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Paired Comparisons (Randomization Model)

We have looked at paired comparison procedures in a randomization context.

Treatment and control are randomly assigned to N paired subjects.

Advantage: Conceptual simplicity. We fully control all random aspects.

All inferences are based on solid principles.

Disadvantage: Any drawn conclusion drawn are only pertinent to the N subjects.

We can’t generalize any results to other subjects without a leap of faith.

To generalize results we need a population model and a sampling scheme.

This issue is analogous to the parallels examined in Chapters 1 and 2.
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Population Model

Consider a population of homogeneous pairs of subjects, each providing a

measurement. Pairs are randomly drawn from a population.

Treatment/control should be randomized for each pair.

Pairs of ears/hands/feet in a large population of subjects. Draw a random sample

of subjects from a population. Randomize treatment/control between left/right.

The same subject is used for treatment and control. Draw a random sample of

subjects from a population. Randomize the order of treatment and control for each

subject in the sample.

Pairs could be measurements in the morning and afternoon of a day.

The days are randomly drawn from a population of days (limited scope).
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Population Distribution Model
We have N randomly chosen pairs, with randomly assigned treatment and control.

Denote responses for the ith pair by (Xi,Yi) under (control,treatment), respectively.

Since each subject was drawn randomly from one population all the pairs (Xi,Yi)

have the same bivariate distribution, say

P(Xi ≤ x,Yi ≤ y) = M(x,y)

In contrast to the independence for two independently drawn samples from two

populations we allow here for dependence between Xi and Yi within the same pair.

This is a natural property for matched pairs.

We focus on differences Zi = Yi−Xi, again identically distributed with cdf

P(Zi ≤ z) = L(z)
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Effect of Null Hypothesis on M(x,y)
Null hypothesis H0: there is no difference between treatment and control.

P(control response≤ y, treatment response≤ x) = P(Xi ≤ y,Yi ≤ x) = M(y,x)

= P(control response≤ x, treatment response≤ y) = P(Xi ≤ x,Yi ≤ y) = M(x,y)

If two measurements (U1,U2) on a pair of subjects have a joint distribution

H(x,y) = P(U1 ≤ x,U2 ≤ y) which is not symmetric, i.e., H(x,y) 6= H(y,x)

(e.g., when taking two measurements on the same subjects or when left and right

side of the human body act differently) we can ensure symmetry by assigning

treatment and control at random.

A formal argument is given on the next slide.
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Formal Symmetry Argument under H0
Treatment/control are simply labels assigned at random, with no differential effect.

Let U1 and U2 be the 1st and 2nd (left and right) measurement.

Their joint distribution is H(x,y) = P(U1 ≤ x,U2 ≤ y) ??= H(y,x)

We can view Ui as the response under control or treatment (no difference).

A =
{

1 when the treatment is assigned to the first measurement probability 1/2

2 when the treatment is assigned to the second measurement probability 1/2

Here A and (U1,U2) are independent.

M(x,y) = P(X ≤ x,Y ≤ y) = P(X ≤ x,Y ≤ y,A = 1)+P(X ≤ x,Y ≤ y,A = 2)

= P(U2 ≤ x,U1 ≤ y,A = 1)+P(U1 ≤ x,U2 ≤ y,A = 2)

= [P(U2 ≤ x,U1 ≤ y)+P(U1 ≤ x,U2 ≤ y)]/2

= [H(y,x)+H(x,y)]/2 = [H(x,y)+H(y,x)]/2 = M(y,x)
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Distribution of Z = Y −X under H0
Under H0 the distribution of Z = Y −X is symmetric around zero,

i.e., Z and −Z have the same distribution function L(z).

PH0(Z ≤ z) = PH0(Y −X ≤ z) = PH0(Y −X ≤ z, A = 1)+PH0(Y −X ≤ z, A = 2)

= PH0(U1−U2 ≤ z, A = 1)+PH0(U2−U1 ≤ z, A = 2)

=
[
PH0(U1−U2 ≤ z)+PH0(U2−U1 ≤ z)

]
/2

PH0(−Z ≤ z) = PH0(X−Y ≤ z) = PH0(X−Y ≤ z, A = 1)+PH0(Y −X ≤ z, A = 2)

= PH0(U2−U1 ≤ z, A = 1)+PH0(U1−U2 ≤ z, A = 2)

=
[
PH0(U2−U1 ≤ z)+PH0(U1−U2 ≤ z)

]
/2 = PH0(Z ≤ z) �

The text gives the further equivalence L(z) = 1−L(−z), but that only holds

under the additional condition that L is continuous, i.e., PH0(Z = z) = 0 for any z.
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Alternatives to H0
As alternative to H0 we will consider distributions for Z that tend to favor

positive over negative values for Z.

Problem 44 makes this more precise, but assume continuous distributions.

A special case is the shift model.

As in the two-sample problem we assume that under the alternative

the treatment adds a shift to the response Y .

Let L0
∗ denote the null distribution of Y −X and assume a treatment effect of ∆.

Then Z−∆ = Y −∆−X has again the null distribution L0. Thus

P(Z ≤ z) = P(Z−∆≤ z−∆) = L0(z−∆) = L∆(z)† ,

i.e., the null L0 distribution of Z is shifted to the right by the amount ∆.
∗The Text uses E(z) instead of L0(z). This avoids the expectation connotation of E(z).
†Note that L∆(z) = L0(z) when ∆ = 0. This harmonizes with the choice of L0.
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The Large Population Model
As in the two-sample population case we assume that the matched pairs of subjects

are randomly drawn from a large population.

This allows us to view the response pairs (Xi,Yi), i = 1, . . . ,N as independent

(or at least approximately independent) random variable pairs.

The dependence between Xi and Yi within each pair remains.

Thus Z1, . . . ,ZN are independent, identically distributed random variables ∼ L(z).

The hypothesis to test: L is symmetric around zero (PH0(Z ≤ z) = PH0(Z ≥−z)).

As alternative we consider that positive values for Z are favored over negative ones.

For the more specific shift model we test H0 : ∆ = 0 against A : ∆ > 0,

with the symmetric null cdf L0(z) left unspecified.
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The One-Sample Problem
So far we have viewed the Zi as the differences between treatment and control

responses on a sampled matched subject pair.

However, we can also view these differences simply a priori as N independent

measurements Z′1, . . . ,Z
′
N of some unknown quantity ∆.

Often it is reasonable to view the measurement errors Z′i−∆ as being

symmetrically distributed around zero, with cdf L0.

If we want to test a hypothesized value ∆0 for ∆ (based on some theory), we can

reduce this testing problem to our previous problem of testing H0 : ∆ = 0.

Simply subtract ∆0 from all measurements: obtain Zi = Z′i−∆0, i = 1, . . . ,N and

test whether the Zi distribution is symmetric around zero.

This is called the one-sample problem, in contrast to our two-sample problem

considered in Chapter 2.
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Advantage of the Population Model

The advantage of the population model is again two-fold.

1. We can make inference about the full population (based on a sample from it).

2. We can assess the power of the test and plan the sample size N appropriately.

This depends however on obtaining a true random sample, or a reasonable

judgment that we can view the Zi(= Yi−Xi) as a random sample.

These issues are completely analogous to those discussed in Chapter 2.
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The Sign Test

Recall that the sign test is based on the number SN of positive differences

Zi = Yi−Xi.

Under the randomization model we saw that the null distribution of SN

is binomial (N, .5), provided none of the Zi = 0.

In the population model assume that L(z) is continuous to avoid zero differences.

Under H0 the distribution of Zi is symmetric around zero

=⇒ PH0(Zi > 0) = PH0(Zi < 0) = 1/2

Since the Zi are independent it follows that SN ∼ binomial (N, .5) under H0.

We have the same null distribution as before in the randomization model.
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Distribution of SN under the Alternative

Z1, . . . ,ZN are still independent but now with “success” probability

p = PA(Zi > 0) = 1−PA(Zi ≤ 0) = 1−q = 1−L(0).

The power function Π(p) of the sign test, which rejects for SN ≥ c (for integer c),

Π(p) = Pp(SN ≥ c) =
N

∑
k=c

(
N
k

)
pk(1− p)N−k = 1−pbinom(c−1,N,p)

depends only on p. Aside from p the shape of L does not enter.

It is easy to see that Π(p) is strictly increasing in p.

⇒ any level α test with PH0(SN ≥ c) = αc = α is unbiased (Π(p)≥ αc for p > 1/2).

It is also unbiased for testing the wider hypothesis H ′0 : p≤ 1/2 against A : p > 1/2,

since max{Pp(SN ≥ c) : p≤ 1/2}= αc, i.e., it is still level αc for testing H ′0.
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Normal Approximation for Π(p)

Although pbinom is readily available, for sample size determination it is still useful

to introduce the normal approximation for Π(p).

