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Sources & Resources

In this section I make use of some of the material from Tim Hesterberg’s web site.

http://www.insightful.com/Hesterberg/bootstrap/

There you also find software and instructions for downloading

free student versions of Splus.

As background reading I recommend Tim Hesterberg’s Chapter 18 on

”Bootstrap Methods and Permutation Tests”

from The Practice of Business Statistics

by Hesterberg, Monaghan, Moore, Clipson, and Epstein (2003),

W.H. Freeman and Company, New York.

http://bcs.whfreeman.com/pbs/cat_160/PBS18.pdf
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A Concrete Example

We have a random sample X = (X1, . . . ,Xn) from an unknown cdf F with mean µ.

We have an estimator µ̂ = X̄ = ∑
n
i=1 Xi/n for µ.

Due to variability from sample to sample there will be variability in X̄ .

With X̄ as estimate for µ we should also quantify the uncertainty in X̄ ,

e.g., its standard error SEF(X̄) = σF(X̄), and any possible bias bF = EF(X̄)−µ.

If we could produce similar such samples ad infinitum, we could obtain

the sampling distribution of X̄ , get its SE(X̄) and bias b.

Unfortunately we don’t have that luxury. Enter the Bootstrap, (Efron, 1978).
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The Sampling Distribution of X̄

F −→



−→ X1 → X̄1

−→ X2 → X̄2

−→ X3 → X̄3
... ... ... ...

−→ XB → X̄B


→

For B = ∞

(or B very large) we get the

(≈) sampling distribution of X̄

D(X̄)

Here F denotes the sampled distribution with θ(F) = µF as parameter of interest.

Xi is the ith sample of size n from F .

X̄i is the estimator θ̂ = X̄ computed from the sample Xi.
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The Bootstrap Distribution of X̄

Use the bootstrap distribution of X̄ as proxy/estimate for the sampling distribution.

A bootstrap sample X? = (X?
1 , . . . ,X?

n ) is obtained by sampling the original sample

X = (X1, . . . ,Xn) with replacement n times.

Same as getting a random sample X? of size n from the empirical cdf F̂n of X.

Calculate the bootstrap sample mean X̄? for this bootstrap sample X?,

and repeat this many times, say B = 1000 or 10000 times, getting X̄?
1 , . . . , X̄?

B.

If we did this B = ∞ times, we would get the full bootstrap distribution of X̄?,

as generated from X or F̂n . As it is, for B = 1000, we get a good estimate of it,

calling it still the bootstrap distribution of the sample mean.
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The Bootstrap Sampling Distribution of X̄?

F̂n−→



−→ X?
1 → X̄?

1

−→ X?
2 → X̄?

2

−→ X?
3 → X̄?

3
... ... ... ...

−→ X?
B → X̄?

B


→

For B = ∞

(or B very large) we get the

(≈) bootstrap sampling distribution of X̄

D(X̄?)

F̂n = the estimated distribution with corresponding parameter θ(F̂n) = µF̂n
= X̄ .

X?
i is the ith bootstrap sample of size n from F̂n.

X̄?
i is the estimator θ̂? = X̄? computed from the bootstrap sample X?

i .
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The Bootstrap Approximation Step

Note the complete parallelism between the sampling distribution concept

and the bootstrap sampling distribution.

If the estimated distribution F̂n is close to the originally sampled distribution F ,

we expect these two sampling distributions to be reasonably close to each other.

Thus take one as approximation for the other, i.e.,

D(X̄?) (known) ≈ D(X̄) (unknown).
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Verizon Repair Times (Not Normal!)

1664 Verizon Repair Times
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A Bootstrap Sample of Verizon Repair Times

1664 Verizon Repair Times (Bootstrap Sample)
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A Bootstrap Sample of Verizon Repair Times

1664 Verizon Repair Times (Bootstrap Sample)
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A Bootstrap Sample of Verizon Repair Times

1664 Verizon Repair Times (Bootstrap Sample)
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What Do the Last 3 Bootstrap Samples Suggest?

The last 3 bootstrap samples show histograms very similar in character

to the originally sampled histogram of Verizon repair times.

The bootstrap sample histograms don’t stray far afield,

at least not for large n (n = 1664). F̂?
n ≈ F̂n.

Similarly, histograms for original samples should not stray far afield either,

at least not for the same large n (n = 1664). F̂n ≈ F .

The amount of stray is mainly a function of n.

