y € G : f(y) > f(x)} is compact.

Then f has exactly one critical point, hence one global maximum and no other local
maxima on G.

Proof: By i) all critical points are isolated, i.e. for each critical point =z € G of f
there exists and €(x) > 0 such that

Bey(z)={y e R": ly—z|<e(x)} CCG
contains no other critical point besides x, and such that
g9(x) E sup {f(y) : y € OBy (2)} < f(2).
Let
Uiy () = {y € By (@) = f(y) > f(x) — d(x)}

with 0 < d(z) < f(x) —g(z), then OUy)(x) C Be)(z) (note that f(y) = f(x) —d(z)
for y € OUy(z)(x)). Consider now the following vector function

h(z) = grad f(z) - | grad f(2) |7

which is well defined and continuously differentiable on G — C', where C' is the set of
critical points of f in G. Hence the differential equation () = h(z(t)) with initial

4



condition z(0) = zy € G — C has a unique right maximal solution z(t;0, zy) on some
interval [0,%9),%9 > 0, see Hartman (1964), pp. 8-13. Note that f(z(t;0,z20)) =
f(z0) +t for t € [0,ty). It follows from ii) that to must be finite. Consider now the
following compact set:

K={yeG: fy)> flz)} — U Ui (2) .

zeC

Then z(t;0,z9) ¢ K for t near ty, see Hartman pp. 12-13. Hence for ¢ near t,
2(t;0, 29) € Uyz)(x) for some x € C. From the construction of Uy () it is clear that
once such a solution enters Uy, (x) it will never leave it. For x € C' let P(x) be the
set set containing x and all those points zy € G — C whose solutions z(t; 0, zg) will
wind up in Uy)(z). It has been shown that {P(z) : ¢ € C'} forms a partition of G.
Since z(t;0, zg) is a continuous function of zy € G — C, see Hartman p. 94, it follows
that each P(x), z € C is open. Since G is assumed to be connected, i.e., G cannot
be the disjoint union of nonempty open sets, one concludes that all but one of the
P(z), z € C, must be empty. Q.E.D.

Remark: It is clear that a disconnected set G allows for easy counterexamples of
the theorem. Assumption ii) is violated in the example presented by Tarone and
Gruenhage: f(z,y) = —exp(—2y) —exp(—y) sin(x). Figure 1 shows the contour lines
of f(z,y) in the upper plot and the corresponding perspective in the lower plot. In
thicker line width is indicated the contour f(x,y) = 0, given by y = — log(—sin(z))
over the intervals where sin(x) < 0. This latter contour is unbounded since y — oo
as sin(z) — 0 at those interval endpoints. Thus the level set {(z,y) : f(z,y) > 0}
is unbounded. What is happening in this example is that there are saddle points at
infinity which act as the connecting agent between the local maxima.

Assumption ii) may possibly be replaced by weaker assumptions; however, it appears
difficult to formulate such assumptions without impinging on the simplicity of theorem
and proof. The following section will illustrate the utility of the theorem in the
context of censored Weibull data with covariates. However, it should be noted that
many other examples exist.
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Figure 1: Contour and Perspective Plots

of f(x,y)= — exp(—2y) — exp(—y) sin(x)




3 Weibull Regression Model Involving Censored Data

Consider the following linear model:

p
yi:Zuijﬁj—i—aei:u;ﬂjLaei izl,...,n

j=1
where €1, ..., €, are independent random errors, identically distributed according to
the extreme value or Gumbel distribution with density f(z) = exp[z — exp(x)] and
cumulative distribution function F(z) = 1 — exp[—exp(z)]. The n x p matrix U =
(uij) of constant regression covariates is assumed to be of full rank p, with n > p.
The unknown parameters o, 3, ..., 3, will be estimated by the method of maximum
likelihood, which here is taken to be the solution to the likelihood equations.

The above model can also arise from the following Weibull regression model:

P(T; <t)=1—exp <_ l@(;)r )

which, after using the following log transformation Y; = log(T;), results in
| , B '
P(Y;<y)=1-—exp [—exp (%)] =1—exp l—eXp <y U(u»)] '
(1/7) o

Using the identifications 0 = 1/ and p(u;) = logla(u;)] = w;3 this reduces to the
previous linear model with the density f.