For binomial random variables we have Ep(SN) = N p and varp(SN) = N pq.

The ordinary central limit theorem shows that for 0 < p < 1

SN−N p√
N pq

−→N (0,1) as N −→ ∞

Thus we can treat (SN−N p)/
√

N pq≈N (0,1), provided the practical range of

the former contains the practical range of the latter. (See next slide)
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Practical Range of Normal Approximation

0 ≤ SN ≤ N absolute range

N p−3
√

N pq ≤ SN ≤ N p+3
√

N pq approximate range

−3 ≤ SN−N p√
N pq ≤ 3 standardized range

−3 ≤ N (0,1) ≤ 3 normal range

Thus we should require

0≤ N p−3
√

N pq and N p+3
√

N pq≤ N ⇐⇒ N ≥ 9max
(

p
q
,
q
p

)

p close to 0 or 1 will drive up the required N for a reasonable approximation.

E.g., p = .1 ⇒ N ≥ 9(.9/.1) = 81 and p = .01 ⇒ N ≥ 9(.99/.01) = 891.
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Normal Approximation

Without continuity correction

Π(p) = Pp(SN ≥ c) = Pp

(
SN−N p√

N pq
≥ c−N p√

N pq

)
≈ 1−Φ

(
c−N p√

N pq

)

With continuity correction

Π(p) = Pp(SN ≥ c) = Pp(SN ≥ c− .5)≈ 1−Φ

(
c− .5−N p√

N pq

)
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Example 1: Gas Mileage
A consumer organization wants to examine a dealer’s claim of 22 miles/gallon

in city driving for a particular car model.

They plan to test N = 20 cars and will reject the claim if too many of the cars

have mileage < 22 mpg.

How likely are they going to reject the claim when in fact the mileage is 21 mpg?

That will depend on the chosen α level. A high α will lead to higher power,

higher rejection rate even under H0 and even more so under A.

Let us work with a significance level close to .05.

1−pbinom(14,20, .5) = 0.020695 and 1−pbinom(13,20, .5) = 0.057659

=⇒ c = 14 with achieved α = αc = 0.05765915 .
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Gas Mileage: Power Calculation
In order to calculate power for some p > 1/2 we need to have a value for p.

It is reasonable to assume that the average mileage per car (under like conditions)

is approximately distributed like N (µ,σ2).

If Z denotes the average mileage of a car we have

p = pµ = P(Z < 22) = P((Z−µ)/σ < (22−µ)/σ) = Φ((22−µ)/σ)

To evaluate p for µ = 21, the situation of interest for our power calculation, we need

an appropriate value for σ. From past experience we assume that σ = 1.5 mpg.

pµ = p21 = Φ((22−21)/1.5) = Φ(1/1.5) = Φ(2/3) = pnorm(2/3) = 0.74751

with power Π = Pp(S20≥ 14)≈ 1−Φ

(
13.5−20 · p21√

20p21q21

)
= Φ(0.74639)= 0.77228

or exactly 1−pbinom(13,20,0.7475075) = 0.7778726
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Gas Mileage: Increasing Power

The power achieved by N = 20 is judged not to be adequate. We desire Π = .9.

How much higher do we need to choose N to get there?

PH0(SN ≥ c)≈ 1−Φ

c− 1
2−

N
2√

N
4

= α =⇒ c = uα

√
N
4

+
N
2

+
1
2

Pp(SN ≥ c)≈ 1−Φ

(
c− 1

2−N p
√

N pq

)
= Π

=⇒ uα

√
N
4

+
N
2

+
1
2
−1

2
−N p = uΠ

√
N pq or

uα

2
−uΠ

√
pq =

(
p− 1

2

)√
N

√
N =

1
2uα−uΠ

√
pq

p− 1
2

or N =

(
1
2uα−uΠ

√
pq

p− 1
2

)2

⇒ N = 34.07263

1-pbinom(22,35,.5)=0.0448 and 1-pbinom(22,35,0.74751)=0.9192 will do.
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Alternate Power Approximation

Under the shift model L(z) = L0(z−∆) we get an alternate power approximation

for small ∆ and large N. For small ∆ we have

p∆ = 1−L(0) = 1−L0(−∆)≈ 1
2

and p∆−
1
2
≈ ∆`0(0) with `0(z) = ∂L0(z)

∂z .

Pp∆
(SN ≥ cN(α))≈ 1−Φ

(
cN(α)− 1

2−N p∆√
N p∆q∆

)
and cN(α) = uα

√
N
4

+
N
2

+
1
2

combine to

Pp∆
(SN ≥ c) ≈ 1−Φ

uα

√
N
4 + N

2 + 1
2−

1
2−N p∆

√
N p∆q∆


≈ Φ

(
2
√

N
(

p∆−
1
2

)
−uα

)
≈Φ

(
2
√

N ∆`0(0)−uα

)
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Population Model: 1st Extension
We assumed that Z1, . . . ,ZN are independent and identically distributed (i.i.d.)

Suppose we wish to perform paired comparisons of treatment and control on

samples drawn from stratified subpopulations.

For subpopulation i we get Xi and Yi with joint distribution Mi(x,y) = Mi(y,x)

and obtain Zi = Yi−Xi ∼ Li, which is symmetric around zero under H0,

provided we assign treatment and control randomly.

These subpopulations may not be large, but we sample independently from each.

Thus we have Z1, . . . ,ZN independent and with respective distributions L1, . . . ,LN ,

which are symmetric around zero under H0 (no treatment effect).

Under the alternative we expect Z values that favor positive values.
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Population Model: 1st Extension (continued)

A special case of such alternatives is that of a shift alternative, i.e., the treatment

adds a shift ∆, so that Zi−∆∼ Li0 is distributed symmetrically around zero,

or Zi ∼ P(Zi ≤ z) = P(Zi−∆≤ z−∆) = Li,0(z−∆) = Li,∆(z).

This model is also appropriate when the same unknown quantity ∆ is being

measured under different circumstances and the measurement errors

Zi−∆ for some reason have different distributions Li,0.

Li,0 continuous =⇒ PH0(Zi > 0)= 1/2 for i = 1, . . . ,N =⇒ SN ∼ binomial (N,1/2).

We have the same null distribution distribution as before.

We would view large values of SN as significant evidence against H0.
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Population Model: 2nd Extension
We assumed: Zi is symmetrically distributed around some value ∆ with H0 : ∆ = 0.

We now drop the symmetry assumption.

We still want to use a meaningful concept for the “center” of a distribution,

without specifying the distribution in further detail, i.e., stay nonparametric.

The mean of a distribution is not a good measure of central tendency

without further restrictions on the distribution L.

Very small changes in L can lead to arbitrarily different means.

A more suitable measure of central tendency is the median µ.

For Z−µ∼ L0, which is continuous with median zero, we have

P(Z > µ) = P(Z < µ) = P(Z ≤ µ) = P(Z−µ≤ 0) = L0(0) = 1/2
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Population Model: 2nd Extension (continued)

For some specified value µ0 consider now the problem of testing the hypothesis

H ′′0 : µ = µ0 against the alternative A : µ > µ0.

Assume that we have N i.i.d. measurements Z1, . . . ,Zn ∼ L with median µ.

Under H0 the differences Z1−µ0, . . . ,ZN−µ0 are i.i.d. ∼ L0 with median zero.

Let SN be the number of Zi−µ0 > 0 (or Zi > µ0).

Under H0 we have SN ∼ binomial (N,1/2), i.e., the same null distribution as before.

We reject H0 in favor of A when SN ≥ c for appropriate c with PH0(SN ≥ c) = αc.
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Hearing Test Example

In a hearing test patients are exposed to a sound at increasing pitch levels.

For patient i the level Zi is determined (by iterative up and down approximation)

at which the patient no longer hears the sound.

There is standard loss of hearing pitch level µ0, which is known.

µ0 represents the median of a normal or healthy population.

We wish to test the hypothesis µ = µ0 (or µ≥ µ0) against the alternative µ < µ0.

We reject the hypothesis when too many of the Zi are < µ0.

=⇒ The sign test can be applied to alternatives in either direction.
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The Signed-Rank Test in the Population Model

The null distribution of the signed-rank Wilcoxon test in the population model

is the same as in the randomization model.

Theorem 1:

Let Z1, . . . ,ZN i.i.d. ∼ L, which is assumed to be continuous.

Let S1, . . . ,Sn denote the ranks of the positive Z’s among |Z1|, . . . , |ZN|.

Let N+ be the number of positive Z’s.