Since we use the same n in either case, the induced variation in X̄?

should serve as good approximation to the induced variation in X̄ .
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Bootstrap Distribution of Means (u Normal!)

Bootstrap Distribution for B = 1000
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Bootstrap Distribution of Means

Bootstrap Distribution for B = 10000
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The R Code for Previous Slides
verizon.boot.mean=function (dat=verizon.dat,B=1000){

n=length(dat)

Xbar=mean(dat)

out0=hist(dat,breaks=seq(0,200,1),main=paste(n,

"Verizon Repair Times"),

xlab="hours",col=c("blue","orange"))

abline(v=Xbar,lwd=2,col="purple")

text(1.1*Xbar,.5*max(out0$counts),substitute(bar(X)==xbar,

list(xbar=format(signif(Xbar,4)))),adj=0)

readline("hit return\n")

boot.mean=NULL

for(i in 1:B){

boot.mean=c(boot.mean,mean(sample(dat,n,replace=T)))}

out=hist(boot.mean,xlab=expression(bar(X)ˆ" *"),

probability=T,nclass=round(sqrt(B),0),col=c("blue","orange"),

main=paste("Bootstrap Distribution for B =",B))

mu.boot=mean(boot.mean)
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The R Code for Previous Slides (cont.)

mu.theoryFn=Xbar

SE.bootXbar=sqrt(((B-1)/B)*var(boot.mean))

SE.theoryXbar=sqrt(((n-1)/n)*var(dat)/n)

x=seq(mu.boot-4*SE.bootXbar,mu.boot+4*SE.bootXbar,length.out=200)

y=dnorm(x,mu.boot,SE.bootXbar)

lines(x,y,lwd=2,col="red")

abline(v=mu.boot,lwd=2,col="green")

abline(v=mu.theoryFn,lwd=2,col="purple")

segments(mu.boot,-.01*max(out$density),mu.boot+SE.bootXbar,

-.01*max(out$density),col="green",lwd=2)

segments(mu.boot,-.02*max(out$density),mu.boot+SE.theoryXbar,

-.02*max(out$density),col="purple",lwd=2)

legend(mu.boot+SE.bootXbar,.9*max(out$density),

c("Bootstrap Mean & SE","Theory Mean & SE"),

col=c("green","purple"),lty=c(1,1),lwd=c(2,2),bty="n")

}
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The Bootstrap Distribution is ≈ Normal

In spite of the rather non-normal distribution of repair times

the bootstrap distribution looks very normal.

This is not surprising since the sample mean is the sum of many terms,

all with equal variance

X̄ =
n

∑
i=1

(Xi/n) and
max{var(X1/n), . . . ,var(Xn/n)}

var(X1/n)+ . . .+var(Xn/n)
=

σ2
X

nσ2
X

=
1
n

=
1

1664

=⇒ CLT =⇒ normal sampling distribution for X̄ .

The CLT should work equally well for the bootstrap X̄? distribution

The histograms confirm this.

16



Theory Mean of X̄ and X̄?

Theory =⇒ for a random sample X1, . . . ,Xn from some cdf F with mean µF

the mean or expectation of the sample mean X̄ is µF ,

EF(X̄) = EF

(
∑

n
i=1 Xi

n

)
=

∑
n
i=1 EF(Xi)

n
=

n ·µF
n

= µF = µF(X) = EF(X)

The mean of the X̄ sampling distribution = X population mean.

We say that X̄ is an unbiased estimator of µF .

Same theory says: X̄? is an unbiased estimator of the mean of F̂n, i.e., of X̄

for random samples X?
1 , . . . ,X?

n from F̂n. EF̂n
(X̄?) = EF̂n

(X?) = X̄

The random variable X? takes on the values X1, . . . ,Xn with probability 1/n each.
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Theory Variance of X̄ and X̄?

σ
2
F(X̄) = varF(X̄) = varF

(
∑

n
i=1 Xi

n

)
=

1
n2

n

∑
i=1

varF(Xi)

=
1
n2 ·n ·varF(X) =

σ2
F(X)
n

This holds for any distribution F for X with E(X2) < ∞, thus also for F̂n of X?, i.e.,

varF̂n
(X̄?) =

varF̂n
(X?)

n
=

σ2
F̂n

(X?)

n
where

varF̂n
(X?) = EF̂n

(X?−EF̂n
(X?))2 =

1
n

n

∑
i=1

(Xi− X̄)2 with EF̂n
(X?) = X̄

The random variable X? takes on the values X1, . . . ,Xn with probability 1/n each.
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Theory SE of X̄ and X̄?

