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Confidence Bounds and Intervals

We will develop exact confidence bounds for parameters θ associated with various

discrete distributions, such as

• Binomial distribution, θ = success probability

• Poisson distribution, θ = mean

• Hypergeometric distribution, θ = # of defective items in sampled population

• Comparing two Poisson means λ and µ, θ = λ/µ.
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Equivalence of Confidence Sets and Hypothesis Tests

Let X denote the set of all possible data outcomes X (counts or pairs of counts).

Let A(θ0)⊂ X denote the acceptance region of a level α test for testing a

hypothesis H(θ0) indexed by θ0. Thus X −A(θ0) = R(θ0) is the rejection region.

Possible hypotheses: H(θ0) : θ = θ0 or H(θ0) : θ≤ θ0 or H(θ0) : θ≥ θ0

Thus Pθ(X ∈ R(θ0))≤ α or Pθ(X ∈ A(θ0))≥ 1−α for θ ∈Hθ0, e.g., for θ = θ0.

Define C(X) = {θ0 : X ∈ A(θ0)}= set of all θ0 for which Hθ0 is acceptable via X .

=⇒ {θ0 ∈C(X) ⇐⇒ X ∈ A(θ0)} =⇒ Pθ0(θ0∈C(X))= Pθ0(X ∈A(θ0))≥ 1−α

This is true for any θ0 =⇒ Pθ(θ ∈C(X))≥ 1−α ∀θ (for all θ).

Note the randomness of C(X) via X and that θ is treated as fixed and unknown.

We will revisit this abstract scenario over and over in concrete settings.
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How to Construct Reasonable Hypothesis Tests?

There was disagreement over the issue of hypothesis testing between the founding

fathers of statistics, Fisher on one side and Neyman and Pearson on the other.

See Lehmann, E.L. (2008) Reminiscences of a Statistician, The Company I Kept

and Salsburg, D. (2001) The Lady Tasting Tea, How Statistics Revolutionized

Science in the Twentieth Century.

Fisher viewed hypothesis testing as examining whether the data provided sufficient

evidence (small enough P-value) for rejecting the hypothesis, based on some

“obvious” or “intuitive” test criterion computed from the data.

Neyman and Pearson took alternatives to the hypothesis into account when

constructing appropriate tests. They introduced the concept of type I and type II

error probabilities and developed an optimality theory within this framework,

often resulting in “obvious” or “intuitive” test criteria.
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Confidence Sets

Neyman subsequently developed the theory of confidence sets with its close

connection to hypothesis tests (slide # 2).

Confidence sets acknowledge that estimates of parameters are hardly ever correct.

At best they are approximately correct. How to gauge ”approximately”?

We do this by giving confidence intervals of various widths, each with its assurance

or confidence of covering (capturing) the unknown parameter.

In nested intervals the wider interval has higher confidence.

Sometimes only one end point of such an interval is important, e.g., we only care

about a risk assessment (probability of a serious event happening) in terms of the

estimated risk and how much higher it might be with a specified confidence.
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What We Will Do

We will start with intuitively appealing test criteria, without justifying them as optimal

in any way. As it turns out, these are often optimal tests.

We then take these tests and convert them into confidence bounds and intervals

according to the previously indicated equivalence relationship.

We will examine the operational properties of these confidence sets and compare

them with other ones as they are frequently taught in elementary statistics courses.

We then illustrate these confidence sets with several examples that I encountered

in practice. Some of these require the building of appropriate bridges to make the

link to these confidence sets.
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Binomial Distribution

A binomial random variable X counts the number of successes in n independent
Bernoulli trials with success probability p, 0≤ p≤ 1

Pp(X ≤ k) =
k

∑
i=0

(
n
i

)
pi(1− p)n−i and Pp(X ≥ k) = 1−Pp(X ≤ k−1) .

It is intuitive that Pp(X ≤ k) is strictly decreasing in p for k = 0,1, . . . ,n−1 and by
complement Pp(X ≥ k) is strictly increasing in p for k = 1,2, . . . ,n.

∂Pp(X ≥ k)
∂p

=
n

∑
i=k

(
n
i

)
ipi−1(1− p)n−i−

n−1

∑
i=k

(
n
i

)
(n− i)pi(1− p)n−i−1

= n
n

∑
i=k

(
n−1
i−1

)
pi−1(1− p)n−i−n

n−1

∑
i=k

(
n−1

i

)
pi(1− p)n−i−1

j=i−1
=⇒ = n

n−1

∑
j=k−1

(
n−1

j

)
p j(1− p)n−1− j−n

n−1

∑
i=k

(
n−1

i

)
pi(1− p)n−i−1

= n
(

n−1
k−1

)
pk−1(1− p)n−k = k

(
n
k

)
pk−1(1− p)n−k > 0 .
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Gamma and Beta Densities

Γ(a) =
Z

∞

0
exp(−x)xa−1 dx is called the gamma function for a > 0

and thus

fa(x) =
1

Γ(a)
exp(−x)xa−1 for x > 0 and fa(x) = 0 otherwise

is a density on (0,∞), called the gamma density with shape parameter a > 0.

B(a,b) =
Z 1

0
xa−1(1−x)b−1 dx is called the beta function for a > 0 and b > 0

and thus

ga,b(x) =
1

B(a,b)
xa−1(1− x)b−1 for 0 < x < 1 and ga,b(x) = 0 otherwise

is a density on (0,1), called the beta density with parameters a > 0 and b > 0.

Γ(n+1) = n! = 1 ·2 · . . . ·n for integer n and B(a,b) =
Γ(a)Γ(b)
Γ(a+b)
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Useful Identities

For k > 0 =⇒ binomial tail summations ∼ beta cdf or incomplete beta function,

Pp(X ≥ k) =
n

∑
i=k

(
n
i

)
pi(1− p)n−i = Ip(k,n− k +1) , (1)

Pp(X ≤ k) = 1−Pp(X ≥ k +1) = 1− Ip(k +1,n− k) . (2)

where Iy(a,b) =
Γ(a+b)
Γ(a)Γ(b)

Z y

0
ta−1(1− t)b−1 dt = P(Y ≤ y)

denotes the cdf of a beta random variable Y with parameters a > 0 and b > 0.

∂

∂p
Ip(k,n− k +1) =

∂

∂p
Γ(n+1)

Γ(k)Γ(n− k +1)

Z p

0
tk−1(1− t)n−k dt

=
∂

∂p
k
(

n
k

)Z p

0
tk−1(1− t)n−k dt = k

(
n
k

)
pk−1(1− p)n−k

(since Γ(n+1) = n! for integer n) same as ∂Pp(X ≥ k)/∂p

Ip(k,n− k +1)−Pp(X ≥ k)→ 0−0 = 0 as p→ 0 =⇒ (1)
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General Binomial Monotonicity Property

If the function ψ(x), defined for x = 0,1, . . . ,n, is monotone increasing (decreasing)

and not constant, then the expectation Ep(ψ(X)) is strictly monotone increasing

(decreasing) in p. Intuitively appealing: p↗⇒ X ↗⇒ ψ(X)↗⇒ Ep(ψ(X))↗

∂Ep(ψ(X))
∂p

=
∂

∂p

n

∑
x=0

(
n
x

)
px(1− p)n−x

ψ(x)

=
n

∑
x=1

(
n
x

)
xpx−1(1− p)n−x

ψ(x)−
n−1

∑
x=0

(
n
x

)
(n− x)px(1− p)n−x−1

ψ(x)

= n
n

∑
x=1

(
n−1
x−1

)
px−1(1− p)n−x

ψ(x)−n
n−1

∑
x=0

(
n−1

x

)
px(1− p)n−x−1

ψ(x)

= n
n−1

∑
y=0

(
n−1

y

)
py(1− p)n−1−y

ψ(y+1)−n
n−1

∑
x=0

(
n−1

x

)
px(1− p)n−x−1

ψ(x)

= n
n−1

∑
y=0

(
n−1

y

)
py(1− p)n−1−y[ψ(y+1)−ψ(y)] > 0 q.e.d.
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Testing Hypotheses Concerning p

Testing the hypothesis H(p0) : p = p0 against the alternative A(p0) : p < p0 we
would view small values of X as evidence against the hypothesis H(p0).

Thus we reject H(p0) at target significance level α when X ≤ k(p0,α),
where the critical value k(p0,α) is chosen as the largest integer k for which
Pp0(X ≤ k)≤ α =⇒ Pp0(X ≤ k(p0,α)+1) > α.

This controls the probability of type I error (rejecting H(p0) when true) at ≤ α.

For an observed value x of X we reject H(p0) at level α whenever the p-value
p(x, p0) = Pp0(X ≤ x)≤ α. That happens exactly when x≤ k(p0,α).

This view avoids the search for k(p0,α) and tells us how strongly we reject H(p0),
i.e., for how small an α we would have rejected H(p0) for that x.

p(x, p0) is also called the observed significance level.
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Binomial Distribution: Density

● ● ● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0
.0

0
0

.0
4

0
.0

8
0

.1
2

x

P
p

0
(X

=
x)

● ● ● ● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

11



Binomial Distribution: CDF
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Duality of Testing Hypotheses and Confidence Sets for p

We accept H(p0) whenever the p-value p(x, p0) = Pp0(X ≤ x) > α.
For an observed value x of X define the confidence set C(x) for p as all those
values p0 for which we would accept H(p0), i.e.,

C(x) =
{

p0 : p(x, p0) = Pp0(X ≤ x) > α
}

.

Pp0(X ≤ x) is continuous and strictly decreasing in p0 for x < n. It follows that
C(x) = [0, p̂U(1−α,x,n)), where p̂U(1−α,x,n) is the unique value p that solves

Pp(X ≤ x) =
x

∑
i=0

(
n
i

)
pi(1− p)n−i = 1− Ip(x+1,n− x) = α (3)

or Ip(x+1,n−x)= 1−α = γ

i.e., p̂U(1−α,x,n) = p̂U(γ,x,n) is the γ-quantile of the beta distribution with
parameters x+1 and n− x or using R/S-Plus or Excel, respectively:

p̂U(γ,x,n) = qbeta(γ,x+1,n−x) = BETAINV(γ,x+1,n−x) for x < n

These bounds are also referred to as Clopper-Pearson bounds.
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Illustration for p̂U(1−α,x,n)
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Special Case x = n

When x = n we cannot use qbeta or BETAINV, since n− x = 0.

From the direct definition it follows that C(n) = [0,1], closed on the right.

since Pp0(X ≤ n) = 1 > α ∀p0.

In concordance with that we define p̂U(γ,n,n) = 1 with the understanding that

the confidence set should be closed on the right in that case.
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Confidence Level of C(X)

We can view this collection of confidence sets {C(x) : x = 0,1, . . . ,n}
also as a random set C(X).