Rather than observing the responses y; completely, the data are allowed to be cen-
sored, i.e., for each observation y; one either observes it or some censoring time c;.
The response y; is observed whenever ¢; > y; and otherwise one observes c¢;, and one
knows whether the observation is a y; or a ¢;. One will also always know the corre-
sponding covariates u;;,7 = 1,...,p for i« = 1,...,n. Such censoring is called type I
censoring or, since the censoring time points ¢; can take on multiple values, one also
speaks of multiply censored data. Thus the data consist of

S = {(xl,él,ul), .. .,(xn,én,un)} s

where x; = y; and §; = 1 when y; < ¢;, and x; = ¢; and §; = 0 when y; > ¢;. The
number of uncensored observations is denoted by r = > ; §; and the index sets of
uncensored and censored observations by D and C, respectively, i.e.,
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D={i:0,=1i=1,...,n} ={i1,...,i,} and C={i:6,=0,i=1,...,n}.

Furthermore, denote the uncensored observations and corresponding covariates by

Yiq ugl
Yp = : and Up = :

Yi, u;,
The likelihood function of the data S is
1 - = R
LB.o) = [ Lexp [w exp (&ﬂ Texo l_ exp (&)]
i€D o a ieC

and the corresponding log-likelihood is

((8,0) = loglL(B,0)]

- ¥ [M_exp (Mﬂ ~ Y logo — S exp (M) .

i€D 7 g i€D iec o
3.1 Conditions for Unique Maximum Likelihood Estimates

Here conditions will be stated under which the maximum likelihood estimates of 3
and o exist and are unique. It seems that this issue has not yet been addressed in
the literature although software for finding the maximum likelihood estimates exists
and is routinely used. Some problems with such software have been encountered
and situations have been discovered in which the maximum likelihood estimates,
understood as roots of the likelihood equations

ol(B, o) _0 and ol(B, o)

ao_ a/@j 07 Or j ) 7p7 ()

do not exist. Thus it seems worthwhile to explicitly present the conditions which
guarantee unique solutions to the likelihood equations. These conditions appear to be
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reasonable and not unduely restrictive. In fact, it is conjectured that these conditions
are also necessary, but this has not been pursued.

Theorem 2 Let 7 > 1 and the columns of Up be linearly independent. Then for
yp not in the column space of Up or for yp, = UDB for some B with x; > u! ﬁ for
some i € C the likelihood equations (1) have a unique solution which represents the
location of the global maximum of {(8,c) over RP x (0, c0).

Comments: The above assumption concerning Up is stronger than assuming that
the columns of U be linearly independent. Also, the event that yp is in the column
space of Up technically has probability zero if » > p, but may occur due to rounding
or data granularity problems.

When r > p and yp = UpB with z; < w8 for all i € {C}, it is casily seen that
E(,CA'}, o) — o0 as 0 — 0. From the point of view of likelihood maximization this would
point to (3,5) = (@, 0) as the maximum likelihood estimates, provided one extends
the permissible range of o from (0,00) to [0,00). However, the conventional large
sample normality theory does not apply here, since it is concerned with the roots of
the likelihood equations.

The additional requirement z; > u;fi' for some 7 € C gives the extra information that
is needed to get out of the denenerate case, namely the linear pattern y, = UDB,
because the actual observation y; implied by the censored case x; > u;@ will also
satisfy that inequality since y; > x; and thus break the linear pattern and yield a
g > 0. This appears to have been overlooked by Nelson (1982) when on page 392 he
suggests that when estimating k parameters one should have at least k distinct failure
times, otherwise the estimates do not exist. Although his recommendation was made
in a more general context it seems that the conditions of Theorem 2 may have some
bearing on other situations as well.

Proof: First it is shown that any any critical point (3,0) of ¢ is a strict local
maximum. In the process the equations resulting from grad ¢(3,c) = 0 are used to
simplify the Hessian or matrix of second derivatives of ¢ at those critical points. This
simplified Hessian is then shown to be negative definite. The condition grad ¢(8,0) =
0 results in the following equations:

ol - JIZ—’U,ﬂ ;B cTi_uiB
R

€D



_ [ S - ;z exp(z) ] _0 (2)

1€D

with z; = (z; — u}8) /o and

ol 1] n xl—u;ﬁ
)

L €D

1' n
= - Zuij—ZuijeXp(zi)]:() forj=1,...,p. (3)

0 Liep i—1

The Hessian or matrix H of second partial derivatives of ¢ with respect to (3,0) is
made up of the following terms for 1 < j, k < p:

(B,o) 1 &
W = T2 ;:1 uijur, exp(2;) (4)
2*(B,0) 1 ]
- 5 i ij € i i~ i 5
omor 2| =" -3 maen(e) ~ i () )

2 1 T
w = 5 r—}—QZZZ—QZZzeXpZZ ZZ eXPZz] (6)

2
(90’ o 1€D =1

From (2) one gets

Zzzexp i) Zzz—r

€D

and one can simplify (6) to

2 " -
PUBo) 2 LS e = [+ 3 enta)

2 2
0o o? o =



Using (3) one can simplify (5) to

0208, o 1 &
ﬁ = —ﬁ Z ziuij eXp(zi) .
J i=1

Thus the matrix H of second partial derivatives of ¢ at any critical point is

o _i ( > exp(z)uu) S ziexp(z)u; ) _ _i B

2 2
o7\ Ty zmexp(z)up  r+ X, 2 exp(z) o

Letting w; = exp(2;)/ >2j_; exp(z;) and W = 3"_, exp(z;) one can write

Bow Y wing Do Wiz,
Sy wizew /WA wiz?

In this matrix the upper p x p left diagonal submatrix >, w;u;u; is positive definite.
This follows from

n n
a ) wuuia=> w;|a'u;|* > 0
i=1 i1

for every a € RP — {0}, provided the columns of U are linearly independent, which
follows from our assumption about Up. The lower right diagonal element r +
WS w;z? of B is positive since 7 > 1.

The last step in showing B to be positive definite is to verify that det(B) > 0. To
this end let

. —1
V = <Z wmmi)
i1

and note that for » > 0 one has

det(B) = W det <Z wiuiu§>

=1

x det [T/W + Zwizf — Y wizmuw,V Y wiziug| >0

=1 =1 i=1
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since

2
0 < > w [Zi—uﬁvzwﬂjuj]

j=1

n n n n n n
= > wiz =2 wizwlV Y wizju; + Y wuiV Y wizju; ulV Y wizu,

i=1 i=1 j=1 i=1 Jj=1 Jj=1

n n n n n n
= > w;z? — 2 S wizw VY wizjug 4+ w; Yy wjzyw; VuauV > wjzjuy

=1 i=1 j=1 =1 j=1 7=1

n n n n n n
= Z U}ZZZ2 -2 Z U}ZZZ’U,;V Z W;z;U; + Z U}ij’U,;-V Z wzuzu;V Z W;zjW;
i=1

i=1 i=1 j=1 j=1 j=1

n n n
2 /
1=1 i=1 i=1

To claim the existence of unique maximum likelihood estimates it remains to demon-
strate the compactness condition ii) of Theorem 1. It will be shown that

a) ¢(B,0) — —oo uniformly in 3 € R as 0 — 0 or 0 — oo and

b) for any € > 0 and € < o < 1/e one has
Sup{0(8,0) : |B] > p} — —o0 as p— oo.

Compact sets in RPT! are characterized by being bounded and closed. Using the
continuous mapping ¢ (3, 0) = (3, log(c)) map the half space K™ = RP x (0, 00) onto
RPT According to Theorem 4.14 of Rudin (1976) ¢ maps compact subsets of K+
into compact subsets of RPT!, the latter being characterized as closed and bounded.
This allows the characterization of compact subsets in K as those that are closed
and for which |3| and o are bounded above and for which ¢ is bounded away from
Zero.

Because of the continuity of ¢(3, o) the set

Qo =A{(B,0) : U(B,0) > £(By,00)}
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is closed and bounded and bounded away from the hyperplane 0 = 0. These bounded-
ness properties of (g are seen by contradiction. If )y did not have these properties,
then there would be a sequence (3,,0,) with either o, — 0 or g, — oo or with
0 <e€e<o, <l/eand |B,| — oo. For either of these two cases the above claims
a) and b) state that ¢(3,,,0,) — —oo which violates ¢(3,,0,) > ¢(By,00). This
completes the main argument of the proof of Theorem 2, subject to demonstrating
the claims a) and b).

To see a) first deal with the case in which y, is not in the column space of Up. This
entails that for all 3 € RP

yp —UnBl = lyp —UpBl =x >0  where  B=[UpUp| Upyp .