Thus the standard error of X̄ is SE(X̄) = σF(X̄) = σF(X)/
√

n.

SE(X̄?) = σF̂n
(X̄?) =

σF̂n
(X?)
√

n
=

1√
n
×

√
n

∑
i=1

(Xi− X̄)2/n =
σ̂F√

n

The SE of the X̄? bootstrap distribution = estimated SE of X̄ sampling distribution.

=̂ X̄? bootstrap distribution = estimated X̄ sampling distribution

We can get SE(X̄?) directly from the X̄? bootstrap distribution as

SE(X̄?) u SEboot,X̄ =

√√√√1
B

B

∑
i=1

(
X̄?

i − X̄?
)2

with X̄? =
1
B

B

∑
j=1

X̄?
j

without knowing the standard error formula for the mean, i.e., SE(X̄) = σF(X)/
√

n.

Here u becomes = as B−→ ∞. Law of large numbers. We can force B large!

19



What Do Bootstrap Distribution Histograms Show?

We can check the unbiasedness property of the X̄ estimator by comparing

the mean of the bootstrap distribution for X̄?, indicated by a green vertical line,

with the theoretical mean under F̂n, namely X̄ , indicated by a purple vertical line.

The mean of the bootstrap distribution for X̄? is just the average of all B bootstrap

estimates X̄?
1 , . . . , X̄?

B.

This check can only be performed while sampling from F̂n, but F̂n ≈ F ,

and thus unbiasedness can be expected to hold for sampling from F as well.

The reason for not getting an exact match of theory and bootstrap mean

in the previous histogram is that we have B = 1000 and not B = ∞.

Good approximation for B = 1000, even better for B = 10000!
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What Does the Bootstrap Do for Us?

σ̂/
√

n is also called the substitution estimate of σ/
√

n, the standard error of X̄ .

This requires that we know the formula for this standard error.

As pointed out previously, SEboot,X̄ u SE(X̄?) = σ̂/
√

n where SEboot,X̄ can be

calculated directly from the X̄?
1 , . . . , X̄?

B without knowing the above SE formula σ/
√

n.

Below the bootstrap distribution histograms the value for SEboot,X̄ is indicated as a

green line segment while SE(X̄?) = σ̂√
n is indicated by the purple line segment.

Agreement is quite good for large B.
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What is the Big Deal?

The unbiasedness property E(X̄) = µX and the formula σ/
√

n for SE(X̄)

are known well enough and quite ingrained.

Why go through the massive resampling and recalculation of bootstrap estimates?

When using the natural plug-in estimate θ̂ = θ(F̂n)

for other distribution parameters θ(F), such formulas are not so easy to come by.

The next set of histograms illustrate this with the two estimators S2 and S, where

S2 =
1

n−1

n

∑
i=1

(Xi− X̄)2
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Mean and SE of S2 and S
It is well established that S2 is unbiased, i.e., E(S2) = σ2

F = σ2.

However, S is biased and an explicit formula for EF(S) is not available.

We only have the following approximate formula

(from a 2-term Taylor expansion of S =
√

S2 around σ =
√

σ2 )

EF(S)≈ σ− 1
8

1
σ3 varF(S2)

With some significant effort one gets

SEF(S2) =
√

varF(S2) =
√

EF(S2−σ
2
F)2 =

√
µ4(F)−σ4

n
+

2σ4

n(n−1)

with µ4(F) = EF(X−µ)4 and again by a 1-term Taylor expansion

SEF(S) =
√

varF(S)≈
√

varF(S2)
1

4σ2 =
SEF(S2)

2σ
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1- and 2-Term Taylor Expansions

For a smooth function f we have

f (x)≈ f (µ)+(x−µ) f ′(µ) and f (x)≈ f (µ)+(x−µ) f ′(µ)+
1
2
(x−µ)2 f ′′(µ)

For f (x) =
√

x we have f ′(x) = 1
2
√

x and f ′′(x) =− 1
4x3/2 .