It has the following coverage probability property for any p0

Pp0 (p0 ∈C(X)) = 1−Pp0 (p0 /∈C(X)) = 1−Pp0(reject H(p0))≥ 1−α = γ

Note that in this coverage probability it is the set C(X) that is random, not p0!

This holds for any p0, whether we know it or not. We drop the subscript 0 and write

Pp (p ∈C(X)) = Pp(p < p̂U(γ,X ,n))≥ γ ∀p

p̂U(γ,X ,n) is called a 100γ% upper confidence bound for the unknown p.

Here p < p̂U(γ,X ,n) should be read as p≤ p̂U(γ,X ,n) when X = n.
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The Confidence Coefficient

The confidence coefficient of the upper bound is defined as

γ̄ = inf
p

{
Pp (p ∈C(X))

}
= inf

p

{
Pp (p < p̂U(γ,X ,n))

}
.

The confidence coefficient is γ̄ = γ = 1−α since Pp (p ∈C(X)) = γ for some p,

or Pp (p /∈C(X)) = Pp(X ≤ k(p,α)) = 1− γ = α for some p.

Proof: Recall that for x = 0,1, . . . ,n−1 the value p = p̂U(γ,x,n) solved

Pp(X ≤ x) = α

Thus for pi = p̂U(γ, i,n), i = 0,1, . . . ,n−1, with k(pi,α) = i we have

Ppi(X ≤ k(pi,α)) = Ppi(X ≤ i) = α , (4)

i.e., the infimum above is indeed attained at p = p0, p1, . . . , pn−1.

17



An Example and Some Observations

As a check example use the case k = 12 and n = 1600 with γ = .95,
then one gets p̂U(.95,12,1600) = qbeta(.95,12+1,1600−12) = .01212334
as 95% upper confidence bound for p.

Using (3) it is a simple exercise to show that the sequence of upper bounds is
strictly increasing in x, i.e.,

0 < p̂U(γ,0,n) < p̂U(γ,1,n) < .. . < p̂U(γ,n−1,n) < p̂U(γ,n,n) = 1 .

=⇒ Pp(p < p̂U(γ,X ,n)) = 1 ∀p < p̂U(γ,0,n).

Explicit expression for x = 0:
Solving Pp(X ≤ 0) = (1− p)n = 1− γ for p we get p̂U(γ,0,n) = 1− (1− γ)1/n

Explicit expression for x = n−1:
Solving Pp(X ≤ n−1) = 1− pn = 1− γ for p we get p̂U(γ,n−1,n) = γ1/n

The first case is more useful than the second.
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Estimates in Relation to Upper Confidence Bounds
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The Rule of Three

For γ = .95 and approximating log(1− γ) = log(.05) =−2.995732 by −3

the upper bound for x = 0 becomes

p̂U(.95,0,n) = 1− (.05)1/n = 1− exp
[

log(.05)
n

]
≈ 1− exp(−3/n)≈ 3

n
,

Here the last approximation is valid only for large n, say n≥ 100.

This is sometimes referred to as the Rule of Three (mnemonic simplicity!)

See van Belle (2002), Statistical Rules of Thumb, John Wiley & Sons, New York.

p̂U(.95,0,n) = 3/n is very useful for quick sample size planning,

based on the a priori conviction of seeing x = 0 successes in n trials.
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Side Comment on Common Practice when x = 0

Observing X = 0 successes in n trials, even when n is large, we still are not inclined
to estimate the success probability p by p̂(0) = 0/n = 0, since that is a very strong
statement.

p = 0 =⇒ we will never see a success in however many trials.

One common practice to get out of this dilemma is to “conservatively” pretend that
the first success is just around the corner, i.e., happens on the next trial.
Thus estimate p by p̃ = 1/(n+1) which is small but not zero.

The use of p̃ as estimate of p is somewhat conservative. How conservative?

Find γ such that p̂U(γ,0,n) = 1− (1− γ)1/n = 1/(n+1)

γ = 1−
(

n
n+1

)n
= 1−

(
1− 1

n+1

)n
≈ 1−exp

(
− n

n+1

)
≈ 1−exp(−1)= .6321 .

Can view p̃ = 1/(n+1) as a 63.21% upper confidence bound for p.
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Closed or Open Intervals?

So far we have given the confidence sets in terms of the right open intervals
[0, p̂U(γ,x,n)) with the property that

Pp(p < p̂U(γ,X ,n))≥ γ and inf
p

{
Pp(p < p̂U(γ,X ,n))

}
= γ ,

where the value γ is achieved at p = p̂U(γ,x,n) for x = 0,1, . . . ,n−1.

The question arises quite naturally: why not take instead the right closed interval
[0, p̂U(γ,x,n)], again with property

Pp(p≤ p̂U(γ,X ,n))≥ γ and inf
p

{
Pp(p≤ p̂U(γ,X ,n))

}
= γ .

The difference is that the infimum is not achieved at any p.

Whether we use the closed interval or not, the definition of p̂U(γ,x,n) stays the
same. Any value p0 equal to it or greater would lead to rejection of H(p0) when
tested against A(p0) : p < p0. By closing the interval we add a single p to it, namely
p = p̂U(γ,x,n). That p is not an acceptable hypothesis H(p) for this x.
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Coverage Probability of Upper Confidence Bounds
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Lower Confidence Bounds on p

When testing H(p0) : p = p0 against the alternative A(p0) : p > p0
large values of X can be viewed as evidence against H(p0).

Again carry out the test in terms of the observed p-value p(x, p0) = Pp0(X ≥ x) by

rejecting H(p0) at level α whenever p(x, p0)≤ α and accepting H(p0) otherwise.

From the duality between testing and confidence sets we get as confidence set

C(x) =
{

p0 : p(x, p0) = Pp0(X ≥ x) > α
}

.

Since Pp0(X ≥ x) is strictly increasing and continuous in p0 we see that

for x = 1,2, . . . ,n this confidence set C(x) coincides with the interval (p̂L(γ,x,n),1],
where p̂L(γ,x,n) is that value of p that solves

Pp(X ≥ x) =
n

∑
i=x

(
n
i

)
pi(1− p)n−i = α = 1− γ . (5)

24



Illustration for p̂L(1−α,x,n)
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Lower Confidence Bounds on p (cont.)

Invoking the identity (1) this value p can be obtained by solving

Ip(x,n− x+1) = α = 1− γ

for p, i.e., it is the α-quantile of a Beta distribution with parameters x and n−x+1.

Using R/S-Plus or Excel we get it for x > 0 as

p̂L(γ,x,n) = qbeta(1− γ,x,n−x+1) = BETAINV(1− γ,x,n−x+1)

For x = 0 we have Pp0(X ≥ 0) = 1 > α and we cannot use (5), but the original

definition of C(x) leads to C(0) = [0,1].

We define p̂L(γ,0,n) = 0 in that case, with the understanding that the left-open

interval (p̂L(γ,x,n),1] becomes closed when x = 0.
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An Example and Some Observations

As a check example take x = 451 and n = 500 with γ = .95, then one gets

p̂L(.95,451,500) = qbeta(.05,451,500−451+1) = 0.8773207 as 95% lower

bound for p.

Using (5) it is a simple exercise to show that the sequence of lower bounds is strictly

increasing in x, i.e.,

0 = p̂L(γ,0,n) < p̂L(γ,1,n) < .. . < p̂L(γ,n−1,n) < p̂L(γ,n,n) < 1 .

=⇒ Pp(p̂L(γ,X ,n) < p) = 1 for p > p̂L(γ,n,n).

As in the case of the upper bound one may prefer to use the closed confidence set

[p̂L(γ,x,n),1], with the corresponding commentary.

In particular, the lower endpoint p0 = p̂L(γ,x,n) does not represent an acceptable

hypothesis value, while all other interval points are acceptable values.
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Special Cases

For x = 1 and x = n the lower bounds defined by (5) can be expressed explicitly as

p̂L(γ,1,n) = 1− γ
1/n and p̂L(γ,n,n) = (1− γ)1/n

For obvious reasons the explicit lower bound in the case of x = n is of more practical
interest than the lower bound for x = 1.

For γ = .95 and x = n the lower bound becomes

p̂L(.95,n,n) = (1− .95)1/n ≈ exp(−3/n)≈ 1− 3
n

,

a dual instance of the Rule of Three. The last approximation is valid for large n.

This duality should not surprise since switching the role of successes and failures
with concomitant switch of p and 1− p turns upper bounds for p into lower bounds
for p and vice versa.

When observing X = n successes in n trials, especially when n is large, we still are
not inclined to estimate p by p̂ = n/n = 1, because of the consequences of such a
strong statement.
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p̂L(1−α/2,X ,n) < p̂U(1−α/2,X ,n)

for 0 < α < 1 Pp(p̂L(1−α/2,X ,n) < p̂U(1−α/2,X ,n)) = 1 for any p .

Suppose p̂U(1−α/2,x,n)≤ p̂L(1−α/2,x,n) for some x

=⇒ p̂U(1−α/2,x,n)≤ p0 ≤ p̂L(1−α/2,x,n) for some p0 and some x.

With that x the hypothesis H(p0) : p = p0 would be rejected when testing against

A(p0) : p < p0 or Ã(p0) : p > p0, i.e.,

Pp0(X ≤ x)≤ α/2 and Pp0(X ≥ x)≤ α/2

and by adding those two inequalities we get

1+Pp0(X = x)≤ α < 1 , i.e., a contradiction.
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Confidence Intervals for p

Lower and upper confidence bounds, each with respective confidence coefficient

1−α/2, can be used simultaneously as a 100(1−α)% confidence interval

(p̂L(1−α/2,X ,n), p̂U(1−α/2,X ,n)) .

p̂L(1−α/2,x,n) < p̂U(1−α/2,x,n) for any p and any x = 0,1, . . . ,n

Pp(p̂L(1−α/2,X ,n) < p < p̂U(1−α/2,X ,n))

= 1−Pp(p≤ p̂L(1−α/2,X ,n)∪ p̂U(1−α/2,X ,n)≤ p)

= 1−
[
Pp(p≤ p̂L(1−α/2,X ,n))+Pp(p̂U(1−α/2,X ,n)≤ p)

]
≥ 1− [α/2+α/2] = 1−α .
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Confidence Coefficient of Confidence Intervals for p

γ̄ = inf
p

Pp(p̂L(1−α/2,X ,n)≤ p≤ p̂U(1−α/2,X ,n))

= 1− sup
p

Pp(p < p̂L(1−α/2,X ,n) ∪ p̂U(1−α/2,X ,n) < p)

= 1− sup
p

{
Pp(p < p̂L(1−α/2,X ,n))+Pp(p̂U(1−α/2,X ,n) < p)

}
≥ 1−

{
sup

p
Pp(p < p̂L(1−α/2,X ,n))+ sup

p
Pp(p̂U(1−α/2,X ,n) < p)

}
= 1−{α/2+α/2}= 1−α .