Thus max{|z; —u.B| : i € D} > & > 0 uniformly in 8 € RP and, using the inequality
x —exp(r) < —|z| for all x € R, one has

[ ()] <

1€D

zi — w3
T‘ )

_ max{|z; —wiB|:i € D} < R e
o o

Y

as 0 — 0, and thus uniformly in 3 € RP

U(B,0) < —rlog(o) — P~ as o—0.
o

To deal with the other case, where UDB =yYp and z; > u;B for some i € C, take a
neighborhood of 3

o~

B,(B) = {B:18- Bl <p}

with p > 0 chosen sufficiently small so that

R ~
B —uwp < Db for all B € B,(B).
This in turn implies
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r—uB = z—uB+uB—up
v —uw,B  r—wf
2 2

for all 3 € B,(B). For some £’ > 0 and for all 3 ¢ B,(B) one has |y, — UpB| > &'
Bounding the first term of the likelihood ¢(3,0) as in (7) for all 8 ¢ B,(8) and
bounding the last term of the likelihood by

R w3 _
—exp (%) < —exp (%) for all B € B,(3)

> oz —u, —

one finds again that either of these bounding terms will dominate the middle term,
—rlogo, of £(B,0) as 0 — 0. Thus again uniformly in 3 € RP one has ¢(3,0) — —o0
as o — 0.

As for 0 — oo note  — exp(z) < —1 and one has
U(B,0) < —rlog(c) —r — —00 as g — 00

uniformly in B € RP. This establishes a).

Now let ¢ < 0 < 1/e. From our assumption that the columns of Up are linearly
independent it follows that

inf {|{UpB|: |B]=1}=m >0
where m? is the smallest eigenvalue of U,Up. Thus for all 3 € RP
UpB —yp| = [UpB| — |yp| = m|B| — |yp| ,

and using the inequality Y- |z;| > /> 27 one has

i — u; Ur3 —
ieD
< Crloglo) - MBIZlwl e 18—

g

again uniformly in |3| > K, with K — oo. This concludes the proof of Theorem 2.
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4 Solving the Likelihood Equations

The previous section showed that the solution to the likelihood equations is unique
and coincides with the unique global maximum of the likelihood function. This section
discusses some computational issues that arise in solving for these maximum likelihood
estimates. One can either use a multidimensional root finding algorithm to solve the
likelihood equations or one can use an optimization algorithm on the likelihood or
log-likelihood function. It appears that in either case one can run into difficulties
when trying to evaluate the exponential terms exp([x; — u;3]/0). Depending on the
choice of o and 3 this term could easily overflow and terminate all further calculation.
Such overflow leads to a likelihood that is practically zero, indicating that ¢ and 3
are far away from the optimum. It seems that this problem is what troubles the
algorithm survreg in S-PLUS. In some strongly censored data situations survreg
simply crashes with overflow messages. One such data set is given in Table 1 with a
dagger indicating the three failure times. The histogram of this data set is given in
Figure 2 with the three failure cases indicated by dots below the histogram.

Table 1: Heavily Censored Sample

626.1 651.7 684.7 686.3 698.2 707.7 709.8 7T14.7 7180 719.6
7209 7219 726.7 740.3 7529 760.3 764.0 764.8 768.3 773.6
7744 7841 7853 7889 790.3 793.2 794.0 806.1 816.2 825.0
826.5 829.8" 832.3 839.4 840.5 843.1 845.2 849.1 849.2T 856.2
856.8 859.1 868.9" 869.3 881.1 887.8 890.5 898.2 921.5 934.8

In the case of simple Weibull parameter estimation without covariates this overflow
problem can be finessed in the likelihood equations by rewriting these equations so
that the exponential terms only appear simultaneously in numerator and denominator
of some ratio, see equation (4.2.2) in Lawless (1982). One can then use a common
scaling factor so that none of the exponential terms overflow.

In the current case with covariates it appears that this same trick will not work.
Thus it is proposed to proceed as follows. Find a starting value (3, 0¢) by way of the
Schmee-Hahn regression algorithm presented below. It is assumed that the starting
value will not suffer from the overflow problems mentioned before.

Next, employ an optimization algorithm that allows for the possibility that the func-
tion to be optimized may not be able to return a function value, gradient or Hessian
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Figure 2: Histogram for Data Table 1

< -
0 . .
r T T T T T 1

o -

650 700 750 800 850 900 950

cycles

at a desired location. In that case the optimization algorithm should reduce its step
size and try again. The function box which calculates the function value, gradient
and Hessian should take care in trapping exponential overflow problems, i.e., state
when they cannot be resolved. These problems typically happen only far away from
the function optimum where the log-likelihood drops off to —oo.