S =
√

S2 = f (S2) ≈ f (σ2)+(S2−σ
2) f ′(σ2)+

1
2
(S2−σ

2)2 f ′′(σ2)

E(S) = E
(√

S2
)

= E f (S2) ≈ f (σ2)+0+
1
2

f ′′(σ2)E(S2−σ
2)2 = σ− var(S2)

8σ3

var(S) = var
(√

S2
)

= var( f (S2)) ≈
(

f ′(σ2)
)2

var(S2) =
var(S2)

4σ2
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Covariance Rules

cov(X ,Y )= E((X−µX)(Y−µY ))= E(XY )−E(X)E(Y ) =⇒ cov(X ,X)= var(X)

For X and Y independent, i.e., f (x,y) = fX(x) fY (y), we have

cov(X ,Y ) =
Z Z

(x−µX)(y−µY ) fX(x) fY (y)dxdy

=
Z

(x−µX) fX(x)dx
Z

(y−µY ) fY (y)dy = 0 ·0 = 0

cov

(
∑
i

Xi,∑
j

Y j

)
= E

((
∑
i

Xi−E(∑
i

Xi)

)(
∑

j
Y j−E(∑

j
Y j)

))

= E

(
∑
i
[Xi−E(Xi)]∑

j
[Y j−E(Y j)]

)
= ∑

i
∑

j
E
(
[Xi−E(Xi)][Y j−E(Y j)]

)
= ∑

i
∑

j
cov(Xi,Y j)
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Alternate Sample Variance Formula
S2 =

1
n−1

n

∑
i=1

(Xi− X̄)2 =
1

2n(n−1) ∑
i 6= j

(Xi−X j)2 =
1

2n(n−1)

n

∑
i=1

n

∑
j=1

(Xi−X j)2

n

∑
i=1

n

∑
j=1

(Xi−X j)2 =
n

∑
i=1

n

∑
j=1

(Xi− X̄− (X j− X̄))2

=
n

∑
i=1

n

∑
j=1

[
(Xi− X̄)2 +(X j− X̄)2−2(Xi− X̄)(X j− X̄)

]
=

n

∑
i=1

n

∑
j=1

(Xi− X̄)2 +
n

∑
i=1

n

∑
j=1

(X j− X̄)2−2
n

∑
i=1

n

∑
j=1

(Xi− X̄)(X j− X̄)

= n ·
n

∑
i=1

(Xi− X̄)2 +n ·
n

∑
j=1

(X j− X̄)2−2
n

∑
i=1

(Xi− X̄)
n

∑
j=1

(X j− X̄)

= 2n ·
n

∑
i=1

(Xi− X̄)2 q.e.d.

=⇒ E(S2) =
E
(

∑i 6= j(Xi−X j)2
)

2n(n−1)
=

∑i6= j E(Xi−X j)2

2n(n−1)
=

2n(n−1)σ2

2n(n−1)
= σ

2
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Some Significant Effort

var(S2) =
1

4n2(n−1)2var

∑
i6= j

(Xi−X j)2

 w.l.o.g. assume E(Xi) = 0

var

∑
i 6= j

(Xi−X j)2

 = cov

∑
i6= j

(Xi−X j)2, ∑
k 6=`

(Xk−X`)
2


= ∑

i 6= j
∑
k 6=`

cov
(
(Xi−X j)2,(Xk−X`)

2
)

= n(n−1)(n−2)(n−3)cov
(
(X1−X2)

2,(X3−X4)
2
)

+4n(n−1)(n−2)cov(
(
(X1−X2)

2,(X1−X3)
2
)

+2n(n−1)cov(
(
(X1−X2)

2,(X1−X2)
2
)

Note that n(n−1)(n−2)(n−3)+4n(n−1)(n−2)+2n(n−1) = n2(n−1)2
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Special Terms 1

cov
(
(X1−X2)

2,(X3−X4)
2
)

= 0 by independence

cov
(
(X1−X2)

2,(X1−X3)
2
)

= E
(
(X1−X2)

2(X1−X3)
2
)
−E(X1−X2)

2E(X1−X3)
2

E(X1−X2)
2 = E(X2

1 +X2
2−2X1X2)= E(X2

1 )+E(X2
2 )−2E(X1X2)= σ

2+σ
2 ·0·0 = 2σ

2

E
(
(X1−X2)

2(X1−X3)
2
)

= E
(
(X2

1 +X2
2 −2X1X2)(X

2
1 +X2

3 −2X1X3)
)

= E
(

X4
1 +X2

1 X2
3 −2X3

1 X3 +X2
2 X2

1 +X2
2 X2

3 −2X2
2 X1X3−2X3

1 X2−2X1X2X2
3 +4X2

1 X2X3

)
= µ4+σ

4+0+σ
4+σ

4−0−0−0+0 = µ4+3σ
4

=⇒ cov
(
(X1−X2)

2,(X1−X3)
2
)