Under the hypothesis H0 : L is symmetric around zero (L(z) = 1−L(−z) for all z),

each of the possible sets (n,s1, . . . ,sn) has the same probability

PH0(N+ = n;S1 = s1, . . . ,Sn = sn) =
(

1/2

)N
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Proof of Theorem 1

For each Zi its sign and absolute value are independent since

P(Zi > 0, |Zi| ≤ z) = P(0 < Zi ≤ z) = 1/2 P(|Zi| ≤ z) = P(Zi > 0) P(|Zi| ≤ z)

Since the Zi are all independent it follows that their set of signs and their set of

absolute values are independent. The signs are independent among each other.

=⇒ the set of N signs is independent of the set of ranks 1, . . . ,N for |Z1|, . . . , |ZN|.

Each set of {N+ = n,S1 = s1, . . . ,Sn = sn} with s1 < .. . < sn is in one-to-one

correspondence with exactly one of the 2N possible assignment of + and − signs

to the ranks 1,2, . . . ,N.

Each assignment of a + or − sign has probability 1/2. The N sign assignments are

independent. Thus the probability of any set of sign assignments is (1/2)N . �
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Corollary and Consequences for Vs
Corollary to Theorem 1:

Theorem 1 still holds under our first extended model, namely for independent

Zi ∼ Li, i = 1, . . . ,N, with Li continuous and symmetric around zero under H0.

While the ranks of the absolute values |Z1|, . . . , |ZN|may be affected by L1, . . . ,LN ,

the assigments of signs to the full set of ranks still have probability (1/2)N each.

Theorem 1 and its Corollary imply:

Under the original population model and its first extension the null distribution

of Vs, the Wilcoxon signed-rank test statistic, is the same as under the

randomization model.

Thus we can use the same procedures developed under the randomization model

to obtain appropriate critical values and p-values (significance probabilities,

observed significance levels). Exact calculation, simulation, normal approximation.
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The Power of the Wilcoxon Test in the Shift Model

Under the shift model: Zi ∼ L∆(z) = L0(z−∆), with L0 symmetric around zero,

the power of the Wilcoxon test is

ΠL0(∆) = Π(∆) = P∆(Vs ≥ c)

where c is a critical value to achieve an appropriate significance level α.

The subscript L0 indicates that the power depends not only on ∆, the center of

symmetry, but also on the distribution L0 of Z−∆.

It can be shown that for fixed L0 the power function Π(∆) is nondecreasing in ∆.

⇒ the Wilcoxon test, rejecting for large Vs, is unbiased against alternatives ∆ > 0.

A level α test for H0 : ∆ = 0 is also a level α test for the larger hypothesis H ′0 : ∆≤ 0.

Opposite monotonicity holds when rejecting for small Vs. Corresponding results

hold concerning unbiasedness and maintaining a level α over a wider hypothesis.
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Exact Power of the Wilcoxon Test in the Shift Model

As was the case for the two-sample rank-sum test, computing the exact power of

the Wilcoxon signed rank test is analytically difficult.

For more on this see Section 6C under Further Developments.

However, we can always use simulation to estimate the power for any (L0,∆).

We only need to simulate independent observations U1, . . . ,UN from L0 and then

take Zi = Ui +∆, and compute Vs for each such sample. Do this Nsim times.

Estimate Π(∆) by the proportion of simulated Vs values ≥ cα.

Here cα = qsignrank(1−α,N)+1

since k = qsignrank(1−α,N) is the smallest k with P(Vs ≤ k)≥ 1−α,

i.e., the smallest k with P(Vs > k)≤ α or P(Vs ≥ k+1)≤ α.
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PowerSignRank(...)

The function PowerSignRank is provided on the class web site.

It implements the previous power simulation process for various choices of sampled

distributions that are symmetric around zero when ∆ = 0.

These distributions include:

the normal distribution,

the Student-t f distribution with f degrees of freedom (Cauchy distribution for f = 1)

the logistic distribution with density f (x) = 1
b exp(−x/b)/[1+ exp(−x/b)]2,

the double exponential or Laplace distribution with density f (x) = 1
2b exp(−|x|/b),

the uniform distribution over the interval (−a,a).

Other distributions could be added. See the addition of the double exponential

distribution in the function body of PowerSignRank.
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Timing Results for PowerSignRank(...)
> system.time(PowerSignRank(alpha = 0.05, N = 20, Delta = 1,

dist = "norm", parm = c(0, 1), Nsim = 10000))

user system elapsed

5.205 0.112 5.322

> system.time(PowerSignRank(alpha = 0.05, N = 20, Delta = 1,

dist = "norm", parm = c(0, 1), Nsim = 100000))

user system elapsed

54.011 0.896 54.981

> system.time(PowerSignRank(alpha = 0.05, N = 20, Delta = 1,

dist = "dexp", parm = c(0, 1), Nsim = 100000))

user system elapsed

54.703 1.312 56.084

I tried Nsim = 1,000,000 on this machine but it degenerated into seemingly

endless disk swapping activity (killed it after 50 minutes).

Use this function to check on normal approximations.
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Normal Approximation for Vs

For Z1, . . . ,ZN i.i.d. ∼ L with 0 < PL(Zi < 0) < 1 we have

Vs−EL(Vs)√
varL(Vs)

−→N (0,1) as n−→ ∞.

To use this approximation we need the mean and variance of Vs.

Using the representation

Vs = ∑
i≤ j

I[Zi+Z j>0] = ∑
i< j

I[Zi+Z j>0] +∑
i

I[Zi>0]

we easily see

EL(Vs) =
N(N−1)

2
PL(Z1 +Z2 > 0)+NPL(Z1 > 0) =

N(N−1)
2

p′1 +N p

For Zi symmetric around zero we have p = p′1 = 1/2 and this reduces to

our previous expression EH0(Vs) = N(N +1)/4.
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The Variance of Vs
For the variance one gets the following expression from the same representation

varL(Vs) = N(N−1)(N−2)(p′2− p′21 )

+
N(N−1)

2

[
2(p− p′1)

2 +3p′1(1− p′1)
]
+N p(1− p)

where

p = PL(Z1 > 0), p′1 = PL(Z1 +Z2 > 0), p′2 = PL(Z1 +Z2 > 0, Z1 +Z3 > 0)

For Zi symmetric around zero we get p = p′1 = 1/2 and

p′2 = PH0(Z1 +Z2 > 0, Z1 +Z3 > 0)

= PH0(Z1 >−Z2, Z1 >−Z3) = PH0(Z1 > Z2, Z1 > Z3) = 1/3

=⇒ varH0(Vs) =
N(N +1)(2N +1)

24
our previous variance expression
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Using the Normal Approximation

If reject for large values of Vs, i.e., for Vs ≥ c, the power of the test is

Π(L) = PL(Vs ≥ c) = P

(
Vs−EL(Vs)√

varL(Vs)
≥ c−EL(Vs)√

varL(Vs)

)
and using the continuity correction in the normal approximation this becomes

Π(L)≈ 1−Φ

(
c− 1/2−EL(Vs)√

varL(Vs)

)

When rejecting for low values of Vs the power approximation becomes

Π(L) = PL(Vs ≤ c)≈Φ

(
c+ 1/2−EL(Vs)√

varL(Vs)

)
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Example 2: Treatment for Anemia

Vitamin B12 is to be tested for effectiveness against pernicious anemia.

Hemoglobin levels are measured for 10 patients with that disease,

before and after the treatment → Xi,Yi → Zi = Yi−Xi.

We use the Wilcoxon signed-rank test at a target level α = .05.

If B12 is effective, we expect higher levels after treatment,

i.e., the Z values will be slanted more toward positive values.

Thus we should reject the hypothesis H0 of no effect when Vs ≥ c.

1-psignrank(43,10) = 0.05273 and 1-psignrank(44,10) = 0.04199

Thus we compromise and take c = 44 with α = 0.05273.
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Anemia Power Calculation
To calculate the power of our test we need to specify an alternative.

Assume that Z ∼ L = N (∆,τ2) with ∆ = 2g/` and τ = 2g/`.

We need to determine p, p′1 and p′2 for this distribution.

p = P(Z > 0)= P
(

Z−∆

τ
>

0−∆

τ

)
= 1−Φ

(
−∆

τ

)
= 1−Φ(−1)= pnorm(1) = 0.84134

p1 = P(Z1+Z2 > 0)= P
(

Z1 +Z2−2∆

τ
√

2
>

0−2∆

τ
√

2

)
= 1−Φ

(
− 2∆

τ
√

2

)
= 0.92135

p′2 = P(Z1+Z2 > 0,Z1+Z3 > 0)= P
(

Z1 +Z2−2∆

τ
√

2
>

0−2∆

τ
√

2
,
Z1 +Z3−2∆

τ
√

2
>

0−2∆

τ
√

2

)
The random variables U1 =(Z1+Z2−2∆)/(τ

√
2) and U2 =(Z1+Z3−2∆)/(τ

√
2)

have a bivariate normal distribution with means zero and variances one and with

correlation coefficient ρ = 1/2, as encountered before.