Another precaution is to switch from ¢ to o = log(o) in the optimization process.
Furthermore, it was found that occasionally it was useful to rescale o, x; and w;; by
a common scale factor so that ¢ is in the vicinity of one. This is easily done using
the preliminary Schmee-Hahn estimates.

Optimization algorithms usually check convergence based on the gradient (among
other criteria) and the gradient is proportional to the scale of the function to be
optimized. Thus it is useful to rescale the log-likelihood to get its minimum value into
a proper range, near one. This can be done approximately by evaluating the absolute
value of the log-likelihood at the initial estimate and rescale the log-likelihood function
by dividing by that absolute value.
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4.1 Schmee-Hahn Regression Estimates with Censored Data

This method was proposed by Schmee and Hahn (1979) as a simple estimation method
for dealing with type I censored data with covariates. It can be implemented by using
a least squares algorithm in iterative fashion.

We assume the following regression model
Yi=0/Xa+ ...+ 3,Xi + 06, 1=1,...,n
or in vector/matrix notation
Y, X oo Xy 51 €1
Y, X . X ) \ 5, n
or more compactly
Y =XpB+ce.

Here Y is the vector of observations, X is the matrix of covariates corresponding to
Y . 3 is the vector of regression coefficients, and oe is the vector of independent and
identially distributed error terms with F(e;) = 0 and var(e;) = 1. We denote the
density of e by go(z). Often one has X;; = 1 for i = 1,...,n. In that case the model
has an intercept.

Rather than observing this full data set (Y, X) one observes the Y; in partially
censored form, i.e., there are censoring values ¢’ = (cy, .. ., ¢,) such that Y; is observed
whenever Y; < ¢;, otherwise the value ¢; is observed. Also, it is always known whether
the observed value is a Y; or a ¢;. This is indicated by a ; = 1 and 9; = 0, respectively.
Thus the observed censored data consist of

D=(Y,X,0)

where &' = (d,...,0,) and Y = (Yi,...,Y,) with
_ {Yi if ; =1, ie whenY; <g¢
Y, =

¢ ifd; =0, ie whenY; > ¢

Based on this data the basic algorithm consist in treating the observations initially
as though they are not censored and apply the least squares method to (Y, X) to

find initial estimates (&, ,232]) of (o,8).
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Next, replace the censored values by their expected values, i.e., replace Y; by
37@1 = EY|Y; > ¢ ;0,08) whenever 6, =0,

computed by setting (o, 3') = (5, ,@g) Denote this modified Y vector by Y. Again
treat this modified data set as though it is not censored and apply the least squares

method to (Y, X) to find new estimates (81,31) of (o,8"). Repeat the above step
of replacing censored Y; values by estimated expected values

37@2 = EY|Y; > ¢ ;0,08) whenever d; =0,

this time using (0, 8') = (74, ,2"3/1) This process can be iterated until some stopping

criterion is satisfied. Either the iterated regression estimates (o, B;) do not change
much any more or the residual sum of squares has stabilized.

In order to carry out the above algorithm one needs to have a computational expres-
sion for

EYY >c;0,8),

where
Y =pixr+ ...+ Bpr, + 0e = p(x) + oe

and the error term e has density go(z). Then Y has density
1 Yy — p(xe
9(y) = = 90(7( )> .
o o

The conditional density of Y, given that Y > ¢, is

{ 9@)/[1=G(e)]  for y>c

gc(y) =
0 for y <c.

The formula for E(Y]Y > ¢ ;0,3') is derived for two special cases, namely for go(z2) =
©(z), the standard normal density with distribution function ®(z), and for

9o(2) = 0go(0z — ) = dexp [0z — v —exp(0z — )] ,

where § = 7/v/6 ~ 1.28255 and v ~ .57721566 is Euler’s constant. Here §o(z) =
exp [z — exp(z)] is the standard form of the Gumbel density with mean —v and stan-
dard deviation 6. Thus go(z) is the standardized density with mean zero and variance
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one. The distribution function of gy(z) is denoted by Go(z) = Go(dz — ) and is given
by

Go(2) = 1 — exp(—expléz —7]) .
The Gumbel distribution is covered for its intimate connection to the Weibull distri-
bution.

When g¢o(z) = ¢(z) and utilizing ¢'(2) = —zp(2) one finds

EYY >c¢;0,8) = /COO Y 9.(y) dy
e ()

_ :1 i ("_7“(“’)) B | T @)+ odels) de

g c—p(X)]/o

— u®@) -0 :1 By (L"(”’)> h /[°° o) dz

o c—p(@))/o
- nsopoo( )] (22)

which is simple enough to evaluate for given o and u(x).