The inequality ≥ typically takes the strict form >

since the suprema are usually not attained or approached at the same p.
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Coverage Probabilities

The coverage plots shown here were produced in R. In the case of the lower bound
coverage probability calculate for fine grid of p values

P(p̂L(γ,X ,n)≤ p) = (1− p)n +
n

∑
x=1

I{qbeta(1−γ,x,n−x+1)≤p}

(
n
x

)
px(1− p)n−x ,

where IA = 1 whenever A is true and IA = 0 otherwise. For the upper bound one
computes the coverage probabilities via

P(p̂U(γ,X ,n)≥ p) =
n−1

∑
x=0

I{qbeta(γ,x+1,n−x)≥p}

(
n
x

)
px(1− p)n−x + pn ,

while for the confidence interval one calculates the coverage probability as

P(p̂L((1+ γ)/2,X ,n)≤ p ∩ p̂U((1+ γ)/2,X ,n)≥ p)

=
n−1

∑
x=1

I{qbeta((1−γ)/2,x,n−x+1)≤p ∩ qbeta((1+γ)/2,x+1,n−x)≥p}

(
n
x

)
px(1− p)n−x

+(1− p)nI{qbeta((1+γ)/2,1,n)≥p}+ pnI{qbeta((1−γ)/2,n,1)≤p}
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R Code for Upper Bound Coverage Probability

> bin.min.coverage.upper
function (n=100,gam=.95,pdf=F)
{# taking advantage of vectorized calculations over p
if(pdf==T) pdf(file="mincoverageupper.pdf",width=7,height=5)
p.coverage=0
p=seq(0.0001,.9999,.0001)
for(x in 0:(n-1)){

p.coverage=p.coverage+(qbeta(gam,x+1,n-x)>=p)*dbinom(x,n,p)
}
p.coverage=p.coverage+dbinom(n,n,p)
plot(p,p.coverage,type="l",ylab=
expression("Probability of Coverage for "˜hat(p)[U]),
col="blue",ylim=c(gam,1))

abline(h=gam,col="orange")
text(.5,1,paste("nominal confidence level =",gam),adj=.5)
text(.5,.996,paste("sample size n =",n),adj=.5)
if(pdf==T) dev.off()
}
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Coverage Probability of Upper Confidence Bounds
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Coverage Probability of Lower Confidence Bounds
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Coverage Probability of Confidence Intervals
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Coverage Probability of Confidence Intervals (n = 11)
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Confidence Intervals for p≈ 0 or p≈ 1

As the previous plots showed, for intervals the coverage probabilities stay above

1−α/2 = 1− (1− γ)/2 = (1+ γ)/2 for p near 0 or 1.

This is a consequence of coverage probability 1 for upper bounds (lower bounds)

when p is near 0 (near 1):

Pp(p̂L(1−α/2,X ,n)≤ p≤ p̂U(1−α/2,X ,n))

= 1−Pp(p̂L(1−α/2,X ,n) > p)−Pp(p̂U(1−α/2,X ,n) < p)

= 1−Pp(p̂L(1−α/2,X ,n) > p)≥ 1−α/2 for p < p̂U(1−α/2,0,n)

= 1−Pp(p̂U(1−α/2,X ,n) < p)≥ 1−α/2 for p > p̂L(1−α/2,n,n)

38



Confidence Bounds or Intervals?

For p ≈ 0 it makes little sense to use lower bounds or intervals, wasting half the
miss probability where it does not matter.

Most often the lower bound would be 0 anyway, a useless piece of information.

One should then allocate all of the miss probability α to the upper bound, i.e., use

p̂U(1−α,X ,n) rather than p̂U(1−α/2,X ,n) which is higher.

If X = 0 we can ask how large m should be so that

p̂U(1−α/2,0,m) = 1− (α/2)1/m = p̂U(1−α,0,n) = 1− (α)1/n ?

m = n× log(α)− log(2)
log(α)

For α = .05 we need m = 1.2314×n.

Provided X = 0 for both n and m, we would need 23% higher sample size with the
more wasteful procedure in order to get the same upper bound.

Corresponding comments apply for p≈ 1 and lower bounds.
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Classical or Elementary Upper Bounds

In elementary statistics classes the following upper bound is usually presented

p̂+ zγ

√
p̂(1− p̂)

n
with p̂ =

x
n

and zγ = γ-quantile of Z ∼N (0,1) .

It is based on the approximation

p̂− p√
p̂(1−p̂)

n

∼ N (0,1) for large n (poor for p near 0 or 1) .

P

(
p≤ p̂+ zγ

√
p̂(1− p̂)

n

)
= P

−zγ ≤
p̂− p√
p̂(1−p̂)

n

≈P
(
−zγ ≤ Z

)
= P(Z≤ zγ)= γ

Confidence coefficient γ̄ = 0,

since for very small p the upper bound becomes 0 with probability approaching 1.
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Coverage Probability of Elementary 95% Upper Bounds
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Score Test Upper Bounds

Uses the same testing/confidence bounds duality as did Clopper-Pearson.

Here use a normal approximation to calculate the p-value p(x, p0) = Pp0(X ≤ x)

Use X ∼ N (np0,np0(1− p0)) to find all acceptable p0 with Pp0(X ≤ x) > α,
i.e., solve for p0

α = Pp0(X ≤ x) = Pp0

(
X−np0√

np0(1− p0)
≤ x−np0√

np0(1− p0)

)

≈ P

(
Z ≤ x−np0√

np0(1− p0)

)
=⇒ x−np0√

np0(1− p0)
= zα =−z1−α =−zγ

=⇒ p0 = p̃U(γ,x,n) =
z2/(2n)+ p̂

1+ z2/n
+

z
1+ z2/n

√
z2

4n2 +
p̂(1− p̂)

n
, with z = zγ

after some algebraic gyrations. Not very appealing or mnemonic.
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Coverage Probability of Score Test 95% Upper Bounds
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Commentary on Score Test Upper Bounds

Agresti and Coull (1998) claim that score test confidence intervals (combining lower
and upper bounds) show better average coverage behavior.

No continuity correction, using (x± .5)/n in the upper/lower bounds respectively.

We chose to examine this from the upper bound perspective. The claim seems OK,
but for p≈ 1 the coverage deteriorates. That is of little interest.
However, it averages out against the coverage probability of 1 near p = 0.

Average (like minimum) coverage probability is just another metric.

We could adjust the Clopper-Pearson bounds (lowering their minimum coverage)
to have same average coverage behavior.

Trying to raise the score test bounds to have their minimum coverage equal that of
the Clopper-Pearson bounds would be more problematic.

Both types of bounds show roughly the same type of zigzag swings.
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Coverage Probability of Score Test 95% Upper Bounds with Continuity Correction
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Coverage Probability of Score Test 95% Confidence Intervals
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Corrosion Inspection

Airplanes are inspected for corrosion at a 10 year inspection interval.

All n inspected aircraft made it through corrosion inspection without any findings.

Customer wants 95% lower confidence bounds on the probability of an airplane
passing its corrosion inspection without any findings.

The customer did not tell me n, only that 2.5% of the fleet had been inspected.
How do we deal with this, not knowing the fleet size?

View each airplane’s corrosion experience over a 10 year exposure window as a
Bernoulli trial with probability p of surviving 10 years without corrosion.

X = number of aircraft without any corrosion found at their respective inspections
is a binomial random variable with parameters n and success probability p.

X = n =⇒ p̂L(.95,n,n) = (1− .95)1/n.

Plot p̂L(.95,n,n) against n and the customer can take it from there.
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Lower 95% Confidence Bounds as Function of n
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Some Commentary

Each such inspection involves extensive stripping of aircraft interior.

An airline may have asked about the necessity of this onerous and costly task after

finding no corrosion in n inspection.

Maybe it is felt that the inspection interval should be increased so that cost is spread

out over more service life.

On the other hand, if corrosion is detected early it is a lot easier and cheaper to fix

than when it has progressed beyond extensive or impossible repair.

If this airline has 200 aircraft of which 2.5% (or n = 5) had their 10 year check, all

corrosion free, then the 95% lower bound on p is about .55.

This is not very reassuring.
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Space Shuttle Stud Hang-Ups
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The Issues and Facts

The studs have 3.5′′ diameter. If they do not drop through cleanly they hang up.

This can even be felt in the shuttle cabin.

It impacts some performance parameters (indicators): how severely?

In an extreme case the studs just snap under the tremendous takeoff force.

In 114 liftoffs there were 21 with one hang-up and 2 with two hang-ups.

No liftoff with more than 2 hang-ups.

There are 4 studs per Solid Rocket Booster (SRB), 8 total.

http://www.eng.uab.edu/ME/ETLab/HSC04/abstracts/HSC147.pdf

and http://www.nasa.gov/offices/nesc/home/Feature 1.html
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Modeling and a Check

If we treat each liftoff as 8 Bernoulli trials (one for each stud) we have experienced
114×8 = 912 trials, with 21×1+2×2 = 25 “successes.”
We get p̂ = 25/912 = .02741 as estimate of our success probability.

If indeed the 8 studs per liftoff act as independent Bernoulli trials we would estimate
the probability of seeing i hang-ups in a liftoff as

p̂i =
(

8
i

)
p̂i(1− p̂)8−i .

From this one gets p̂0 = 0.8006, p̂1 = 0.1805, p̂2 = 0.0178, and p̂3+ = 0.0010.

Based on this one would have expected Ei = p̂i×114 liftoffs with i stud hang-ups.
=⇒ E0 = 91.27, E1 = 20.58, E2 = 2.03 and E3+ = 0.12

These compare reasonably well with the observed counts of
O0 = 91, O1 = 21, O2 = 2, and O3+ = 0.

Thus we do not have any indications that contradict the above assumption of
independence and constant probability p of a stud hang-up.
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Upper Confidence Bounds

The Clopper-Pearson 95% upper confidence bound for p is

p̂U(.95,25,912) = qbeta(.95,25+1,912−25) = 0.03807645 .

If X denotes the number of stud hang-ups during a single liftoff, we may be inter-

ested in an upper bound on the probability of seeing more than 3 hang-ups.

Since Pp(X ≥ 4) = f4(p) is monotone increasing in p we can use

f4(p̂U(.95,25,912)) = 1−pbinom(3,8,0.03807645) = 0.00013

as 95% upper bound for this risk f4(p), since

Pp ( f4(p)≤ f4(p̂U(.95,X ,912))) = Pp (p≤ p̂U(.95,X ,912))≥ .95

Because of the small risk upper bound of 0.00013 it was decided to focus further

concerns to X ≤ 3.
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Simulations of Indicators

NASA has intricate programs that can simulate liftoffs with many randomly varying

environmental inputs, material properties, etc. It takes considerable time to run

these simulations.