36



Anemia Power Calculation (continued)

With u1 = u2 =−2∆/τ
√

2 we have

p′2 = P(U1 > u1,U2 > u2)= P(−U1 <−u1,−U2 <−u2)= P(U1 <−u1,U2 <−u2)

= pmnorm(c(2∗Delta/(sqrt(2)∗tau),2∗Delta/(sqrt(2)∗tau)),

c(0,0),varcov = matrix(c(1, .5, .5,1),ncol = 2)) = 0.8657672

=⇒ EL(Vs) = 49.87422 and varL(Vs) = 23.84759

Π(L) = 1−Φ

(
44− .5−49.87422√

23.84759

)
= 0.904102

Klotz (1963) gives an exact value of .8914 based on integration.

Using PowerSignRank with Nsim=100000 I got 0.8917 by simulation

in 52 seconds on this laptop. (0.8905 in 17 seconds on my other laptop)
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Comments on the Normal Approximation
The previous normal approximation was illustrated when Zi ∼ L = N (∆,τ2).

The calculation of p = P(Z1 > 0) and p′1 = P(Z1 +Z2 > 0) was relatively easy,

since it involved simple normal tail probabilities and since Z1 +Z2 ∼N (2∆,2τ2).

The calculation of p′2 used the fact that it involved a bivariate normal quadrant

probability, again a consequence of L being normal.

This is typically no longer so easy (especially for p′2) when L is not normal.

Of course, one could estimate these probabilities by simulating a large number

of independent triplets Z1,Z2,Z3 i.i.d. ∼ L and use these estimated probabilities

p̂1 = #{Z1i > 0}/Nsim, p̂′2 = #{(Z1i +Z2i) > 0}/Nsim and

p̂′3 = #{(Z1i +Z2i) > 0 & (Z1i +Z3i) > 0}/Nsim in the normal approximation.

However, one could then also simulate the distribution of Vs. The simulation

effort would then be more substantial, depending on the sample size N.
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Alternate Normal Approximation

In the case of shift alternatives L∆(z) = L0(z−∆) a different normal approximation

is possible. It parallels that obtained for the Wilcoxon rank-sum test.

Let L∗0(u) = PL0(Z1 +Z2 ≤ u) with Z1,Z2 i.i.d. ∼ L0(z) with density `0(z).

The densities of L0 and L∗0 evaluated at zero are denoted by `0(0) and `∗0(0).

The following alternate normal approximation should then be reasonable

for large N and small ∆

ΠL0(∆)≈Φ

(
N(N−1)`∗0(0)+N`0(0)√

N(N +1)(2N +1)/24
∆−uα

)
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General Expression for `∗0(0)

PL0(Z1 +Z2 ≤ u) =
Z

∞

−∞

PL0(Z1 ≤ u− z2)`0(z2)dz2 =
Z

∞

−∞

L0(u− z2)`0(z2)dz2

=⇒ `∗0(u) =
Z

∞

−∞

`0(u− z2)`0(z2)dz2

=⇒ `∗0(0) =
Z

∞

−∞

`0(−z2)`0(z2)dz2 =
Z

∞

−∞

`2
0(z)dz

Here the first =⇒ invokes interchange of ∂/∂u and integration,

and the last = invokes the symmetry of `0 around zero, i.e., `0(−z) = `0(z).

The next slide gives `0(0) and `∗0(0) for five types of distributions,

all of which are symmetric around zero.

The double exponential distribution is also known as the Laplace distribution.

The Student-t1 distribution is also known as the Cauchy distribution.
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`0(0) and `∗0(0) for Several Distributions

distribution density `0(0) `∗0(0)

Normal N (0,τ2) 1
τ
√

2π
exp
(
− x2

2τ2

)
1

τ
√

2π

1
2τ
√

π

Uniform U(−τ,τ) 1
2τ

I[−τ,τ](x)
1
2τ

1
2τ

Logistic exp(−x/τ)
τ(1+exp(−x/τ))2

1
4τ

1
6τ

Student-tν

(
1+ (t/τ)2

ν

)−ν+1
2 Γ

(
ν+1

2

)
τ
√

νπΓ(ν
2)

Γ

(
ν+1

2

)
τ
√

νπΓ(ν
2)

Γ2
(

ν+1
2

)
Γ

(
ν+1

2)
)

τ
√

νπΓ2(ν
2)Γ(ν+1)

Double Exponential 1
2τ

exp(−|x/τ|) 1
2τ

1
4τ

In R we get Γ(x) via gamma(x).
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Anemia Example Revisited

L0 = N (0,τ2)⇒ L∗0 = N (0,2τ2) =⇒ `0(0) = 1/(τ
√

2π) and `∗0(0) = 1/(2τ
√

π).

ΠL0(∆)≈Φ

(
N(N−1)/2+N/

√
2√

N(N +1)(2N +1)/24
∆

τ
√

π
−uα

)

For ∆ = 2, τ = 2, α = .05 and N = 10 we get ΠL0(∆)≈ 0.9114

For the more appropriate α = .05273 we get ΠL0(∆)≈ 0.9155

as compared to the exact value .8914 and our previous approximation 0.9041
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PowerSignRank

The function PowerSignRank (on the class web site) simulates the power of the

one-sided Wilcoxon signed-rank test under shift alternatives for the five types of

distributions given in the previous table for `0(0) and `∗0(0).

The time to run it is proportional to Nsim. Thus try it first with Nsim = 10000 before
running it for larger Nsim.

The time to run PowerSignRank grows only very slowly with the sample size N.

When N = 10 needed 4.9 seconds, it took only 8 seconds for N = 100.

Thus the function can be used for sample size planning to obtain a desired power

for an anticipated shift alternative.

PowerSignRank(alpha = 0.05, N = 10, Delta = 1, scale = 1,

dist = "norm", df = 1, Nsim = 10000) See internal documentation.
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Rough Sample Size Planning

To get a desired power Π define uΠ (with Z ∼N (0,1))

Π = P(Z ≥ uΠ) = 1−Φ(uΠ) = Φ(−uΠ)

Π = Φ(−uΠ) = ΠL0(∆)≈Φ

(
N(N−1)`∗0(0)+N`0(0)√

N(N +1)(2N +1)/24
∆−uα

)

=⇒ −uΠ ≈
N(N−1)`∗0(0)+N`0(0)√

N(N +1)(2N +1)/24
∆−uα

We can either solve this for N by trial and error (or write an R function to do it)

or in anticipation of a large N we may replace the numerator by N2`∗0(0) and the

denominator by
√

N3/12 and get

uα−uΠ ≈
N2`∗0(0)

N3/2
∆
√

12 =⇒ N ≈ (uα−uΠ)2

12∆2`∗20 (0)

44



Example of Sample Size Planning

Suppose we want a level α = .01 test to achieve a power of Π = .95 against a

normal shift alternative with ∆/τ = .5 when L0 = N (0,τ2), i.e., L∆ = N (∆,τ2)

We have uΠ =−1.645 and uα = 2.326. With `∗20 (0) = 1/(4πτ2) we get

N ≈ (uα−uΠ)2

12∆2`∗20 (0)
=

4πτ2(uα−uΠ)2

12∆2 =
(2.326+1.645)2π

3× .52 = 66.05

Thus N = 67 may be good first try to be followed up with

PowerSignRank(alpha = .01,N = 67,Delta = .5,dist = ”norm”,Nsim = 100000)

=⇒ simulated power of .94523 and normal approximations .9513 and .9508.

Trying N = 70 gave a simulated power of 0.9535.
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Power and Ties
The signed-rank test is no longer exactly distribution-free when we have ties.

However, the signed-rank test can be carried out conditionally given the tie or

midrank pattern. Its null distribution can be simulated.

Appropriate critical points for a conditional level α test can be estimated.

The overall level of the test (over all tie patterns) is then still ≤ α.

The amount of conservatism will depend on the sampled distribution.

Shift alternatives with discrete distributions make little sense.

If ties are due to rounding of inherently continuous random variables, one could

again explore the power behavior under shift alternatives for specific continuous

distributions via simulation. Just round the observations to the relevant rounding

grid and use shifts that are similarly rounded.
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Comparing Sign, Wilcoxon, and t-Tests

In the following we will compare the sign test, the Wilcoxon signed-rank test and

Student’s one-sample t-test for large samples in the shift model.

This parallels to a great extent our previous comparison in the two-sample situation.

Here we include one additional test in the comparison, namely the sign test.

First we have to discuss the one-sample t test and its large sample properties.
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Student’s One-Sample t-Test
Student’s (Gosset’s) one-sample t-test addresses the following testing problem:

Let Z1, . . . ,ZN ∼N (∆,σ2) and test H0 : ∆ = ∆0 for specified value of ∆0.