For go(z) = dexp [0z — v — exp(dz — 7)] one obtains in similar fashion

EY|Y >c;0,8) = /Cooygc(y)dy
_ '1_%(0—#(93))'1/°°ylgo<y—u(w)> 2

_ 1—g(%(w>) [ @) + oslalz) d:

[c=(X)] /o

= pulx)+o [1 — Go <C_T'u(w)>]l /[OO 2g0(2) dz .

c—p(I)]/o



Here, substituting and integrating by parts, one has

/aoo 290(z) dz = /aoo [0z =y +]exp [0z — 7 — exp(dz — 7)] dz

= 5! ~ log (¢ —t) dt
/ oy los(1) +7] exp(=1)

oo

= 5! <(5a exp[— exp(da — )] + exp(—t) ¢! dt)

exp(6a—7)
= aexp|—exp(da — )]+ 6 ' Eiexp(da — 7)) .

Here Ei(z) is the exponential integral function, see Abramowitz and Stegun (1972).
There one also finds various approximation formulas for

Ei(2) = / exp(—t) t~* dt,
namely for 0 < z <1 and coefficients a; given in Table 2 one has
Ei(2) = —log(z) + ap + a1z + agz® + azz® + ayz* + as2° + €(2)

with |e(2)] <2 x 1077, and for 1 < 2z < co and coefficients a; and b; given in Table 3
one has
2+ 123 + ap2® + azz + ay

E =
zexp(z) E1(2) 24 40123 + 0922 + b3z + by

+ €(2)

with |e(z)] < 2 x 1075.

Table 2: Coefficient for F,(z) Approximation (0 <z <1)

ag = —.57721566 a; = .99999193  ay = —.24991055
az = .05519968 ay = —.00976004 a5 = .00107857

Table 3: Coefficient for E;(z) Approximation (1 < z < o0)

ap = 8.5733287401 ag = 18.0590169730 a3 = 8.6347608925 a4 = 2677737343
by = 9.5733223454 by = 25.6329561486 b3 = 21.0996530827 by = 3.9584969228
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Combining the above one obtains the following formula for E(Y|Y > ¢; 0, 8'):

E(Y|Y >¢0,8) = u(x) + 0 ‘oexp lexp <C_077§w) - yﬂ

(i oo [ron (55 ) o o (57 )

460 e [exp (%ﬂg*’”) - 7)] 7, [exp (%é‘”) - 7)] |

Note that for € = exp(d[c — u(x)]/o — ) ~ 0 one has
EYY >¢o,f) = @)+ oexp(e) (v +log(e)) exp(—e) + Ex(e)]
= u(zx) + 6 'oexp(e)
x ([ +log(e)] [1 — e+ O(e*)| = log(e) =7 + are + O(€"))
= p(x) + 0" o exp(e) [(a1 — 7)e — elog(e)] + O(e*log(e))
where a; is as in Table 2. In particular, in the limiting case as € — 0, one has
E(YY > ¢;0,8) — plx) .

This makes intuitive sense since in that case the censored observation is so low as to
provide no information about the actual failure time. In that case it reasonable to
replace a “completely missing” observation by its mean value.

For A = exp(d[c — p(x)]/o — v) very large one has

B(YIY > :0,8) = e+ 5 o espNEN) = e+ 67 (5 +00/3)) ~
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4.2 Some Specific Examples and Simulation Experiences

The data set Table 4 is taken from Gertsbakh (1989) for illustrative and comparative
purposes. It gives the log-life times for 40 tested motors under different temperature
and load conditions. The failure indicator is one when the motor failed and zero when
it was still running at the termination of the test. The maximum likelihood estimates
for the regression coefficients and scale parameter were given by Gertsbakh as the
entries in the first row of Table 5. The corresponding estimates as computed by our
algorithm are given to the same number of digits in the second row of that table. The
results are reasonably close to each other.

The data in Table 1 can be taken as another example, although here there are no
covariates. This however provides an independent way of gauging the accuracy of
our algorithm, since in that case we have an independent double precision algorithm
based on root solving. The answers by these two methods are given in Table 6 to the
relevant number of digits for comparison. The agreement is very good (at least nine
digits) in this particular example.