Before each mission (with different payloads) liftoff simulations are carried out:

800 each, under 0 hang-ups, 1 hang-up, 2 hang-ups, and 3 hang-ups.

For each simulation many indicator variables (stresses, deviation angles, etc.) are

monitored. Each such indicator Y has a safe range or a safe threshold, say y0.

The task was to determine the 3σ risk for each of those indicators.

In the engineering world 3σ refers to a normal distribution and implies a risk of

.00135 of a normal random variable deviating by more than 3σ above (or below) its

mean. The 2-sided risk is .0027.
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Law of Total Probability

Recall the following law of total probability which facilitates probability calculations

for events, that are complex initially but become easier to manage when split into

several mutually exclusive cases.

Suppose B1∪ . . .∪Bk = Ω (full probability space) with Bi∩B j = /0 for i 6= j

P(A) = P(A∩{B1∪ . . .∪Bk}) = P({A∩B1}∪ . . .∪{A∩Bk})

= P(A∩B1)+ . . .+P(A∩Bk) since {A∩Bi}∩{A∩B j}= /0 for i 6= j

= P(A|B1)P(B1)+ . . .+P(A|Bk)P(Bk)

since P(A|Bi) = P(A∩Bi)/P(Bi) by definition.
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The Risk of Exceeding a Threshold y0

It is desired to get an upper confidence bound for F̄p(y0) = Pp(Y > y0).

By conditioning on X = k we have the following expression for F̄p(y0)

F̄p(y0) = P(Y > y0|X = 0)Pp(X = 0)+P(Y > y0|X = 1)Pp(X = 1)

+P(Y > y0|X = 2)Pp(X = 2)+P(Y > y0|X = 3)Pp(X = 3)

+P(Y > y0|X ≥ 4)Pp(X ≥ 4)

=
3

∑
x=0

P(Y > y0|X = x)Pp(X = x)+P(Y > y0|X ≥ 4)Pp(X ≥ 4)

≤
3

∑
x=0

P(Y > y0|X = x)Pp(X = x)+Pp(X ≥ 4) = Ḡp(y0) .

For many (but not for all) of the response variables one can plausibly assume that

P(Y > y0|X = x) increases with x.
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Using the Binomial Monotonicity Property for Ep(ψ(X))

Using ψ(x) = P(Y > y0|X = x) for x = 0,1,2,3 and ψ(x) = 1 for x > 3 we can write

Ḡp(y0) = Ep(ψ(X))

Based on the general binomial monotonicity property get an upper confidence

bound for Ḡp(y0) (and thus conservatively also for F̄p(y0)) by replacing p by the

appropriate upper bound p̂U(.95,25,912) in the expression for Ḡp(y0).

To do so would require knowledge of the exceedance probabilities P(Y > y0|X = x)
for x = 0,1,2,3. These would come from the four sets of simulations that were

run. Of course such simulations can only estimate P(Y > y0|X = x) with their

accompanying uncertainties, but that is an issue we won’t address here.
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Simulated CDF of Indicator Variable
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Magnified CDF of Indicator Variable
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0
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Bounding Ḡp(55)≥ P(Y > 55)

Based on the numbers 0, .00875, .03375, and .08375 from the previous slide and

the upper bound p̂U(.95,25,912) = .03807645 = p̂U for p we calculate the follow-

ing 95% upper confidence bound for Ḡp(55)≥ P(Y > 55)

0×
(

8
0

)
p̂0

U(1− p̂U)8 + .00875×
(

8
1

)
p̂U(1− p̂U)7 + .03375×

(
8
2

)
p̂2

U(1− p̂U)6

+.08375×
(

8
j

)
p̂3

U(1− p̂U)5 +
8

∑
j=4

(
8
j

)
p̂ j

U(1− p̂U)8− j = 0.003459802

This is larger than the .00135 risk associated with the 3σ requirement.

Even the estimate of Ḡp(55) (using p̂ = 25/912 instead of p̂U ) only yields 0.002300867.
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Some Comments

Thus it is not the 95% confidence bound that is at issue here.

However, while the data are somewhat real (transformed from real data)

the threshold is entirely fictitious.

It was chosen to point out what might happen in such (rare) situations.

When the risk upper bound does not fall below the allowed 3σ value of .00135 there

usually is an action item to revisit the requirements for the chosen threshold.

Often these are chosen conservatively and an engineering review of the involved

stresses or angular deviations may justify a relaxation of these thresholds.

These kinds of analyses can whittle down the number of cases where serious

engineering review is warranted.
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Perspectives on Risk Levels

The risks in the Space Shuttle program are of a different order of magnitude than

those tolerated in commercial aviation.

In the latter arena one often is confronted by the requirement of demonstrating a

risk of 10−9 or less, i.e., expect at most one bad event in 109 departures.

This appears to be based on the assumption: # of flight critical systems ≤ 100.

If each such system is designed to the 10−9 requirement then the chance of at

least one of these systems failing is at most 100×10−9 = 10−7.

This is still well below the current rate of hull losses and most of these are not due

to any aircraft design deficiencies. See

http : //www.boeing.com/news/techissues/pdf/statsum.pdf

17% of hull losses during 1996-2005 pointed to the Airplane as the primary cause.
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Perspectives on Risk Levels

Establishing a 10−9 risk directly from system exposure data is difficult

if not impossible, and certainly impracticable during the design phase.

The low exponent (−9) of such risks is built up by multiplying verifiable risks of

higher order, e.g., 10−4×10−5 = 10−9

Such multiplication is based on statistical independence and redundancy in the

design, like having at least two engines on a plane, or doing engine maintenance

at different times or by different mechanics.

This difference in risk levels in the Space Program as compared to commercial

aviation is based on many factors.

Major drivers among these are the frequency with which the risk is taken and the

consequences (loss of lives and financial losses) of a catastrophic event.
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The Poisson Distribution and Monotonicity

For a Poisson random variable X with mean λ (λ > 0) we have

Pλ(X ≤ k) =
k

∑
i=0

exp(−λ)λi

i!
.

On intuitive grounds, a larger mean λ should entail a decrease in Pλ(X ≤ k).

∂Pλ(X ≤ k)
∂λ

= −
k

∑
i=0

exp(−λ)λi

i!
+

k

∑
i=0

exp(−λ)iλi−1

i!

= −
k

∑
i=0

exp(−λ)λi

i!
+

k−1

∑
i=0

exp(−λ)λi

i!
=−exp(−λ)λk

k!
< 0
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Connection to the Gamma Distribution

By the Fundamental Theorem of Calculus we have

∂Pλ(X ≤ k)
∂λ

=−exp(−λ)λk

k!
=

∂

∂λ

Z
∞

λ

exp(−x)xk+1−1

Γ(k +1)
dx

=⇒ Pλ(X ≤ k) =
k

∑
i=0

exp(−λ)λi

i!
=

Z
∞

λ

exp(−x)xk+1−1

Γ(k +1)
dx (6)

since both the left and right side converge to 1 as λ→ 0.

Here the righthand side of (6) is the right tail probability P(V ≥ λ)

of a Gamma random variable V with scale 1 and shape parameter k +1.

Gk+1(λ) = P(V ≤ λ) =
Z

λ

0

exp(−x)xk+1−1

Γ(k +1)
dx

is also called incomplete Gamma function with parameter k +1.
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Uses of the Poisson Distribution
The Poisson distribution is useful for random variables X that count incidents

(accidents) over intervals of time [0,T ], or occurrences of defects or damage

over surface areas A or volumes V (inclusions).

Given the number x of such a count, the locations in time or surface or space of

the x incidents can be viewed as having been distributed according to a

uniform distribution. Thus the often used description: Random failures.

In such a context (when counting incidents over a time interval [0,T ], or

occurrences over an area A or volume V ) one usually expresses the mean λ also

as λ = T ×λ1, or λ = A×λ1, or λ = V ×λ1, where λ1 would represent the mean

of a count over a time interval of unit length (or an area or volume of measure 1).

This is useful when trying to project counts to time intervals of length different
from T , or when comparing such counts coming from different time intervals, with
corresponding adjustments when dealing with areas or volumes.
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Binomial Distribution ≈ Poisson Distribution for Small p

For small p: Binomial(n, p)≈ Poisson(λ = np).

In fact, assuming npn = λ the limiting behavior of the binomial probabilities(
n
x

)
px

n(1− pn)n−x =
(npn)x(1− pn)n

x!
× (1− pn)−xn(n−1) · · ·(n− x+1)

nx

−→ exp(−λ)λx

x!
as n→ ∞

is very instrumental in motivating the Poisson distribution.

Even though the above argument involves a limiting operation (n → ∞) the actual

approximation quality is governed by how small p is and not by the magnitude of n.

In fact, there are much more general approximation results available.
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Poisson-Binomial Approximation

Let I1, . . . , In be independent Bernoulli r.v.s with P(Ii = 1) = 1−P(Ii = 0) = pi,

i = 1, . . . ,n, i.e., they are not necessarily identically distributed.

The distribution of W = I1 + . . .+ In is called the Poisson-Binomial distribution and

is quite complicated when the pi are not the same.

For small pi the distribution of W is very well approximated by the Poisson

distribution with mean λ = ∑
n
i=1 pi = np̄.

If X ∼ P(λ) we can approximate P(W ∈ A) by P(X ∈ A) for any set A.
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Approximation Error Bound

The total variation norm

dTV(W,X) = sup
A
|P(W ∈ A)−P(X ∈ A)|= 1

2

∞

∑
j=0

|P(W = j)−P(X = j)|

is used to measure the quality of this approximation.

Barbour, Holst, and Janson (1992) give the following bound on dTV

dTV(W,X)≤ 1− exp(−λ)
λ

n

∑
i=1

p2
i ≤min(1,λ−1)

n

∑
i=1

p2
i ≤max(p1, . . . , pn)

The last inequality links up with our previous statement concerning the approximation

quality in the binomial case.
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Poisson-Binomial Approximation
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n = 10 ,  p= 0.05
λ = 0.5

dTV = sup
A

 P(X ∈ A) − P(Y ∈ A) 

dTV = 0.0119
dTV  bound = 0.0197
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Poisson-Binomial Approximation
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n = 100 ,  p= 0.05
λ = 5

dTV = sup
A

 P(X ∈ A) − P(Y ∈ A) 

dTV = 0.0126
dTV  bound = 0.0497
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Poisson-Binomial Approximation
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n = 1000 ,  p= 0.05
λ = 50

dTV = sup
A

 P(X ∈ A) − P(Y ∈ A) 

dTV = 0.0124
dTV  bound = 0.05
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Poisson-Binomial Approximation
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n = 1000 ,  p= 0.005
λ = 5

dTV = sup
A

 P(X ∈ A) − P(Y ∈ A) 

dTV = 0.00123
dTV  bound = 0.00497
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Commentary on Approximations

The previous 4 slides illustrate the approximation quality in the case of the

binomial distribution (p1 = . . . = pn = p).