Considering as anticipated alternative that ∆ > ∆0, the t-test rejects H0 whenever

Z̄−∆0

S/
√

N
≥ c where S2 = S2

Z =
1

N−1

N

∑
i=1

(Zi− Z̄)2

and c is the (1−α)-quantile of the t-distribution with N−1 degrees of freedom.

Since we can always subtract ∆0 from all Zi, i.e Z′i = Zi−∆0∼N (∆′= ∆−∆0,σ
2),

we get Z̄′0 = Z̄−∆0 and S2
Z′ = S2

Z.

Our hypothesis H0 becomes H ′0 : ∆′ = 0 which is rejected whenever
√

NZ̄′/SZ.

Thus we may as well assume ∆0 = 0 and drop the ′ on Z′i.
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The t-Test under H0 Is ≈ Distribution-free
The t-test has exact level α only when Z1, . . . ,ZN i.i.d. ∼N (0,σ2) = N (∆0,σ

2).

For large N it has approximate level α for other distributions with mean zero

and finite variance σ2. This follows from the CLT and the LLN.

CLT =⇒ Z̄
σ/
√

N
D−→N (0,1) and by the LLN =⇒ S2 P−→ σ

2 or
S
σ

P−→ 1

=⇒
√

NZ̄
S

=
√

NZ̄/σ

S/σ

D−→N (0,1)

α = PH0

(√
NZ̄
S
≥ cN(α)

)
≈ 1−Φ(cN(α)) =⇒ cN(α)≈ uα = z1−α = Φ

−1(1−α)

Thus we can use uα in place of cN(α) in large samples from any distribution with

mean zero and finite variance.

The t-test is approximately distribution-free under H0.
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Approximate Power of the t-Test
Let Zi ∼ L under the alternative, with mean E(Z) and variance σ2.

By the LLN we still have S/σ−→ 1 as N −→ ∞ and by the CLT we still have
√

N(Z̄−E(Z))
σ

−→N (0,1) as N −→ ∞.

Thus we get the following approximation for the power of the t-test

Πt(L) = PL

(√
NZ̄
S
≥ cN(α)

)
= PL

(√
N(Z̄−EL(Z))

S
≥ cN(α)−

√
NEL(Z)

S

)

= PL

(√
N(Z̄−EL(Z))

σ
≥ cN(α)

S
σ
−
√

NEL(Z)
σ

)

≈ 1−Φ

(
uα−

√
NEL(Z)

σ

)
= Φ

(√
N∆

σ
−uα

)
where the last equality pertains to shift alternatives L(z) = L0(z−∆).

Note that L0 affects the power expression through its standard deviation σ.
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Approximate Power for Sign and Wilcoxon Tests

Under shift alternatives the sign test had approximate power (slide 19)

ΠS(L)≈Φ

(
2
√

N∆`0(0)−uα

)
For the Wilcoxon signed-rank test we had the following approximate power under

shift alternatives

ΠV (L)≈Φ

(
N(N−1)`∗0(0)+N`0(0)√

N(N +1)(2N +1)/24
∆−uα

)

where `0(0) and `∗0(0) were given on slide 41 for five different distributions.

51



Comparing Sign, Wilcoxon, and t-Tests
Let us compare the three tests for the specific case of N = 67 for a normal shift

alternative with ∆/τ = .5 and α = .01

Πt ≈Φ

(
∆

τ

√
N−u.01

)
= Φ

(
.5
√

67−2.326
)

= 0.961

ΠS ≈Φ

(
2
√

N
∆

τ
√

2π
−uα

)
= Φ

(
2
√

67 · .5 · .3989−2.326
)

= .8262

ΠV ≈ Φ

(
N(N−1)`∗0(0)+N`0(0)√

N(N +1)(2N +1)/24
∆−uα

)

= Φ

(
67 ·66 ·0.2821+67 ·0.3989√

67 ·68 ·135/24
.5−2.326

)
= 0.951

where `∗0(0) = 1/(2
√

πτ) = 0.2821/τ and `0(0) = 1/(τ
√

2π) = 0.3989/τ.
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Sample Size Comparison for Equal Power
Plan the sample sizes for each of these test, for power Π = .95 and α = .01.

From the previous we have for the Wilcoxon signed-rank test NV = 67.

For the sign test we get

NS =

(
uα +Φ−1(Π)

2

√
2π

∆/τ

)2

=
(
(2.326+1.645)

√
2π

)2
= 99

and for the t-test

Nt =

(
uα +Φ−1(Π)

∆/τ

)2

=
(

2.326+1.645
.5

)2
= 63
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Relative Efficiencies

As in Chapter 2 we take the sample size ratios as a measure of the efficiencies of

the tests relative to each other.

eS, t =
63
99

= .636 , eV, t =
63
67

= .940 , eS,V =
67
99

= .677

For example, the Wilcoxon test requires with NV = 67 only 67.7% of the sample

size NS = 99 that is needed by the sign test to achieve the same power Π = .95

at the same significance level α = .01.
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Relative Efficiencies eS, t
The following table (Dixon, 1953) gives the power ΠS of the Sign test over a

spectrum of normal shift alternatives ∆/σ for two sample sizes N = 10,20.

Above each power row ΠS are given the relative efficiencies eS, t = Nt/NS,

which are remarkably stable.

∆/σ

0 .1257 .2534 .3853 .5244 .6745 .8416 1.0364 1.2816 1.6449

N = 10
eS, t .768 .767 .765 .761 .756 .749 .741 .729 .712

ΠS

α

.1094 .13 .18 .27 .38 .53 .68 .82 .93 .99

N = 20
eS, t .698 .696 .693 .688 .683 .677 .669

ΠS

α

.1153 .15 .26 .42 .61 .79 .91 .98
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Relative Efficiencies eW, t

The table below (Klotz,1963) shows the corresponding efficiency comparison

for the Wilcoxon test relative to the t-test for N = 10 and α≈ .05, .10.

Again note the stability of the efficiencies relative to the spectrum

of normal shift alternatives.

∆/σ

0 .25 .50 .75 1.00 1.25 1.50

eV, t .968 .967 .966 .965 .965 .964

ΠV

α

.05237 .1844 .4274 .7013 .8914 .9734 .9957

eV, t .960 .959 .957 .956 .955

ΠV

α

.09668 .2862 .5669 .8153 .9476 .9904 .9989
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Asymptotic Relative Efficiencies
As N→ ∞ the following expressions can be derived for the asymptotic relative

efficiences (ARE’s or Pitman efficiencies) of the sign and Wilcoxon tests relative

to the t-test.

eS, t(L0) = lim
N→∞

eS, t,N(L0) = 4σ
2`2

0(0)

and

eV, t(L0) = lim
N→∞

eV, t,N(L0) = 12σ
2
[Z

∞

−∞

`2
0(x)dx

]2
= 12σ

2`∗20 (0)

These are obtained by finding NV (N) and Nt(N) to yield the same power Π at an

appropriate shift alternative ∆N . Here σ2 is the variance of L0.

To maintain power at a fixed level Π with α < Π < 1 it is necessary that ∆N→ 0.

The efficiencies do not depend on α or the targeted power Π.
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Sketch of Proof for eV, t
Recall our second normal approximation for the power of the Wilcoxon test

ΠV (L∆) ≈ Φ

(
N(N−1)`∗0(0)+N`0(0)√

N(N +1)(2N +1)/24
∆−uα

)
and for the t-test with σ2 denoting the variance of L0 we had

Πt(L∆) ≈ 1−Φ

(
uα−

√
N

σ
∆

)
= Φ

(√
N

σ
∆−uα

)
Note that in either case

√
N ∆ has to converge to a finite value A > 0 to maintain

constant power Π with α < Π < 1. Thus let ∆Nt = A/
√

Nt .

Matching power for respective sample sizes NV and Nt we get

NV (NV −1)`∗0(0)+NV `0(0)√
NV (NV +1)(2NV +1)/24

A√
Nt

=
NV (NV −1)`∗0(0)+NV `0(0)√

N2
V (NV +1)(2NV +1)/24

A
√

NV√
Nt

=
A√
Nt

√
Nt

σ

=⇒
√

12`∗0(0)σ = lim
Nt→∞

√
Nt√
NV

=⇒ lim
Nt→∞

Nt
NV

= 12`∗20 (0)σ2 �

We clearly see how dependence on α (uα) and power (through A) drop out.
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Sketch of Proof for eS, t

Recall the alternate power approximation for the sign test

ΠS(L∆) ≈ Φ

(
2
√

NS ∆`0(0)−uα

)
and match that for common ∆ with the approximate power of the t test

Πt(L∆) ≈ Φ

(√
Nt

σ
∆−uα

)

For small shifts ∆Nt = A/
√

Nt we get

2
√

NS
A√
Nt

`0(0) =
√

Nt
σ

A√
Nt

=⇒ lim
Nt→∞

Nt
NS

= 4σ
2`2

0(0) �

Again we clearly see how any dependence on α (uα) and the common targeted

power Π (through A) falls away.
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ARE’s for Some Distributions
From our previously tabulated expression for `0(0) and `∗0(0) we get the following

normal logistic Laplace uniform t1 t5

eS, t
2
π

= 0.6366 π2

12 = 0.8225 2 1
3 ∞ 0.9607

eV, t
3
π

= 0.9549 π2

9 = 1.0966 3
2 1 ∞ 1.241184

Note the generally high efficiencies of the Wilcoxon test.