As another check on the algorithm various simulations were performed, either with
noncensored samples and or with various degrees of censoring. In all cases only one
covariate was used. For the noncensored case 1000 samples each were generated at
sample sizes n = 5,20,50,100. The data were generated according to the Gumbel
model with a linear model (3, 4+ fou;, with 31 = 1 and By = 2. The u; were randomly
generated from a uniform distribution over (0,1). The scale paramater was o = .5.
Figures 3 and 4 illustrate the results. The dashed vertical line in the histogram for

g is located at oy/(n —2)/n. It appears to be a better indication of the mean of

the 5. Equivalently one should compare 6y/n/(n — 2) against ¢ = .5. The n — 2
“accounts” for the two degrees of freedom lost in estimating (3; and 5. Judging from
these limited simulation results it appears that the factor \/n/(n — 2) corrects for the
small sample bias reasonably well.

Figures 5-7 illustrate the statistical properties of the maximum likelihood estimates
for medium and heavily censored samples of size n = 50, 500 and 1000. The censoring
was done as follows. For each lifetime Y; in the sample a random censoring time
Vi = .5 + 37vW, was generated, with W; taken from a uniform (0, 1) distribution.
The smaller of Y; and V; was then taken as the ™" observation and the censoring
indicator was set appropriately. The parameter v controls the censoring. A small
value of v means heavy censoring and larger v means medium to light censoring. In
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this simulation v = .2 and v = 1 were used.

The presentations in Figures 5-7 plot for each sample the estimate versus the corre-
sponding censoring fraction. Originally N = 1000 samples were generated under each
censoring scenario, but under n = 50 and heavy censoring two samples did not permit
a solution, since at least 49 lifetimes were censored in those cases. The percentages
given in these plots indicate the proportion of estimates above the respective target
line. The percentages given in parentheses use the dashed target line, which as in
Figures 3-4 is an attempt at bias correction. Note how the increasing sample size en-
tails a reduction in the scatter of the estimates. Also note how the scatter increases
with increasing censoring fraction.

Also shown in each plot of Figures 5-7 is the least squares regression line to indicate
trends in the estimates against the censoring fraction. It appears that for heavy
censoring there is a definite trend for the intercept estimates Bl. Namely, as the
censoring fraction increases so does the intercept estimate. We do not know whether
this effect has been discussed in the literature. The usefulness of this relationship is
questionable, since one usually does not know whether the regression line is above
or below the target line, since the latter is unknown. Note that the median of the
estimates 3, is close to target.

4.3 The Fortran Code GMLE

The file with the Fortran subroutine GMLE, developed out of the above considera-
tions, is called gmle.f and is documented in Appendix A. Although the source code
for it could easily be made available, it still requires linking with three BCSLIB
subroutine libraries, namely optlib, bcsext, and bcslib. Once one has written an
appropriate driver for GMLE (which may be contained in the file gmledrv.f, also
available) one needs to compile these as follows on a Sun workstation

f77 gmledrv.f gmle.f -loptlib -lbcsext -lbcslib.

23



Table 4: Motor Failure Data, Two Factors (from Gertsbakh, p. 206)

log | rescaled | rescaled log | rescaled | rescaled
failure load temper. | failure failure load temper. | failure

time index indicator || time index indicator
5.45 1 1 1 5.15 -1 1 1
5.74 1 1 1 6.11 -1 1 1
5.80 1 1 1 6.11 -1 1 1
6.37 1 1 1 6.23 -1 1 1
6.49 1 1 1 6.28 -1 1 1
6.91 1 1 1 6.32 -1 1 1
7.02 1 1 1 6.41 -1 1 1
7.10 1 1 0 6.56 -1 1 1
7.10 1 1 0 6.61 -1 1 1
7.10 1 1 0 6.90 -1 1 0
5.07 1 -1 1 3.53 -1 -1 1
5.19 1 -1 1 4.22 -1 -1 1
5.22 1 -1 1 4.73 -1 -1 1
5.58 1 -1 1 5.22 -1 -1 1
5.83 1 -1 1 5.46 -1 -1 1
6.09 1 -1 1 5.58 -1 -1 1
6.25 1 -1 1 5.61 -1 -1 1
6.30 1 -1 0 5.97 -1 -1 1
6.30 1 -1 0 6.02 -1 -1 1
6.30 1 -1 0 6.10 -1 -1 0
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Table 5: Comparison of MLE’s for Data in Table 4

Source load temperature
intercept | coefficient | coefficient | scale
Gertsbakh | 6.318 0.253 0.391 0.539
our code 6.317 0.253 0.391 0.538