Note that n does not play much of a role, while the size of p does.

Also shown are the actual total variation norms in each case and the first upper

bound on dTV, i.e., [(1− exp(−λ))/λ]×np2 = (1− exp(−np))× p.

The upper bounds for dTV are very close to p when λ > 1 and quite conservative

(inflated by roughly a factor of 4) compared to the actually achieved dTV.

In the first plot we have λ = .5. The bound on dTV is different from p and is not

quite as conservative compared to the actually achieved value of dTV.
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R Program for Calculating Poisson-Binomial Probabilities

A deceptively simple but recursive R program for calculating P(W = k)

poisbin = function (k,p)

{

#=================================================================

# this function computes the probability of k success in n trials

# with success probabilities given in the n-vector p.

#=================================================================

if(length(p)==0 | length(k)==0) return("invalid length of k or p")

if(min(p*(1-p))<0) return("invalid p")

if(k-round(k,0)>0) return(0)

if(length(p)==1){

if(k==0|k==1) {pˆk*(1-p)ˆ(1-k)}else{0}

}else{

p[1]*poisbin(k-1,p[-1])+(1-p[1])*poisbin(k,p[-1])

}

}
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Comments on R Program for Calculating P(W = k)

Note that there are about 2n recursions, n = length of (p1, . . . , pn)

P(W = k)= P

(
n

∑
i=1

Ii = k

)
= p1×P

(
n

∑
i=2

Ii = k−1

)
+(1− p1)×P

(
n

∑
i=2

Ii = k

)
and so on . . .

Thus the time and memory requirements grow beyond practical limits very fast.

220 = 1048576!

The next slide shows the results for n = 16 with the following probabilities:

p = .01, .01, .01, .02, .02, .03, .03, .03, .03, .04, .04, .04, .05, .05, .06, .07 .

216 = 65536: 30 sec, 217 = 131072: 62 sec,

218 = 262144: 131 sec, 219 = 524288: 275 sec
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Poisson-Binomial Approximation
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p = 0.01, 0.01, 0.01, 0.02, 0.02, 0.03, 0.03, 0.03, 0.03, 0.04, 0.04, 0.04, 0.05, 0.05, 0.06, 0.07

λ = 0.54

dTV = sup
A

 P(W ∈ A) − P(Y ∈ A) 

dTV = 0.0102
dTV  bound = 0.0178
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Upper Confidence Bounds for λ

Test the hypothesis H(λ0) : λ = λ0 against the alternatives A(λ0) : λ < λ0.

Small values x of X can be viewed as evidence against the hypothesis H(λ0).

Reject H(λ0) at significance level α when the p-value p(x,λ0) = Pλ0
(X ≤ x)≤ α.

The duality principle gives C(x) as the set of all acceptable H(λ0), i.e.,

C(x) =
{

λ0 : p(x,λ0) = Pλ0
(X ≤ x) > α

}
.

For the random set C(X) we have again the following coverage probability property

Pλ0
(λ0 ∈C(X)) = 1−Pλ0

(λ0 /∈C(X))≥ 1−α = γ

for any λ0 > 0. Equality is achieved for some values of λ0.
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Upper Confidence Bound Calculation

Pλ(X ≤ x) is continuous in λ and strictly decreasing from 1 to 0.

=⇒ C(x) = [0, λ̂U(γ,x)) where λ̂U(γ,x) is the unique value of λ that solves

Pλ(X ≤ x) =
x

∑
i=0

exp(−λ)λi

i!
= α = 1− γ = 1−

Z
λ

0

exp(−t)tx+1−1

Γ(x+1)
dt .

Get this upper bound λ̂U(γ,x) as the γ-quantile of the Gamma distribution with

scale 1 and shape parameter x+1

λ̂U(γ,x) = GAMMAINV(γ,x+1,1) = qgamma(γ,x+1)

Thus we can treat λ̂U(γ,X) as a 100γ% upper confidence bound for λ.
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Example and Special Case

Example: x = 2 with γ = .95 =⇒ λ̂U(.95,2) = 6.295794.

For the special case x = 0 there is an explicit formula for the upper bound,

λ̂U(γ,0) =− log(1− γ).

γ = .95 =⇒ λ̂U(.95,0) = 2.995732≈ 3,

another instance of the Rule of Three.
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Lower Confidence Bounds for λ

Test H(λ0) : λ = λ0 against the alternatives A(λ0) : λ > λ0.

Large values of X would serve as evidence against the hypothesis H(λ0).

Observing X = x reject H(λ0) whenever the p-value p(x,λ0) = Pλ0
(X ≥ x)≤ α.

For any observable x we define the confidence set C(x) as consisting of all λ0

corresponding to acceptable hypotheses H(λ0), i.e.,

C(x) =
{

λ0 : p(x,λ0) = Pλ0
(X ≥ x) > α

}
.

The random set C(X) has the desired coverage probability

Pλ0
(λ0 ∈C(X)) = 1−Pλ0

(λ0 /∈C(X))≥ 1−α = γ for any λ0 > 0.

Here ≥ becomes = for some λ0. Thus the confidence coefficient γ̄ of C(X) is γ.
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Calculation of Lower Confidence Bounds for λ

Pλ0
(X ≥ 0) = 1 for all λ0 > 0 =⇒ C(0) = (0,∞).

Pλ(X ≥ x) is continuous in λ and strictly increasing from 0 to 1 for x > 0.

=⇒ C(x) = (λ̂L(γ,x),∞) where λ̂L(γ,x) is the unique value of λ which solves

Pλ(X ≥ x) =
∞

∑
i=x

exp(−λ)λi

i!
= Gx(λ) = 1− γ .

For consistency we define λ̂L(γ,0) = 0 to agree with the above form of C(0).

Thus we can treat λ̂L(γ,X) as a 100γ% lower confidence bound for λ.

For x > 0 get λ̂L(γ,x) = GAMMAINV(1− γ,x,1) = qgamma(1− γ,x)

For x = 1 get explicitly λ̂L(γ,1) =− log(γ), since

Pλ(X ≥ 1)= 1−Pλ(X = 0)= 1−exp(−λ)= 1−γ ⇒ exp(−λ)= γ ⇒ λ =− log(γ) .
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λ̂L(1−α/2,x) < λ̂U(1−α/2,x)

λ̂L(1−α/2,x) < λ̂U(1−α/2,x) for x = 0,1,2, . . . and 0 < α < 1.

Suppose to the contrary that λ̂L(1−α/2,x)≥ λ̂U(1−α/2,x) for some x.

Then there exists a λ0 and x with λ̂L(1−α/2,x)≥ λ0 ≥ λ̂U(1−α/2,x).

For that λ0 and x we reject H(λ0) when testing against A(λ0) : λ > λ0

or when testing it against Ã(λ0) : λ < λ0.

=⇒ Pλ0
(X ≥ x)≤ α/2 and Pλ0

(X ≤ x)≤ α/2

=⇒ 1 > α/2+α/2≥ Pλ0
(X ≥ x)+Pλ0

(X ≤ x) = 1+Pλ0
(X = x) > 1

which leaves us with a contradiction. Hence our assumption can’t be true.
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Confidence Intervals for λ

λ̂L(1−α/2,x) < λ̂U(1−α/2,x) for all x = 0,1,2, . . . and 0 < α < 1

=⇒ Pλ(λ̂L(1−α/2,X) < λ < λ̂U(1−α/2,X))

= 1− [Pλ(λ≤ λ̂L(1−α/2,X)∪ λ̂U(1−α/2,X)≤ λ)]

= 1− [Pλ(λ≤ λ̂L(1−α/2,X))+Pλ(λ̂U(1−α/2,X)≤ λ)]

≥ 1− [α/2+α/2] = 1−α = γ .

Thus (λ̂L(1−α/2,X), λ̂U(1−α/2,X)) is a 100γ% level confidence interval for λ.

Its confidence coefficient usually is γ̄ > γ, for same reasons given previously.
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Poisson Approximation to Binomial

For small p the binomial distribution of X is well approximated by the

Poisson distribution with mean λ = np.

Thus confidence bounds for p = λ/n can be based on those obtained via the

Poisson distribution, namely by using λ̂U(γ,k)/n and λ̂L(γ,k)/n.

A typical application would concern the number X of well defined, rare incidents

(crashes or part failures) in n flight cycles in a fleet of airplanes.

Here p would denote the probability of such an incident during a particular flight.

Typically p is very small and n, as accumulated over the whole fleet, is very large.
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Aircraft Accidents

Accident Rates by Airplane Type
Hull Loss Accidents - Worldwide Commercial Jet Fleet - 1959 Through 2001
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Statistical Summary of Commercial Jet Airplane Accidents

Accident data on commercial jet aircraft are updated yearly at

http : //www.boeing.com/news/techissues/pdf/statsum.pdf

This summary provides ample opportunities for applying the confidence bound

methods developed so far.

These reports do not show such bounds.

The previous slide shows a page on hull loss accidents from the 2001 report,

still showing the Concorde line (no longer in 2005 report).

The next slide shows a version with confidence bounds.

Note how the confidence margins tighten as the number of accidents and the

number of flights per aircraft model increase.
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Confidence Bounds on Aircraft Accident Rates

Hull Loss Accidents −− Worldwide Commercial Jet Fleet 1959−2001

accident rates/million departures & 95% upper confidence bounds
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Details on Upper Confidence Bounds Calculation

95% upper confidence bounds were calculated based on the Poisson distribution

and based on the binomial distribution.

x = # of hull losses and rate ρ = # of losses per 1 million departures

−→ n = # of departures during which each aircraft model was tracked:

ρ

1000000
=

x
n

=⇒ n =
x×1000000

ρ
with rounding to the nearest integer.

For the Concorde: x = 1, ρ = 12.02, hence n = 1000000/12.02≈ 83195.

p = probability of a hull loss/departure. Poisson approximation model with λ = np

λ̂(.95,1) = qgamma(.95,1+1) = 4.743865

which converts to an upper bound

p̂U(.95,1,n) =
λ̂(.95,1)

n
=

λ̂(.95,1)×ρ

1×1000000
=

57.02125
1000000

for p .
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Details on Upper Confidence Bounds Calculation (cont.)

If we use a binomial based approach directly we get

p̂U(.95,1,n) = qbeta(.95,1+1,n−1) = 5.701975e−05 =
57.01975
1000000

which agrees with the previous value quite well.

In fact, all such computations for binomial based 95% upper bounds and

corresponding Poisson based upper bounds agree to two decimal places.