The efficiency of the Wilcoxon signed-rank test relative to the one-sample t-test is

the same as that of Wilcoxon rank-sum test relative to the two-sample t-test,

as long as the sampled distribution is symmetric.

The same lower bound of .864 = 108/125 applies to the Wilcoxon signed-rank test

relative to the one-sample t-test.
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ARE Conversions

If we have three tests, indicated by indices 1,2,3 on the sample sizes Ni required

to attain power Π at level α then the AREs are given by

e12 = lim
N2
N1

e13 = lim
N3
N1

e23 = lim
N3
N2

It follows immediately that

ei j = lim
N j

Ni
=

1

lim Ni
N j

=
1

e ji

and

ei j = lim
N j

Ni
= lim

Nk
Ni
× lim

N j

Nk
= eik× ek j

As an illustration we have

eS,W = eS, t× et,W =
eS, t
eW, t

=
2/π

3/π
=

2
3
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Estimating Location or Treatment Effect

A quantity θ is measured with error by observations Z = (Z1, . . . ,ZN).

We assume that the distribution L(z) = Lθ(z) = L0(z−θ) of Zi is symmetric

around θ, or the distribution L0(z) of Zi−θ is symmetric around zero.

The most common estimate of θ is the average

θ̄ = θ̄(Z) =
Z1 + . . .+ZN

N

This estimation problem arises also quite naturally in the context of

paired comparisons when we want to estimate the treatment effect θ = ∆.

When L(z) = Φ((z−θ)/σ)) the average has several optimality claims,

i.e., it is the best estimator of θ among many broad classes of estimators.
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Unfavorable Aspects of θ̄

It is very sensitive to outliers or gross errors in the observations.

When sampling heavy tailed distributions it can be very inefficient in its use

of N independent measurements Z1, . . . ,ZN .

In fact, when sampling from the Cauchy distribution with center θ the average

of N observations is as accurate an estimate as using just one observation.

The Cauchy distribution with center 0 and scale 1 ( f (x) = [π(1+ x2)]−1) is

the same as the t-distribution with 1 degree of freedom, see next slide.

For some distributions the average is even worse than using a single observation.
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Normal and Cauchy Distribution
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Relation of θ̄ to t-Test

The two-sided t-test for testing Hθ0 : θ = θ0 against Aθ0 : θ 6= θ0 rejects Hθ0

whenever
√

N|θ̄−θ0|/S≥ c, with p-value for observed θ̄obs and Sobs

p(θ̄obs,Sobs) = PHθ0

(
|θ̄−θ0|
S/
√

N
≥ |θ̄obs−θ0|

Sobs/
√

N

)
= P

(
|tN−1| ≥ |tN−1,obs|

)
We will now find the θ0 for which the corresponding p-value gives the highest value,

i.e., for which the data are best aligned with Hθ0.

That highest p-value is 1 when θ0 = θ̄obs = (z1 + . . .+ zN)/N, i.e., tN−1,obs = 0.

Thus the average coincides with the θ0 for which the observed data lend the

strongest support to Hθ0 from the t-test perspective.
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Alignment Is Relative
On the previous slide we aligned θ0 with the data.

Recall that the distribution L0 of Zi−θ is symmetric around zero when θ

is the correct location parameter.

We can turn the above alignment approach around and shift the data by θ0:

Zi −→ Z′i = Zi−θ0 so that they best align around zero.

“Best alignment” depends on the discrepancy metric used,

here it is the t-test statistic for testing H0 : θ = 0

t(Z′) =
|∑N

i=1 Z′i/N|
S′/
√

N
=
|∑N

i=1(Zi−θ0)/N|
S/
√

N
=
|∑N

i=1 Zi/N−θ0|
S/
√

N

which becomes smallest (best alignment) when θ0 = θ̄ = (Z1 + . . .+ZN)/N = Z̄.

Note that S′2 = ∑
N
i=1(Z

′
i− Z̄′)2/N = ∑

N
i=1(Zi− Z̄)2/N = S2.
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Alignment Using the Sign Test
Using again Z′i = Zi−θ0 we look for best alignment around zero when assessing

best alignment by using the two-sided sign test for testing H0 : θ = 0.

Recall that SN = ∑
N
i=1 I[Z′i>0] has a distribution symmetric around N/2 under H0.

We get greatest support for H0 when SN,obs = N/2 for an appropriate choice of θ0.

p-value = PH0(|SN−N/2| ≥ |SN,obs−N/2|) = PH0(|SN−N/2| ≥ 0) = 1

SN,obs = N/2 whenever half of the Z′i are > 0 and half are < 0, or

half of the Zi are > θ0 and half are < θ0, i.e., when

θ0 = θ̃ = θ̃(Z) = median(Z1, . . . ,ZN) = med(Zi)

For even N this is clear from the above but for odd N it requires some special care

of details invoking the modified definition of SN when we have zeros among the Z′i.
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Alignment Using the Wilcoxon Test
Recall: the signed-rank statistic Vs ≡ to the number of (Zi +Z j)/2 > 0 with i≤ j.

Its null distribution is symmetric around E0(Vs) = N(N +1)/4.

We get best alignment with Z′i = Zi−θ0 when half of the

(Z′i +Z′j)/2 = ([Zi−θ0]+ [Z j−θ0])/2 = (Zi +Z j)/2−θ0, i≤ j,

are > 0 and half are < 0, i.e., when half of the (Zi +Z j)/2 with i≤ j are > θ0

and half are < θ0. This leads to

θ0 = θ̂ = θ̂(Z) = median
(

Zi +Z j

2
, i≤ j

)
= medi≤ j

(
Zi +Z j

2

)
as the best alignment estimator with respect to the signed-rank test.

This is also known as the Hodges-Lehmann estimator,

an interesting compromise between average and median.
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Example 3: Weight of One-year-old Boys

Z = c(12.01, 8.99, 10.21, 12.15, 9.54, 9.85, 10.62, 9.52, 10.66,

9.87, 10.44, 10.51, 10.67, 11.16, 9.32, 9.62, 11.11, 9.14)

mat=outer(Z,Z,"+")/2 is the matrix of all pairwise averages (Zi +Z j)/2.

We would like to get the vector of all averages with i≤ j, and then take the median

of this vector as θ̂. This is done as follows

θ̂(Z) = medi≤ j

(
Zi +Z j

2

)
= median(mat[row(mat) <= col(mat)]) = 10.24

Here row(mat)<=col(mat) creates a matrix of T in any position (i, j) with i≤ j

and F in all other positions. For the average and median we get

θ̄(Z) = mean(Z) = 10.29944 and θ̃(Z) = median(Z) = 10.325

The estimates are fairly close to each other.

69



General Estimator Properties

Lemma 1: With Zi ∼ L0(z−θ), i = 1, . . . ,N, the distributions of θ̄(Z)−θ,

θ̃(Z)−θ and θ̂(Z)−θ are independent of θ.

Proof: The distribution of Zi−θ∼ L0 is independent of θ.

=⇒ θ̄(Z−θ) = θ̄(Z)−θ, θ̃(Z−θ) = θ̃(Z)−θ and θ̂(Z−θ) = θ̂(Z)−θ �

Theorem 2: If the distribution L of Z1, . . . ,ZN is symmetric around θ, the same is

true of the distributions of θ̂, θ̃ and θ̄.

Proof: Symmetry =⇒ Zi−θ
D= θ−Zi =−(Zi−θ)∼ L0

θ̂(Z)−θ = θ̂(Z−θ) D= θ̂(θ−Z) = θ̂(−(Z−θ)) =−θ̂(Z−θ) =−(θ̂(Z)−θ) �

The same argument works for θ̄ and θ̃.
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Unbiasedness Properties

When L = Lθ(z) = L0(z−θ) is symmetric around θ and Zi∼ Lθ, i = 1, . . . ,N, then

θ̂, θ̃ and θ̄ are unbiased estimators of θ, i.e.,

Eθ

(
θ̂(Z)

)
= Eθ

(
θ̃(Z)

)
= Eθ

(
θ̄(Z)

)
= θ

provided these expectations exist.