Table 6: Comparison of MLE’s for Data in Table 1

Source

scale
parameter

shape
parameter

root solver

952.3774020

23.90139575

optimization code

952.3774021

23.90139576
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Appendix A

GMLE Maximum Likelihood Estimates from Censored
Gumbel/Weibull Data with Covariates

VERSION

GMLE — Double Precision

PURPOSE

GMLE computes maximum likelihood estimates of regression and scale parameters
for type I or multiply censored data when the data are assumed to come from a
Gumbel distribution with location parameter being a linear function of known
covariates. By setting the IDIST switch to 2, GMLE will analyze the
log-transformed data. This allows to view the original data to come from a Weibull
distribution with the log-scale parameter modeled by a linear function of known
covariates. The Weibull shape parameter becomes reciprocal of the Gumbel scale
parameter.

USAGE

INTEGER IDIST, N, NMAX, NP, JFAIL(NMAX), IER

DOUBLE PRECISION RESP(NMAX), COV(NMAX,NP), COEF(NP), SIGMA
CALL GMLE(IDIST,N,NMAX,NP,RESP,COV,JFAIL,COEF,SIGMA,IER)

ARGUMENTS

IDIST [INPUT,INTEGER]
Choice of the data distribution model
log(Weibull) = Gumbel or Weibull
IDIST = 1 for the Gumbel model and
IDIST = 2 for the Weibull model.

33



N [INPUT,INTEGER]
Sample size, NP < N < NMAX

NMAX [INPUT,INTEGER]
Maximum sample size
currently NMAX cannot exceed 10000

NP [INPUT,INTEGER]
Number of covariates per observation
Currently NP < 19
Also NP > 1, to accommodate
at least a location paramter in the Gumbel model
or a scale parameter in the Weibull model.

RESP [INPUT,DOUBLE PRECISION,ARRAY]
Sample vector of responses, lifetimes or observations,
Need RESP(I) >0forall I=1,...,N
if IDIST = 2 is specified.

(6{0)Y [INPUT,DOUBLE PRECISION,ARRAY]
Nx NP array of covariates
corresponding to the observation vector,

JFAIL [INPUT,INTEGER,ARRAY]
Vector of failure indicators with
JFAIL(I) = 1, if the I'™ observation is a failure
JFAIL(I) = 0, if the I*" observation is a censored case,

COEF [OUTPUT,DOUBLE PRECISION,ARRAY]
Vector of maximum likelihood estimates for the
regression coefficients,

SIGMA [OUTPUT,DOUBLE PRECISION]
Maximum likelihood estimate for the Gumbel scale parameter
or the reciprocal of the Weibull shape parameter,
depending on IDIST = 1 or IDIST = 2.
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IER [OUTPUT,INTEGER]
Success/error code
IER = 0 Success, maximum likelihood estimates computed.
IER =-1 N > 10,000 cases or NP > 19.
IER =-2 Maximum likelihood solution criterion not satisfied.
IER =-3 IDIST not 1 or 2 (Gumbel or Weibull distribution).
IER =-4 Not all response data are positive, while IDIST = 2.
IER =-5 Fewer uncensored data cases than NP.
IER =-6 Trouble evaluating log-likelihood at initial estimates.
IER > 0 Unexpected error returns from HDLSLE or HDNLPR
or their subsidiaries. Here
IER = 2000+JER,
with JER = error return code from HDLSLE
JER =4000+JER,
with JER = error return code from HDNLPR
JER =6000+JER,
with JER = error return code from internal
routine SHCENS

To raise the bound 10,000 on NMAX and the bound 19 on NP, one should adjust
the first two PARAMETER statements in GMLE, namely

PARAMETER ( NN=10000 )
PARAMETER ( MAXDIM=20, MCON=0, MAXCON=1) .

In the second PARAMETER statement one changes MAXDIM=20 ( with 20 = 19+1)
to MAXDIM = ICOV+1, wher ICOV is the new maximum number of covariates.
However, there may be complications with auxiliary arrays in the optimizer
HDNLPR, which may require larger dimensions. In that case the optimizer will
return an error message, stating how much space is needed. This may necessitate an
appropriate change in the fifth parameter statement of GMLE, namely in

PARAMETER (NHOLD=7500,NIHOLD=500).

We refer to the documentation for HDNLPR for the interpretation of that error
message and what changes may be indicated.
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