Thus it suffices to show just one upper bound column in the following Table.
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Table of Upper Confidence Bounds

Aircraft Model Hull Losses ρ ρ̂(.95)

B707/B720 121 8.85 10.29
DC-8 73 5.87 7.13
B727 78 1.06 1.28

B737-1/-2 68 1.29 1.58
DC-9 77 1.26 1.52

BAC 1-11 22 2.60 3.71
F-28 32 3.64 4.89

B747-Early 23 1.97 2.79
DC-10 21 2.41 3.47

A300-Early 9 1.59 2.77
L-1011 4 0.75 1.72

Concorde 1 12.02 57.02
MD-80/90 12 0.43 0.70

B767 3 0.32 0.83
B757 4 0.35 0.80
A310 6 1.83 3.61

A300-600 4 1.40 3.20
B737-3/-4/-5 14 0.36 0.56

A320/319/321 9 0.72 1.26
F-100 4 0.71 1.62

B747-400 3 1.04 2.69
MD-11 5 4.59 9.65

RJ-70/-85/-100 2 1.41 4.44
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Hypergeometric Distribution

Randomly sample n items without replacement from a finite population of N items

containing D defective and N−D non-defective items.

We observe the number X of defective items in the sample.

Rather than focusing on defective items they may be special items of interest.

A simple counting argument gives the probability function p(x) of X as

p(x)= PD(X = x)=

(D
x
)(N−D

n−x
)(N

n
) for max(n−N+D,0)= Dm≤ x≤DM = min(D,n)

with p(x) = 0 otherwise. Its cumulative distribution function is

FD(x) = PD(X ≤ x) =
x

∑
i=Dm

p(i) for Dm ≤ x≤ DM

while FD(x) = 0 for x < Dm and FD(x) = 1 for x≥ DM.
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Monotonicity Property

We expect that FD(x) = PD(X ≤ x)↘ or PD(X ≥ x)↗ as D↗.

Think of an urn containing D red, 1 pink, and N−D−1 white balls.

Let X = # of red balls in the grab when the pink ball is viewed as white.

Let Y = # of red balls in the grab when the pink ball is viewed as red.

Show PD(X ≥ x) < PD(Y ≥ x) = PD+1(X ≥ x) provided Dm +1≤ x≤ DM.

There are
(N

n
)

possible grabs or samples of size n from this urn.

We divide these different grabs into those (set A) that contain the pink ball

and those (set B) that do not.

For all grabs ω ∈ B we have X(ω) = Y (ω).

For all grabs ω ∈ A we have Y (ω) = X(ω)+1.
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Monotonicity Property (cont.)

PD ({X(ω) = x−1}∩A) > 0 for Dm +1≤ x≤ DM

since for a grab ω∈ {X(ω) = x}∩A we have not yet reached the minimum number

of red balls, thus we can replace a red ball in ω with a white one from {ω}c.

=⇒ PD ({X(ω)≥ x}∩A) < PD ({X(ω)≥ x−1}∩A)

=⇒ PD(X ≥ x) = PD({ω : X(ω)≥ x}∩A)+PD({ω : X(ω)≥ x}∩B)

= P({ω : X(ω)≥ x}∩A)+P({ω : Y (ω)≥ x}∩B)

< PD({ω : X(ω)≥ x−1}∩A)+PD({ω : Y (ω)≥ x}∩B)

= PD({ω : Y (ω)≥ x}∩A)+PD({ω : Y (ω)≥ x}∩B)

= PD(Y ≥ x) = PD+1(X ≥ x) q.e.d.
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Upper Confidence Sets

We view small values of X as evidence against the hypothesis H(D0) : D = D0

when testing it against the alternative A(D0) : D < D0.

Thus we reject H(D0) when the p-value p(x,D0) = PD0(X ≤ x)≤ α = 1− γ.

The corresponding confidence set consists of all acceptable H(D0) at level α, i.e.,

C(x) =
{

D0 : p(x,D0) = PD0(X ≤ x) > α
}

.

We have the following coverage probability property for the random set C(X)

PD0(D0 ∈C(X)) = 1−PD0(D0 /∈C(X))≥ 1−α = γ .

The parameter D is discrete ⇒ minimum coverage probability is usually > γ,

except for some select set of γ.
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Upper Confidence Bounds

For x < n this p-value p(x,D0) = PD0(X ≤ x) is decreasing from 1 to 0 with

increasing D0, and it is strictly decreasing while 0 < p(x,D0) < 1.

=⇒ there exists a unique largest D0 with p(x,D0) = PD0(X ≤ x) > α.

We denote this value by D̂U(γ,x).

For x = n we have p(n,D0) = PD0(X ≤ n) = 1 > α for all D0.

Thus C(n) = [0,N] and we define D̂U(γ,n) = N in that case.

=⇒ C(x) = [0, D̂U(γ,x)]. Note the closed form of the interval here.

Replace the lower bound 0 by x since we saw that many in the sample.

=⇒ C(x) = [x, D̂U(γ,x)]
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D̂U via the Function hypergeo.conf

Example: N = 2500, n = 50, x = 11 and γ = .95

> hypergeo.conf(11,50,2500,.95,type="upper",cc.flag=T)

$bounds

lower upper

11 841

$confidence

nominal minimum

0.9500000 0.9500011

hypergeo.conf→ confidence coefficient γ̄ (minimum coverage probability)

when the logic flag cc.flag=T is set. Here γ̄ = 0.9500011≈ .95.

D̂U → 95% upper bound of D̂U/N = 0.3364 for the population proportion

p = D/N. Based on binomial distribution get p̂U = 0.3378, not much different.
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Lower Confidence Sets

Test H(D0) : D = D0 against the alternative A(D0) : D > D0

High values of X can be viewed as evidence against the hypothesis H(D0).

Observing X = x we reject H(D0) at level α whenever the p-value

p(x,D0) = PD0(X ≥ x)≤ α.

The corresponding confidence set is

C(x) =
{

D0 : p(x,D0) = PD0(X ≥ x) > α
}

PD0(D0 ∈C(X)) = 1−PD0(D0 /∈C(X))≥ 1−α = γ.

We usually have > γ for all D0, because of the discrete nature of the parameter D0.
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Lower Confidence Bounds

x > 0: the p-value PD0(X ≥ x) increases from 0 to 1 as D0 increases from 0 to N,

it increases strictly as long as 0 < p(x,D0) = PD0(X ≥ x) < 1

=⇒ there is a smallest value of D0 for which PD0(X ≥ x) > α. Denote it by D̂L(γ,x).

x = 0: PD0(X ≥ 0) = 1 for all D0, =⇒ C(0) = [0,N] and define D̂L(γ,0) = 0.

=⇒ C(x) = [D̂L(γ,x),N], which again has a closed form.

Thus we can consider D̂L = D̂L(γ,X) as a 100γ% lower confidence bound for D.

Improve on the upper bound statement N by replacing it by N− (n− x), since we

saw n− x non-defective items in the sample.

This limits the number D in the population by N− (n− x) from above for sure.

=⇒ C(x) = [D̂L(γ,x),N− (n− x)].
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D̂L via the Function hypergeo.conf

Example take N = 2500, n = 50, x = 11, and γ = .95 and obtain

> hypergeo.conf(11,50,2500,.95,type="lower",cc.flag=T)

$bounds

lower upper

324 2461

$confidence

nominal minimum

0.9500000 0.9500011

i.e., we get D̂L = D̂L(γ,11) = 324 as 95% lower confidence bound for D.

Again the confidence coefficient was requested and is given as 0.9500011.

→ D̂L(γ,11)/N = 324/2500 = .1296 as 95% lower bound for p = D/N.

The corresponding binomial based lower confidence bound is p̂L = 0.1286.
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D̂L(1−α/2,x)≤ D̂U(1−α/2,x)

D0 = D̂U(1−α/2,x) is by definition the largest D such that PD(X ≤ x) > α/2

D1 = D̂L(1−α/2,x) is the smallest D such that PD(X ≥ x) > α/2 or

such that PD(X ≤ x−1) < 1−α/2.

=⇒ α

2
≥ PD0+1(X ≤ x)≥ PD0(X ≤ x−1) < 1− α

2
,

where the last < holds because we can’t have α/2≥ 1−α/2, the first ≥ follows

from the definition of D0, and the middle ≥ holds generally, see next slide.

PD0(X ≤ x−1) < 1−α/2 =⇒ D1 ≤ D0, using the alternate definition of D1.

101



PD−1(X ≤ x−1)≤ PD(X ≤ x)

The above inequality holds quite generally for all x and D.

Use again the urn with D−1 red balls, one pink ball, and N−D white balls.

The set A consists of all those grabs of n balls that contain the pink ball.

B consists of all grabs of n balls that don’t contain the pink ball.

X counts the number of red balls in the grab, interpreting pink as white.

Y counts the number of red balls in the grab, interpreting pink as red.

We have X(ω) = Y (ω) for all grabs ω in B and X(ω)+1 = Y (ω) for all ω ∈ A.

=⇒ PD−1(X ≤ x−1) = PD−1(X ≤ x−1∩A)+PD−1(X ≤ x−1∩B)

= PD−1(Y ≤ x∩A)+PD−1(Y ≤ x−1∩B)

≤ PD−1(Y ≤ x∩A)+PD−1(Y ≤ x∩B)

= PD−1(Y ≤ x) = PD(X ≤ x) q.e.d.
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Monotonicity of Confidence Bounds

A consequence of the previous inequality is that D̂U(γ,x) and D̂L(γ,x) are strictly

increasing in x in the allowable range.

Recall that D̂U(γ,x) is the largest D for which PD(X ≤ x) > α = 1− γ.

Using the above inequality, i.e., PD+1(X ≤ x+1)≥ PD(X ≤ x), we see that

PD+1(X ≤ x+1)≥ PD(X ≤ x) > α =⇒ D̂U(γ,x+1)≥ D̂U(γ,x)+1 > D̂U(γ,x) .
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Confidence Intervals

Since D̂L(1−α/2,x)≤ D̂U(1−α/2,x) for any x and 0 < α < 1

we may use [D̂L(1−α/2,X), D̂U(1−α/2,X)] as a confidence interval

with coverage probability ≥ γ, since

PD(D̂L(1−α/2,X)≤ D≤ D̂U(1−α/2,X))

= 1−PD(D < D̂L(1−α/2,X)∪ D̂U(1−α/2,X) < D)

= 1− [PD(D < D̂L(1−α/2,X))+PD(D̂U(1−α/2,X) < D)]

≥ 1− [α/2+α/2] = γ .

The confidence coefficient γ̄ is typically > γ, due to the discrete nature of D

and because the one-sided bounds may not have minimum coverage probability

at the same D.

104



Coverage Probabilities

As in the binomial case we computed coverage probabilities as a function of D for

an example situation, namely for n = 40, N = 400, and γ = .95.

The results are shown on the following slides.

The functions used to produce these plots are D.minimum.coverage.upper,

D.minimum.coverage.lower, and D.minimum.coverage.int.