Under the same conditions we also have

Pθ(θ̂(Z) < θ) = Pθ(θ̂(Z) > θ) and Pθ(θ̂(Z)≤ θ) = Pθ(θ̂(Z)≥ θ)

and correspondingly with θ̂(Z) replaced by θ̃(Z) or θ̄(Z).

This means that these estimators are median unbiased, i.e., as likely to

overestimate their target θ as to underestimate it.
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Continuity Assumption

Unless otherwise indicated we assume that L is a continuous distribution function.

This implies PL(Zi = c) = 0 for any c ∈ R.

It also implies that the distributions of θ̂(Z), θ̃(Z), and θ̄(Z) are continuous,i.e.,

PL(θ̂(Z) = x) = PL(θ̃(Z) = x) = PL(θ̄(Z) = x) = 0

for any x ∈ R.

The proof is technical but not hard (skipped here).
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Dispersion of θ̂(Z), θ̃(Z), and θ̄(Z)

Although the variance of θ̄(Z) is easily shown to be σ2
Z/N with σ2

Z = var(Zi),

it is analytically difficult to get the variances of the other two estimators.

As in the case of assessing dispersion of our treatment effect estimator ∆̂ in

Chapter 2 we will thus measure the dispersion of our estimators in terms of the

probability of our estimator being sufficiently close to their target θ, i.e.,

in terms of θ̂(Z) by the probability

Pθ(|θ̂(Z)−θ| ≤ a)

We will again associate such probabilities with the power of the respective tests.
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Order Statistics Inequalities

Theorem 3: (i) If Z(1) < .. . < Z(N) denote the ordered observations

(order statistics) of the sample Z1, . . . ,ZN , then for any 1≤ i≤ N and a ∈ R

Z(i) ≤ a ⇐⇒ SN(Z−a)≤ N− i

or equivalently

Z(i) > a ⇐⇒ SN(Z−a)≥ N− i+1

(ii) Let M = N(N +1)/2 and denote by A(1) < .. . < A(M) the ordered averages

(Zi +Z j)/2. Then for any 1≤ i≤M and a ∈ R

A(i) ≤ a ⇐⇒ Vs(Z−a)≤M− i

or equivalently

A(i) > a ⇐⇒ Vs(Z−a)≥M− i+1

Proof: Z(i) ≤ a⇔ at least i of the Z’s are ≤ a⇔ at most N− i of the Z’s are > a,

i.e., at most N− i of Zi−a > 0 or SN(Z−a)≤ N− i. Same argument for (ii).
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Pθ(|θ̃(Z)−θ| ≤ a)
For L0 continuous and symmetric around zero we have

Pθ(|θ̃(Z)−θ| ≤ a) = P0(|θ̃(Z)| ≤ a) = P0(θ̃(Z)≤ a)−P0(θ̃(Z) <−a)

= P0(θ̃(Z)≤ a)−
[
1−P0(θ̃(Z)≥−a)

]
= P0(θ̃(Z)≤ a)−

[
1−P0(θ̃(Z)≤ a)

]
= 2P0(θ̃(Z)≤ a)−1 ∗= 2P0(SN(Z−a)≤ N− k−1)−1

where by Theorem 3
∗= holds for odd N = 2k +1. For even N = 2k we have

2P0(SN(Z−a)≤N−k−1)−1≤Pθ(|θ̃(Z)−θ| ≤ a)≤ 2P0(SN(Z−a)≤N−k)−1

SN(Z−a)∼ Binomial(N, p(a)) with p(a) = P0(Z−a > 0) = 1−L0(a).

Thus the dispersion probability Pθ(|θ̃(Z)−θ| ≤ a) is easily calculated or bracketed

using pbinom for any given L0 and a.
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Pθ(|θ̂(Z)−θ| ≤ a)

Again using Theorem 3 the same sequence of steps for odd M = 2k +1 leads to

Pθ(|θ̂(Z)−θ| ≤ a) = 2P0(Vs(Z−a)≤M− k−1)−1

and for even M = 2k we can bracket it as follows

2P0(Vs(Z−a)≤M−k−1)−1≤Pθ(|θ̂(Z)−θ| ≤ a)≤ 2P0(Vs(Z−a)≤M−k)−1

Evaluating these probabilities P0(Vs(Z−a)≤ `) when Zi ∼ L0 involves the

distribution of the Wilcoxon statistic under shift alternatives.

For given a, L0 and ` these are easily evaluated via simulation.

Simply generate vectors Z from L0, evaluate Vs(Z−a) for each shifted sample

Z−a and observe the proportion of such Vs values that are ≤ `.
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Large Sample Approximation for Odd M = 2k +1

Pθ(θ̂(Z)−θ≤ a) = P0(θ̂(Z)≤ a) = P0(Vs(Z−a)≤M− k−1) = P0(θ̂(Z)≤ a)

= P0(Vs(Z−a)≤ k) = Φ

(
k + 1

2−E0(Vs(Z−a))√
var0(Vs(Z−a))

)

= 1−Φ


(

p′1−
1
2

)
N(N−1)

2 +N
(

p− 1
2

)
√

var0(Vs(Z−a))


Pθ

(∣∣θ̂(Z)−θ
∣∣≤ a

)
= P0(θ̂(Z)≤ a)−P0(θ̂(Z) <−a)

= P0(θ̂(Z)≤ a)−P0(θ̂(Z) > a) = 2P0(θ̂(Z)≤ a)−1

= 1−2Φ


(

p′1−
1
2

)
N(N−1)

2 +N
(

p− 1
2

)
√

var0(Vs(Z−a))


p = P0(Z−a > 0)= P0(Z > a) , p′1 = P0((Z1−a)+(Z2−a)> 0)= P0((Z1+Z2)/2 > a).
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var0(Vs(Z−a))

var0(Vs(Z−a)) = N(N−1)(N−2)(p′2− p′21 )

+
N(N−1)

2

[
2(p− p′1)

2 +3p′1(1− p′1)
]
+N p(1− p)

where

p′2 = PL((Z1 +Z2)/2 > a, (Z1 +Z3)/2 > a)

As in the case of the Wilcoxon rank-sum test statistic Ws the above approximation

suggests itself also in the case of M even.
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A Further Approximation for Small a
As before one can take a further, simplifying approximation step for small a, namely

p− 1
2
≈−a`0(0) and p′1−

1
2
≈−2a`∗0(0)

and

var0(Vs(Z−a))≈ var0(Vs(Z)) =
N(N +1)(2N +1)

24

=⇒ Pθ

(∣∣θ̂(Z)−θ
∣∣≤ a

)
≈ 2Φ

(√
24N

(N +1)(2N +1)
[
(N−1)`∗0(0)+ `0(0)

])
−1

When `0 is normal with mean zero and variance τ2 we have

`0(0) =
1

τ
√

2π
and `∗0(0) =

1
2τ
√

π

and the above approximation reduces to

Pθ

(∣∣θ̂(Z)−θ
∣∣≤ a

)
≈ 2Φ

(√
6N

(N +1)(2N +1)πτ2

[
(N−1)+

√
2
])
−1
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Efficiency Carry Over

Because of the relationship between Pθ(|θ̃−θ| ≤ a) and Pθ(|θ̂−θ| ≤ a) and

the corresponding power of sign and Wilcoxon tests, and similarly between

Pθ(|θ̄−θ| ≤ a) and the asymptotic power of the t-test it will not surprise that

all the efficiency results derived for the tests carry over to the estimators.

Here the efficiency of estimators is defined as the ratio of sample sizes required by

the three estimators to match the respective dispersion probabilities

Pθ(|θ̃−θ| ≤ a), Pθ(|θ̂−θ| ≤ a) and Pθ(|θ̄−θ| ≤ a).

For example, θ̄ needs about Nt = N
θ̄

= 3/π N
θ̂

= .955N
θ̂

= .955 NV to match

the dispersion probabilities

Pθ(|θ̂Nt −θ| ≤ a) = Pθ(|θ̄NV −θ| ≤ a) for any a > 0.
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Dropping the Symmetry Assumption

When we drop the assumption that L0 be symmetric around zero, the three

estimators may no longer target the same value and it is less compelling to

compare their performance in terms of their dispersion properties.

Theorem 4: (i) If L has finite expectation λ then θ̄ is a consistent estimator of λ.

(ii) If L has a unique median µ then θ̃ is a consistent estimator of µ.

(iii) If ν is the only point with the property

P
(

Z1 +Z2
2

< ν

)
= P

(
Z1 +Z2

2
> ν

)
=

1
2

,

where Z1,Z2 i.i.d. ∼ L, then θ̂ is a consistent estimator of ν.

A generic estimator θ̂N is a consistent estimator of θ if for any ε > 0

P(|θ̂N−θ|> ε)−→ 0 as N −→ ∞.
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Discussion of λ, µ and ν

The parameters λ and µ: simple definitions and clear, intuitive meanings.