= µ4 +3σ
4− (2σ

2)2 = µ4−σ
4
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Special Terms 2

cov(
(
(X1−X2)

2,(X1−X2)
2
)

= E
(
(X1−X2)

4
)
−
(

E(X1−X2)
2
)2

= E
(

X4
1 −4X3

1 X2 +6X2
1 X2

2 −4X1X3
2 +X4

2

)
− (2σ

2)2

= µ4−0+6σ
2
σ

2−0+µ4−4σ
4 = 2µ4 +2σ

4

var

∑
i6= j

(Xi−X j)2

 = 4n(n−1)(n−2)[µ4−σ
4]+2n(n−1)[2µ4 +2σ

4]

= 4n(n−1)[(n−2)(µ4−σ
4)+µ4 +σ

4]

= 4n(n−1)[(n−1)(µ4−σ
4)− (µ4−σ

4)+µ4 +σ
4]

= 4n2(n−1)2

[
µ4−σ4

n
+

2σ4

n(n−1)

]

=⇒ var(S2) =
µ4−σ4

n
+

2σ4

n(n−1)
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Bootstrap Distribution of S?2(u Normal!)
Bootstrap Distribution for B = 1000
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Bootstrap Distribution of S?2

Bootstrap Distribution for B = 10000
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Bootstrap Distribution of S?(u Normal!)
Bootstrap Distribution for B= 1000
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Bootstrap Distribution of S?

Bootstrap Distribution for B= 10000
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Bootstrap Distributions ≈ Normal
Again we note the remarkable normality of these bootstrap distributions.

We can think of S and S2 being influenced by all the Xi in diminishing capacity

as n gets large. Note the Xi/n and X2
i /n terms in

S2 =
n

n−1

n

∑
i=1

(Xi−X̄)2/n =
n

n−1
∑

n
i=1 X2

i −nX̄2

n
=

n
n−1

 n

∑
i=1

X2
i /n−

(
n

∑
i=1

Xi/n

)2


This suggests linearization, i.e., approximate S2 and S by linear functions of the Xi

and X2
i and invoke the CLT.

W.l.o.g. µ = E(Xi)= 0⇒V = ∑
n
i=1 X2

i /n≈N (σ2,(µ4−σ4)/n) & X̄ ≈N (0,σ2/n).

X̄2 is negligible against V =⇒ S2 ≈V ≈N (σ2,(µ4−σ4)/n).

By a 1-term Taylor expansion of f (S2) =
√

S2 = S around σ2

=⇒ S−σ =
√

S2−
√

σ
2 ≈ 1

2
√

σ2
(S2−σ

2)≈N (0,(µ4−σ
4)/n)/(4σ

2))
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Not All Bootstrap Distributions are Normal

The above linearization argument is reasonable in many situations, because

reasonable estimates θ̂ tend to be consistent, i.e., close to θ as n gets large.

If θ̂≈N (θ,τ2/n) then f (θ̂)≈N ( f (θ),( f ′(θ))2τ2/n) for smooth functions f .

However, we do not always get approximate normality for the bootstrap distribution

of an estimator θ̂.

A good example is the sample median X̂ .
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Verizon Repair Data with Median

1664 Verizon Repair Times
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Bootstrap Distribution of Medians

Bootstrap Distribution for B = 1000
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Bootstrap Distribution of Medians

Bootstrap Distribution for B = 10000
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Bootstrap Distribution of Medians

Bootstrap Distribution for B = 1e+05
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What Happened to Normality?

The sample median is the average of the two middle observations when n is even.

In a bootstrap sample X?
1 , . . . ,X?

n theses two middle observations mostly come

from few observations in the middle of the original sample X1, . . . ,Xn.

This is a small and very discrete set of values =⇒ ragged bootstrap distribution.

Theorem: The sample median has an approximate normal distribution provided

the cdf F from which the sample is drawn has F ′(m) > 0 near the median m of F .

Proof idea: X̂ ≤ x ⇐⇒ Bn(x) = #{Xi≤ x} ≥ (n+1)/2, Bn∼ binomial≈ normal.

However, our bootstrap sample is drawn from F̂n, a step function, not smooth!
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Approximate Normality of Sample Median X̂
Let F(m) = 1/2, i.e., m = population median and assume that F ′(m) > 0 exists.