As pointed out before, there is no guarantee that the actual minimum coverage

probability γ̄ equals the nominal value of γ, although we know γ̄≥ γ.
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Coverage Probabilities for D̂U(.95,x)
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Coverage Probabilities for D̂L(.95,x)
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Coverage Probabilities for [D̂L(.975,x), D̂U(.975,x)]
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Minimum Coverage Probabilities γ̄

γ̄ = .9503 for one-sided bounds, γ̄ = 0.9534 for the intervals.

In the case of one-sided bounds it can be shown that there is a distinct and quite

rich set of γ values for which the minimum coverage probability γ̄ equals γ.

We will show this here for upper bounds.

For each set of integers D? and x? with

0 < PD?+1(X ≤ x?) = α(D?,x?) = α
? < 1

we define γ(D?,x?) = γ? = 1−α?.

We then have D̂U(γ?,x?) = D? and γ̄? = γ?.
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Minimum Coverage Probabilities γ̄ (cont.)

D̂U(γ?,x?) = D? since PD?+1(X ≤ x?) = α
? and PD?(X ≤ x?) > α

? ,

the strict monotonicity property of PD(X ≤ x) with respect to D =⇒ the last >.

Since D̂U(γ?,X) is strictly increasing in X and since D̂U(γ?,x?) = D? we have

PD?+1
(
D? +1 > D̂U(γ?,X)

)
= PD?+1

(
D? ≥ D̂U(γ?,X)

)
= PD?+1 (X ≤ x?) = α

?

and hence

PD?+1
(
D? +1≤ D̂U(γ?,X)

)
= γ(D?,x?) =⇒ γ̄(D?,x?) = γ̄

? = γ
? .
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Confidence Coefficient γ̄ vs. Nominal γ for Upper/Lower Bounds
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Confidence Coefficient γ̄ vs. Nominal γ for Intervals
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Some Comments

In the case of upper/lower bounds the discrepancies between γ and γ̄ appear to be

small, with γ = γ̄ for many γ over the short displayed range [.97, .98].

Thus the discreteness of D does not appear to be a serious issue,

based on the examined case n = 40, N = 400.

For intervals the minimum coverage γ̄ shows much stronger deviations from γ.

This is due to the much wider zigzag swings within the coverage probabilities of

one-sided bounds and the fact that minima may not be attained at the same D

for either one-sided bound.

Keep in mind that we need to distinguish between nominal γ, actual coverage

probability that changes with D and minimum coverage probability γ̄.

γ̄ = γ or γ̄≈ γ for only a few values of γ in the displayed range [.94, .96].
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The Classical Birthday Problem

The classical birthday problem is often presented in elementary probability courses.

The chance that n random persons have birthdays on n different days in the year is

P(D) =
(365)n
365n =

365(365−1) · · ·(365−n+1)
365n

Thus the probability of at least one match is

P(M) = P(Dc) = 1−P(D) = 1− (365)n
365n ≥ .5 for n≥ 23.

This is assumes a non leap year and equal likelihoods of all 365 possible birthdays

for all n persons. Unequal birthday probabilities increase P(M).

A student once asked the following question:

What is the chance of seeing at least one pair of matching or adjacent birthdays?
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Probability of Matching or Adjacent Birthdays

Let A be the event of getting n birthdays at least one day apart. Then we have

P(A) =
(

365−n−1
n−1

)
(n−1)!365

365n

=
(365−2n+1)(365−2n+2) · · ·(365−2n+n−1)

365n−1

365 ways to pick a birthday for person 1. There are 365−n non-birthdays (NB).

Use the remaining n−1 birthdays (B) to each fill one of the remaining 365−n−1

gaps between the non-birthdays,
(365−n−1

n−1
)

ways. That fixes the NB–B pattern.

(n−1)! ways to assigns these birthdays to the remaining (n−1) persons.

The next slide provides a simplifying visualization diagram for the above reasoning,

assuming a year of 20 days and n = 7 birthdays.
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Visualization Diagram
year of N = 20 days and n =  7 birthdays
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P(M) and P(Ac)

n = 14 gives the smallest n for which P(Ac)≥ .5, in fact P(Ac) = .5375.
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Hypergeometric Confidence Bounds with a Birthday Problem Twist

The following problem arose in connection with the Inertial Upper Stage of the
Military Space Program.

http : //www.fas.org/spp/military/program/launch/ius.htm

n = 12 out of N = 200 parts (rocket motors) are to be tested in some form.

It is expected that all tested items will be non-defective. Find D̂U(γ,0).

A ship-set of k = 16 parts is randomly chosen from the population of N

to serve as stage separation motors.

Find lower bound p̂1 for the probability that this ship-set contains ≤ 1 defective.

After addressing this problem it was pointed out that the 16 parts will be arranged

in a circular pattern. All that matters is that no two defective parts be placed

next to each other. Find lower confidence bound p̂2 for the probability that no two

defective parts are placed next to each other.
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Assumptions and Notation

This does not quite match the birthday problem since we cannot have two defective

parts in the same position.

However, we can base probability calculations on a similar counting strategy.

We assume that the n = 12 parts are selected randomly from the population.

The same is assumed for the ship-set of k = 16, where we assume that the

n = 12 tested ones were previously returned to the population.

The k = 16 parts are arranged in a random circular order.

D = # of defective parts in the population of N parts.

X = # of defective items in the tested sample of n = 12. We expect X = 0.
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Approach

Based on X = 0 what kind of upper confidence bounds D̂U(γ,0) can we get?

Recall that D̂U(γ,0) = D ⇔ PD(X = 0) > α = 1− γ and PD+1(X = 0)≤ α.

By choosing the γ values judiciously as γD = 1−PD+1(X = 0), i.e., as high as

possible for each value of D, we can associate the highest possible confidence

level with each D̂(γ,0) = D.

Note that any γ > γD would result in PD+1(X ≤ 0) > 1− γ and thus in

D̂U(γ,0)≥ D+1.

Also note that this choice of γD ensures that γ̄ = γD, as was shown previously.

Upper bound on D =⇒ lower bounds p̂1 and p̂2.
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Confidence Level Options
upper bound confidence levels γD lower bound

D̂U(γD,0) = D n = 12 n = 20 n = 30 n = 40 n = 50 n = 60 p̂1 p̂2

1 0.117 0.190 0.278 0.361 0.438 0.511 1.000 1.000
2 0.170 0.272 0.388 0.490 0.580 0.659 0.994 0.999
3 0.221 0.346 0.481 0.594 0.687 0.763 0.983 0.998
4 0.268 0.413 0.560 0.676 0.767 0.836 0.967 0.995
5 0.313 0.473 0.628 0.743 0.827 0.886 0.948 0.992
6 0.356 0.527 0.685 0.796 0.871 0.921 0.925 0.988
7 0.396 0.576 0.734 0.838 0.905 0.946 0.900 0.984
8 0.434 0.620 0.776 0.872 0.929 0.963 0.873 0.978
9 0.469 0.660 0.811 0.899 0.948 0.974 0.845 0.972
10 0.503 0.696 0.841 0.920 0.962 0.983 0.815 0.966
11 0.534 0.728 0.866 0.937 0.972 0.988 0.784 0.958
12 0.564 0.757 0.888 0.950 0.979 0.992 0.753 0.950
13 0.592 0.783 0.906 0.961 0.985 0.994 0.721 0.942
14 0.618 0.806 0.921 0.969 0.989 0.996 0.690 0.932
15 0.643 0.827 0.934 0.976 0.992 0.997 0.658 0.923
20 0.746 0.904 0.973 0.993 0.998 1.000 0.508 0.867
25 0.821 0.947 0.989 0.998 1.000 1.000 0.377 0.800
30 0.876 0.971 0.996 0.999 1.000 1.000 0.272 0.727
35 0.914 0.985 0.998 1.000 1.000 1.000 0.190 0.649
40 0.942 0.992 0.999 1.000 1.000 1.000 0.130 0.571
42 0.950 0.994 1.000 1.000 1.000 1.000 0.111 0.540
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Interpretation

We can get D̂(γ,0) = 10 with varying confidence levels, depending on the strength

of testing evidence, i.e., for how big a sample of size n we observed 0 failures.

By choosing n higher we can attach higher confidence to the stated bounds p̂1 and

p̂2, provided we still stay with 0 failures among the larger tested sample of size n.

We cannot force 0 failures and the confidence level γ only has meaning in the

context of a random upper bound D̂U(γ,X).

Using this approach we pretend to be clairvoyant in saying X = 0 will be observed.

This method is useful as a planning tool when weighing confidence against the cost

of testing, in view of expected results (X = 0).
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Lower Bound p̂1

Let Y denote the random number of defectives in the shipset sample of k = 16.

Then the probability of seeing at most 1 defective in that sample is

Q(D) = PD(Y ≤ 1) = PD(Y = 0)+PD(Y = 1) =

(D
0
)(N−D

k−0
)(N

k
) +

(D
1
)(N−D

k−1
)(N

k
) .

Since this probability decreases with increasing D we can take p̂1 = Q(D̂U(γ,0))

as lower bound on Q(D) with same confidence level as was associated with D̂U(γ,0).
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Lower Bound p̂2

To motivate the lower bound p̂2 we need to derive a formula for the probability that

no two defective parts will be placed next to each other in a circular arrangement

of k = 16 parts. This probability can be expressed as follows

Q?(D) = PD(Y = 0)+PD(Y = 1)+PD(Y = 2)P(A2)

+PD(Y = 3)P(A3)+ . . .+PD(Y = 8)P(A8) ,

where Ay is the event that no two defective parts will be placed next to each other

when y defective parts and k− y non-defective parts are arranged randomly in a

circular pattern.

We have PD(Y = y)=

(D
y
)(N−D

k−y
)(N

k
) and ψ(y)= P(Ay)=

(k−y
y
)(k−1

y
) .

with ψ(y)↘ in y and

Q?(D) = ED (ψ(Y ))↘ in D =⇒ p̂2 = Q?(D̂U(γ,X))
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ψ(y) = P(Ay)

Label the y defective parts F1, . . . ,Fy and the m = k− y non-defective parts by

G1, . . . ,Gm. There are k! ways of arranging these k parts in a circular pattern, all

equally likely. How many of these patterns have no two F ’s next to each other?

G1 can be in any of the k places. We can arrange the remaining m−1 G’s in

(m−1)! ways to form some circular sequence order of G’s.

Next we place the y F ’s between the G’s so that only one F goes into any one gap.

There are
(m

y
)

ways of designating the gaps to receive just one F each.

There are y! ways of arranging the order of the y F ’s.

=⇒ P(Ay) =
k(k− y−1)!

(k−y
y
)
y!

k!
=

(k−y
y
)(k−1

y
) .