P(
√

n(X̂−m)≤ x) = P
(

X̂ ≤ m+
x√
n

)
= P

(
Bn

(
m+

x√
n

)
≥ n+1

2

)

= P
(

Bn

(
m+

x√
n

)
−n ·F

(
m+

x√
n

)
≥ n ·

(
1
2
−F

(
m+

x√
n

))
+

1
2

)
Write Bn = Bn(m+x/

√
n) and pn = F(m+x/

√
n) and note that the CLT

=⇒ (Bn−npn)/
√

npn(1− pn)≈ Z ∼N (0,1). Further pn → 1/2 and

1
2
− pn =

1
2
−F

(
m+

x√
n

)
= F(m)−F

(
m+

x√
n

)
≈−F ′(m) · x/

√
n

n(.5− pn)+ .5√
npn(1− pn)

≈−2F ′(m)x as n→ ∞ and

P(
√

n(X̂−m)≤ x)≈ P
(
Z ≥−2F ′(m)x

)
= P

(
Z ≤ 2F ′(m)x

)
=⇒

√
n(X̂−m)≈N (0,1/(2F ′(m))2) or X̂ ≈N (m,1/(2

√
nF ′(m))2)
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Sample Median for Weibull Samples

Here we generalize the bootstrap concept to the parametric bootstrap.

We have a sample of size n from a Weibull(α,β) distribution W (α,β) with cdf

Fα,β(x) = 1− exp
(
−
( x

α

)β
)

for x > 0 , α > 0 , β > 0 .

We use the following two quantile estimates

X̂ = median(X1, . . . ,Xn) = x̂.5 and x̂p0 with p0 = 1−exp(−1) = .6321 .

Note that the target quantiles are m = median(X) = α(− log(.5))1/β and xp0 = α

from which derives the following expression β = log(− log(.5))/(log(m)− log(α))

From these quantile estimates we have as estimates for α and β

α̂ = x̂p0 and β̂ =
log(− log(.5))

log(X̂)− log(x̂p0)
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Parametric Bootstrap Weibull Samples

The above estimates α̂ and β̂ define an estimated Weibull distribution F̂ = W (α̂, β̂)

from which we can obtain bootstrap random samples of size n, i.e., X?
1 , . . . ,X?

n .

Think of F̂ as having the same role as our previous F̂n, which is known as the

nonparametric maximum likelihood estimator of F , hence nonparametric bootstrap.

For each such bootstrap sample calculate X̂?.

Repeating this B = 1000 or more times we get a bootstrap distribution for X̂?.

Since we are sampling from a smooth cdf (Weibull) we can expect ≈ normality

from the previously stated theorem, see next few slides.
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Weibull Sample, n = 50
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median((X)) == 55.97
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Parametric Bootstrap Distribution of Medians (Weibull)

Bootstrap Distribution for B = 1000
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Parametric Bootstrap Distribution of Medians (Weibull)

Bootstrap Distribution for B = 10000
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Estimation Uncertainty

The bootstrap distribution of X̄? is well approximated by a normal distribution,

although the sampled population was far from normal. Due to CLT!

Similarly, the CLT =⇒ the sampling distribution of X̄ ≈N (µ,σ2/n).

=⇒ P
(
|X̄−µ| ≤ z1−α/2 σ/

√
n
)
≈ 1−α = γ

=⇒ γ = 1−α ≈ P
(

X̄− z1−α/2 σ/
√

n≤ µ≤ X̄ + z1−α/2 σ/
√

n
)

≈ P
(

X̄− z1−α/2 s/
√

n≤ µ≤ X̄ + z1−α/2 s/
√

n
)

≈ P
(

X̄− tn−1,1−α/2 s/
√

n≤ µ≤ X̄ + tn−1,1−α/2 s/
√

n
)

The first ≈ invokes the CLT, the second ≈ is due to replacing σ by s, and the

third ≈ replaces z1−α/2 by tn−1,1−α/2 to adjust for the previous ≈ by analogy with

Student-t confidence intervals, to adjust for not so large n.
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The Bootstrap Step

Note that in the approximate confidence interval[
X̄− tn−1,1−α/2 s/

√
n , X̄ + tn−1,1−α/2 s/

√
n
]

we still make use of the theoretical formula SE(X̄) = σ/
√

n.

The bootstrap step consists in using

SE(X̄?) u SEboot,X̄ =

√√√√1
B

B

∑
i=1

(
X̄?

i − X̄?
)2

in place of s/
√

n,

i.e., use [
X̄− tn−1,1−α/2 SEboot,X̄ , X̄ + tn−1,1−α/2 SEboot,X̄

]

In using SEboot,X̄ we do not need the theoretical standard error formula of X̄ .
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The Bootstrap Step in General

Suppose we have a sample X1, . . . ,Xn from some distribution F ∈ F , where F
is a family of possibilities for the unknown F .

When estimating a parameter θ(F) using some estimate F̂ of F , i.e., using

θ̂ = θ(F̂) as estimate of θ(F), we can generate a bootstrap distribution of θ̂?
1, . . . , θ̂

?
B,

calculated from bootstrap samples X?
b1, . . . ,X

?
bn, b = 1, . . . ,B.

If this bootstrap distribution is reasonably normal and centered on the original

estimate θ̂ (unbiased), then the previous construction of a 100(1−α)% level

confidence interval carries over, i.e.,[
θ̂− tn−1,1−α/2 SEboot,θ̂ , θ̂+ tn−1,1−α/2 SEboot,θ̂

]

where SEboot,θ̂ =

√√√√1
B

B

∑
i=1

(
θ̂
?
i − θ̂

?
)2

with θ̂
? =

1
B

B

∑
i=1

θ̂
?
i .
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Efron’s Percentile Method

To extend this bootstrap idea to situations where the bootstrap distribution does not

look normal, Efron suggested the following percentile method to construct a

100(1−α)% level confidence interval for θ:

Determine the α/2- and (1−α/2)-quantiles θ̂?
α/2 and θ̂?

1−α/2 of the bootstrap

distribution and treat [θ̂?
α/2 , θ̂?

1−α/2] as 100(1−α)% level confidence interval.

This is close to previous method when the bootstrap distribution ≈ normal.

This method is transformation invariant: If [θ̂L, θ̂U ] is a confidence interval for θ

then, [ψ(θ̂L),ψ(θ̂U)] is a confidence of same level for ψ(θ) for any monotone

increasing function ψ of θ.

This is especially appealing when the sampling distribution of ψ(θ̂) is approximately

normal for some ψ↗. No need to know ψ. S and S2 ⇒ corresponding intervals.
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Hall’s Percentile Method

If we knew the distribution of θ̂− θ, say its cdf is G(x) = P(θ̂− θ ≤ x), then we

could use its quantiles gα/2 and g1−α/2 to get

1−α = P(gα ≤ θ̂−θ≤ g1−α/2)

= P(θ̂−g1−α/2 ≤ θ≤ θ̂−gα)

and thus get the following 100(1−α)% level confidence interval for θ

[θ̂−g1−α/2 , θ̂−gα/2]

Not knowing G we estimate it by the bootstrap distribution of θ̂?− θ̂, i.e.,

take its corresponding quantiles g?
α/2 and g?

1−α/2 in place of gα/2 and g1−α/2

[θ̂−g?
1−α/2 , θ̂−g?

α/2] = [θ̂− (θ̂?
1−α/2− θ̂) , θ̂− (θ̂?

α/2− θ̂)]

= [2θ̂− θ̂
?
1−α/2 , 2θ̂− θ̂

?
α/2]
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Not Transformation Invariant

Hall’s percentile method is not transformation invariant.

If the sampling distribution of θ̂ is skewed to the right, we tend to get θ̂ values

further away from θ on the right of θ and closer in on the left of θ.

1−α = P(θ+gα ≤ θ̂≤ θ+g1−α/2)

Then (θ+g1−α/2)−θ > θ− (θ+gα/2) or g1−α/2 >−gα/2 (> 0 typically).

In order for the interval [θ̂−g1−α/2 , θ̂−gα/2] not to miss its target θ

when θ̂ is on the high side, it makes sense to reach further back by using the

quantile −g1−α/2 at the lower end point.

Similarly, when θ̂ is on the low side, it is OK to reach less far up by using the

quantile −gα/2 at the upper end point.
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Which is Better?

Neither percentile method is uniformly best.

There are many other variants, that I won’t go into.

There are also double bootstrap methods that try to calibrate and integrate

the uncertainty in the first bootstrap step when stating the overall uncertainty

with confidence intervals.

The literature is huge, with many good textbooks on the bootstrap method.

Efron & Tibshirani (1993), An Introduction to the Bootstrap, Chapman & Hall

Davison & Hinkley (1997), Bootstrap Methods and their Applications,

Cambridge University Press
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The Bootstrap Has Given Wings to Statistics

We can handle statistical problems without having to assume convenient probability

models for our data.

=⇒ Nonparametric Bootstrap.

We can handle inference in plausible probability models that before were

mathematically intractable.

=⇒ Parametric Bootstrap.