Note that P(A0) = P(A1) = 1 and P(Ay) = 0 for y > k− y.
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ψ(y) = P(Ay)↘

P(Ay+1)
P(Ay)

=

(k−y−1
y+1

)/(k−1
y+1
)

(k−y
y
)/(k−1

y
)

=
(k− y−1)! (y+1)!(k− y−2)! y!(k−2y)! (k−1)!

(y+1)!(k−2(y+1))! (k−1)! (k− y)! y!(k− y−1)!

=
(k−2y)(k−2y−1)
(k− y)(k− y−1)

< 1

⇐⇒ (k−2y)(k−2y−1) < (k− y)(k− y−1)

⇐⇒ −2k +3y+1 < 0

which is true for y = 1, . . . ,k/2.
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Q?(D+1) = ED+1(ψ(Y ))≤ ED(ψ(Y )) = Q?(D)

pD+1(y)= PD+1(Y = y)=

(D+1
y
)(N−D−1

k−y
)(N

k
) <

(D
y
)(N−D

k−y
)(N

k
) = pD(y) ⇐⇒ y <

k(D+1)
N +1

.

Let A = {y : PD+1(Y = y) < PD(Y = y)} and B = {y : PD+1(Y = y) > PD(Y = y)}

A < k(D+1)/(N+1)< B. ψ(y)↘ =⇒ a = infA ψ(y)≥ supB ψ(y)= b =⇒

ED+1[ψ(Y )]−ED[ψ(Y )] = ∑
y∈A

ψ(y)(pD+1(y)− pD(y))+ ∑
y∈B

ψ(y)(pD+1(y)− pD(y))

≤ a ∑
y∈A

(pD+1(y)− pD(y))+b ∑
y∈B

(pD+1(y)− pD(y))

= (b−a) ∑
y∈B

(pD+1(y)− pD(y))≤ 0

since

0 = ∑
y

(pD+1(y)− pD(y)) = ∑
y∈A

(pD+1(y)− pD(y))+ ∑
y∈B

(pD+1(y)− pD(y))

and thus ∑
y∈A

(pD+1(y)− pD(y)) =− ∑
y∈B

(pD+1(y)− pD(y)) .
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Interpretation of Tabulated Confidence Levels

How do we interpret the results in the previous Table in relation to p̂1 and p̂2?

For the originally proposed sample size n = 12 for testing, we can be 82.1%

confident that D≤ 25 and that the probability of having less than two defective

items in the ship-set of k = 16 is at least .377, not a very happy state of affairs.

This is based on the assumption that we see indeed no defective items

in the sample of n = 12.

After qualifying that the more than one defective parts only matter when at least

two are adjacent, we can be 82.1% confident that the probability of seeing no such

adjacency is at least .80, which may still not be satisfactory.
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p1p2.hat for Computing p̂1 & p̂2

> p1p2.hat(0,40,.950,200,16)
$D.U
upper

12

$D.UX
upper

12

$QD
[1] 0.7528636

$QD.star
[1] 0.9502322

$gam.bar
minimum

0.9503716
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Adjusting γ

When changing γ to a value that comes closer to γ̄ = 0.9503716 we get

> p1p2.hat(0,40,.9503716,200,16)

. . . everything else staying the same

$gam.bar

minimum

0.9503716

=⇒ the highest possible confidence level γ = γ̄ for that value of D̂U(0,γ)= D.U = 12.
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What if X = x > 0?

In that case the upper bound D̂U(γ,x) will increase.

p̂1 = Q(D̂U(γ,x)) and p̂2 = Q?(D̂U(γ,x)) will decrease.

However, we should not return defective items into the population.

=⇒ N −→ N′ = N− x and D−→ D′ = D− x

Should use D̂′U(γ,x) = D̂U(γ,x)− x when plugging into Q(D) and Q?(D)

i.e., use p̂1 = Q(D̂′U(γ,x)) and p̂2 = Q?(D̂′U(γ,x))
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Example with X = 1
> p1p2.hat(1,40,.9503716,200,16)
$D.U
upper

20

$D.UX
upper

19

$QD
[1] 0.5335137

$QD.star
[1] 0.8776381

$gam.bar
minimum

0.9503716
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Final Warning

X = 1 results in lower confidence bounds for Q(D) and Q?(D).

Do not trade off some of the confidence level (lowering it)

to increase the lower bounds p̂1 or p̂2.

This would negate the theoretical underpinnings of confidence bounds.

The confidence level should not become random (a function of X ).

This is no empty warning. I have experienced this kind of ingenuity from engineers.

Webster’s: “engineer” and “ingenuity” have the same Latin origin: ingenium.
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Comparing Two Poisson Means

Assume X ∼ Poisson(λ) and Y ∼ Poisson(µ) are independent.

We are interested in confidence bounds for ρ = λ/µ.

If these Poisson distributions represent approximations of binomials for small

“success” probabilities π1 and π2, i.e., λ = n1π1 and µ = n2π2, then confidence

bounds for the ratio ρ = λ/µ = (n1π1)/(n2π2) are equivalent to confidence bounds

for κ = π1/π2, since n1 and n2 are typically known.

The classical method for getting confidence bounds for ρ is to view Y in the context

of the total observed count X +Y , i.e., consider the conditional distribution of Y

given T = X +Y = t
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Conditional Distribution of Y Given X +Y = t

P(Y = k|X +Y = t) =
P(Y = k,X +Y = t)

P(X +Y = t)
=

P(Y = k,X = t− k)
P(X +Y = t)

=
P(Y = k)P(X = t− k)

P(X +Y = t)

=
[exp(−µ)µk]/k!× [exp(−λ)λt−k]/(t− k)!

exp(−[µ+λ])[µ+λ]t/t!

=
(

t
k

)
pk(1− p)t−k ,

where p = µ/(λ+µ) = 1/(1+ρ).

Here we used the fact that X +Y has a Poisson distribution with mean λ+µ.

135



X +Y ∼ Poisson(λ+µ)

P(X +Y = t) =
t

∑
i=0

P(X = i ∩ Y = t− i)

=
t

∑
i=0

P(X = i)×P(Y = t− i)

=
t

∑
i=0

exp(−λ)λi

i!
× exp(−µ)µt−i

(t− i)!

=
exp(−[λ+µ])(λ+µ)t

t!

t

∑
i=0

(
t
i

)(
λ

λ+µ

)i( µ
λ+µ

)t−i

=
exp(−[λ+µ])(λ+µ)t

t!
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Confidence Bounds for ρ

The conditional distribution of Y given X +Y = t is binomial, n = t and p = 1
1+ρ

We write D(Y | X +Y = t)∼ Binomial(t, p = 1/(1+ρ))

ρ = 1/p−1 is strictly decreasing in p.

Confidence bounds and intervals translate easily to bounds and intervals for ρ.

ρ̂L(γ,k, t) =
1

p̂U(γ,k, t)
−1 =

1
qbeta(γ,k+1,t−k)

−1 .

ρ̂U(γ,k, t) =
1

p̂L(γ,k, t)
−1 =

1
qbeta(1− γ,k,t−k+1)

−1

(ρ̂L([1+ γ]/2,k, t), ρ̂U([1+ γ]/2,k, t))=
(

1
p̂U([1+ γ]/2,k, t)

−1,
1

p̂L([1+ γ]/2,k, t)
−1
)

=
(

1
qbeta([1+ γ]/2,k+1,t−k)

−1,
1

qbeta([1− γ]/2,k,t−k+1)
−1
)
137



Confidence Bounds for π1/π2 (small πi)

Assume X ∼ Binomial(n1,π1), Y ∼ Binomial(n2,π2) are independent with πi ≈ 0.

Using Poisson approximations for both binomial distributions

X ∼ Poisson(λ = n1π1) and Y ∼ Poisson(µ = n2π2)

and noting ρ = (n1π1)/(n2π2) = κ×n1/n2 or κ = π1/π2 = (n2/n1)×ρ

confidence bounds and intervals for ρ convert to corresponding ones for κ = π1/π2

by multiplying the bounds or interval end points for ρ by n2/n1.

138



A Fictitious Example
Among Modern Wide Body Airplanes we had 0 accidents (substantial damage,

hull loss, or hull loss with fatalities) during 11.128×106 flights. Among Modern

Narrow Body Airplanes we had 5 such accidents during 55.6×106 flights.

We have Y = 5 and T = X +Y = t = 0+5, n1 = 11.128×106 and n2 = 55.6×106.

=⇒ p̂U(.95,5,5) = 1 and thus κ̂L(.95,5,5) =
n2
n1
×
(

1
1
−1
)

= 0

p̂L(.95,5,5) = qbeta(.05,5,5−5+1) = (1− .95)1/5 = 0.5492803

=⇒ κ̂U(.95,5,5) =
n2
n1
×
(

1
0.5492803

−1
)

= 4.099871

Can view 4.099871 as a 95% upper confidence bound for π1/π2. Since this bound
is above 1, one cannot rule out that the rates in the two groups may be the same.

This is not surprising since for a fifth of the exposures one might have expected to
see one such accident in the second group. That is not all that different from zero
in the realm of counting rare events.
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Comparing Hull Loss Rates across Airplane Models

Was the Concorde crash significant compared to experiences of other airplanes?

We made two comparisons, comparing it with the MD11 and the B767.

The MD11 had X = 5 hull losses and a rate of 4.59 per 106 departures

the Concorde had Y = 1 such loss and a rate of 12.02 per 106 departures.

=⇒ n1 = 1089325 and n2 = 83195 departures for MD11 and Concorde, resp.

=⇒ (.04273,18.06) as a 95% confidence interval for κ = π1/π2 which contains

π1/π2 = 1 as a possible value.

Thus one cannot conclude that the MD11 and the Concorde had sufficiently

different experiences.
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Comparing Hull Loss Rates across Airplane Models

The confidence intervals could be quite conservative in their coverage probabilities
based on the fact that only X +Y = 6 accidents were involved in this comparison.

Since we are mostly interested in the question π1/π2 < 1 we should focus more on

the upper bound for π1/π2.

The 95% upper confidence bound for π1/π2 is 8.896 still > 1,

However, here we know that the minimum coverage probability is .95, although its

coverage behavior is coarsely fluctuating.

Since the upper bound for π1/π2 is based on the lower bound p̂L(γ,Y,6) for

p = 1/(1+ρ) = 1/(1+n1π1/(n2π2)) we show on the next slide the coverage

behavior of this lower bound and indicate by vertical lines positions for various

values of π1/π2.
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Coverage Probabilities
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Comparing Hull Loss Rates across Airplane Models

The B767 had X = 3 hull losses and a rate of .32 per 106 departures.

This translates into n1 = 9375000 departures for the B767.

Here our 95% upper bound for π1/π2 is .6876

This is clearly below 1 and thus indicates a difference in experience

between the B767 and the Concorde, in favor of the B767.
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Concorde Takeoff at JFK
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