The bootstrap distribution makes the sampling distribution more understandable

to consumers of statistics.

The ideas go beyond simple random samples.
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The Abstract Problem
We have some data set X.

X is uncertain for various reasons (sampling variability, measurement error, etc.)

X was generated by a probability mechanism/model which we denote by P.

Statistical inference: Use X to make inference concerning the particulars of P.

A very simple and common data structure:

X = (X1, . . . ,Xn) and the Xi are independent and identically distributed (i.i.d.).

Other structures involve known covariates, which can be thought of as being a

known part of the specified probability model.

Keeping the data set as generic as possible we emphasize the wide applicability of

the bootstrap method.
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The Probability Model P & Estimates P̂

The probability model P that generated X is unknown.

This is expressed as: P is one of many possible probability models, i.e., P ∈ P .

Assume: we can generate data sets from any given probability model P ∈ P .

We need a method that estimates P based on X via P̂ = P̂(X).

Thus we can generate bootstrap data sets X? from P̂.

We are interested in θ = θ(P) and estimate it by θ̂ = θ(P̂) =⇒ θ̂? = θ(P̂(X?)).

The uncertainty in θ̂ is assessed via the bootstrap distribution of θ̂?
1, . . . , θ̂

?
B.

=⇒ many types of bootstrap confidence intervals for θ(P).
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Batch Data Revisited

We assume the following batch data model

Xi j = µ+bi + ei j, j = 1, . . . ,ni, and i = 1, . . . ,k ,

where bi ∼ N (0,σ2
b) (between batch variation effect)

and ei j ∼ N (0,σ2
e) (within batch variation effects) .

bi and {ei j} are assumed to be mutually independent =⇒ Xi j ∼N (µ,σ2
b +σ2

e)

Quantity of interest is the p-quantile of the Xi j distribution N (µ,σ2
b +σ2

e), i.e.,

xp = µ+ zp

√
σ

2
b +σ

2
e where zp = Φ

−1(p) standard normal quantile.

Denote the data set of the above structure by

X =
{

Xi j : j = 1, . . . ,ni, and i = 1, . . . ,k
}
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Estimating Batch Data Parameters

SSb =
k

∑
i=1

ni

∑
j=1

(X̄i·− X̄)2 =
k

∑
i=1

ni(X̄i·− X̄)2 and SSe =
k

∑
i=1

ni

∑
j=1

(Xi j− X̄i·)2 .

Take σ̂2
e = SSe/(N− k) as unbiased estimate of σ2

e and τ̂2 = SSb/(k−1) as

unbiased estimate of

τ
2 = σ

2
e +σ

2
b

N
k−1

(
1−

k

∑
i=1

(ni
N

)2
)

= σ
2
e +σ

2
b

N
k−1

f
f +1

.

⇒ σ̂2
b =

(
τ̂2− σ̂2

e

)
(k−1)( f +1)/(N f ) as unbiased estimate for σ2

b.

Redefine σ̂2
b = max(0, σ̂2

b), it will no longer be unbiased.

The p-quantile estimate is

x̂p = X̄ + zp

√
σ̂

2
e + σ̂

2
b
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Batch Data Generation
In HW6 we constructed a function batch.data.make that created batch data of

the type described above. This can be done for any set of batch sample sizes,

n1, . . . ,nk, and for any number k of batches.

Besides nvec= (n1, . . . ,nk), further inputs to batch.data.make are sig.e= σe,

sig.b = σb, and mu = µ.

By replacing µ, σe, and σb by estimates µ̂ = X̄ , σ̂e, and σ̂b in the call to

batch.data.make we get a parametric bootstrap batch data set with same

nvec = (n1, . . . ,nk).

We can repeat this many times, say B = 10000 times.

For all these parametric bootstrap batch data sets we compute

X̄`, σ̂
?
e,`, σ̂

?
b,` and x̂p,` = X̄?

` + zp

√
σ̂

?2
e,` + σ̂

?2
b,` , ` = 1,2, . . . ,B .
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Parametric Bootstrap Distribution of Quantile Estimates for Batch Data

Bootstrap Distribution of   0.01  −Quantile Estimates,   Nsim == 10000
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original quantile estimate  x̂0.01 == 46.529

(naive method)   x̂0.01  L((0.95)) == 45.95

(effective sample size method)   x̂0.01  L((0.95)) == 45.419

(Efron percentile method)   x̂0.01  L((0.95)) == 45.754

(Hall percentile method)   x̂0.01  L((0.95)) == 45.738
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