The parameter ν is more complex, not so intuitive.

λ can change dramatically under minute changes in the distribution L.

Minute changes = small shifts of probabilities.

With respect to µ we can move almost half the probability of the distribution to ∞

and the location of µ is still determined by the inertia of the > 50% majority.

The parameter ν is also quite resistant to large moves of probabilities to ∞

as long as the total moved probability stays < 1−1/
√

2 = .293.
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Robustness Properties of θ̄, θ̃ and θ̂

The distributional properties from the previous slide carry over to the estimators.

The sample mean or average will move to ∞ as soon as just a single

observation moves to ∞ while the other observations stay put.

The sample median θ̃ will remain finite as long as we move less than half

of the observations off to ∞ while the other observations stay put.

The Hodges-Lehmann estimator θ̂ will remain finite as long as we move less

than 29.3% of the observations off to ∞ while the other observations stay put.

The same percentage was found for the Hodges-Lehmann shift estimator ∆̂.
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Explanation of 29.3%

We need to move less than N(N +1)/4 of the M = N(N +1)/2 averages

(Zi +Z j)/2, i≤ j to ∞ by moving k of the Zi to ∞ while the others stay put.

If we move Z1 to ∞ we move N averages (Z1 +Z j)/2 with 1≤ j to ∞.

If we move Z2 to ∞ we move N−1 averages (Z2 +Z j)/2 with 2≤ j to ∞.

. . .

If we move Zk to ∞ we move N− k +1 averages (Zk +Z j)/2 with k ≤ j to ∞.

=⇒ we need N +(N−1)+ . . .+(N− k +1) = kN− k(k−1)
2

<
N(N +1)

4
This leads to a limiting quadratic inequality in 0 < x = k/N < 1

4x−2x2 < 1 ⇒ 0 < (x−1)2−1
2

=
(

x−1− 1√
2

)(
x−1+

1√
2

)
⇒ x < 1− 1√

2
= .293
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Confidence Interval Building Blocks
Theorem 5: (i) Let Z1, . . . ,ZN i.i.d. ∼ L (a continuous cdf). If µ is any median of L

=⇒ P(Z(k) < µ≤ Z(k+1)) = P0(SN = k) =

(N
k
)

2N for all k = 0,1,2, . . . ,N

with the convention Z(0) =−∞ and Z(N+1) = ∞. Here P0∼Binomial(N, p = 1/2),

the null distribution of SN . The median µ does not need to be unique.

(ii) Assume in addition that L is symmetric around some θ, which would then also

serve as a median. Denote the M = N(N +1)/2 averages (Zi +Z j)/2, i≤ j

in sorted order by A(1) < .. . < A(M).

=⇒ Pθ(A(k) < θ≤ A(k+1)) = P0(Vs = k) for all k = 0,1,2, . . . ,M

with the convention A(0) =−∞ and A(M+1) = ∞.

Here P0(Vs = k) refers to the null distribution of the signed-rank statistic.

Because of the continuity of L the < inside the coverage probability can be replaced

by ≤ and vice versa, without changing the coverage probability.
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Proof of Theorem 5

(i) Z(i) < µ≤ Z(i+1) means that exactly i of the Z1, . . . ,ZN are < µ.

Each comparison Z j < µ is one of N independent Bernoulli trials,

each with probability 1/2 ⇒ P(Z(i) < µ≤ Z(i+1)) = P0(SN = i). �

(ii) Since Zi−θ∼ L0, symmetric around zero, we may as well assume θ = 0.

V ∗s = ∑
i≤ j

I[(Zi+Z j)/2<0]
D= ∑

i≤ j
I[(Zi+Z j)/2>0] = Vs

=⇒ A(k) < 0≤ A(k+1) ⇐⇒ V ∗s = k

=⇒ P0(A(k) < 0≤ A(k+1)) = P0(V
∗
s = k) = P0(Vs = k) �
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Confidence Intervals Based on Z(i)
By concatenating adjacent building block intervals (Z(`),Z(`+1)]

with coverage probabilities P0(SN = `), ` = 1,2, . . ., we get

P(µ≤ Z(i)) =
i−1

∑
`=0

P(µ∈ (Z(`),Z(`+1)]) =
i−1

∑
`=0

P0(SN = `) = P0(SN ≤ i−1) = pi−1

=⇒ P(Z(i) < µ≤ Z(k)) = P(µ≤ Z(k))−P(µ≤ Z(i))

= pk−1− pi−1 = P0(i≤ SN ≤ k−1)

= 1−P0(SN ≤ i−1)−P0(SN ≥ k)

=∗ 1−2P0(SN ≤ i−1) = 1−2pi−1

where in =∗ we choose k = N− (i−1) and exploit the symmetry of the SN

null distribution around N/2, i.e., P0(SN ≤ i−1) = P0(SN ≥ N− (i−1)).

[Z(i),Z(N−i+1)] is a confidence interval for the median µ with coverage probability

γi = 1−2pi−1 for any continuous L. Very distribution-free or nonparametric!!
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Discrete Confidence Levels γi
Given a desired confidence level γ how do we find the smallest γi ≥ γ and the

corresponding i, leading to the resulting interval [Z(i),Z(N−i+1)]?

We want the largest pi−1 or largest i = i0 such that

1−2pi−1 = γi ≥ γ or pi−1 ≤
1− γ

2

i0 = qbinom((1− γ)/2,N, .5)= min
(

i : pbinom(i,N, .5) = P0(SN ≤ i)≥ 1− γ

2

)

=⇒ pbinom(i0−1,N, .5) <
1− γ

2
If pbinom(i0,N, .5) > (1− γ)/2 then i0 = qbinom((1− γ)/2,N, .5) is it.

If pbinom(i0,N, .5) = (1− γ)/2 then i0 = qbinom((1− γ)/2,N, .5)+1 is it.

In either case [Z(i0),Z(N−i0+1)] is the interval [Z(i),Z(N−i+1)] with lowest

confidence level γi ≥ γ, namely with γi = γi0 = 1−2∗pbinom(i0−1,N, .5) > γ

in the first case and = γ in the second case.
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Confidence Intervals Based on A(i)
By concatenating adjacent building block intervals (A(`),A(`+1)]

with coverage probabilities P0(Vs = `), ` = 1,2, . . ., we get

P(θ≤ A(i)) =
i−1

∑
`=0

P(θ ∈ (A(`),A(`+1)]) =
i−1

∑
`=0

P0(Vs = `) = P0(Vs ≤ i−1) = p̃i−1

=⇒ P(A(i) < θ≤ A(k)) = P(θ≤ A(k))−P(θ≤ A(i))

= p̃k−1− p̃i−1 = P0(i≤Vs ≤ k−1)

=∗ 1−P0(Vs ≤ i−1)−P0(Vs ≥ k)

= 1−2P0(Vs ≤ i−1) = 1−2 p̃i−1

where in =∗ we choose k = M− i+1 and exploit the symmetry of the Vs

null distribution around M/2.

Thus [A(i),A(M−i+1)] is a confidence interval for the center of symmetry θ with

coverage probability γ̃i = 1−2 p̃i−1 for any continuous L symmetric around θ.

Again, very distribution-free or nonparametric!!
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Discrete Confidence Levels γ̃i
Given a desired confidence level γ how do we find the smallest γ̃i ≥ γ and the

corresponding i, leading to the resulting interval [A(i),A(M−i+1)]?

We want the largest p̃i−1 or largest i = i0 such that

1−2 p̃i−1 = γi ≥ γ or p̃i−1 ≤
1− γ

2

i0 = qsignrank((1− γ)/2,N)= min
(

i : psignrank(i,N) = P0(SN ≤ i)≥ 1− γ

2

)

=⇒ psignrank(i0−1,N) <
1− γ

2
If psignrank(i0,N) > (1− γ)/2 then i0 = qsignrank((1− γ)/2,N) is it.

If psignrank(i0,N) = (1− γ)/2 then i0 = qsignrank((1− γ)/2,N)+1 is it.

In either case [A(i0),A(M−i0+1)] is the interval [A(i),A(M−i+1)] with lowest

confidence level γ̃i ≥ γ, namely with γ̃i = γ̃i0 = 1−2∗psignrank(i0−1,N) > γ

in the first case and = γ in the second case.
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Example 4: Effect of Muscle Training
12 first-graders were measured with respect to weight lifting capability before and

after an 8-week muscle training program. The after − before differences were

recorded as

Z = c(6.0,7.0,5.0,10.5,8.5,3.5,6.1,4.0,4.6,4.5,5.9,6.5)

To get the vector A.vec of ordered values A(1) ≤ . . .≤ A(M) of the M averages

(Zi +Z j)/2, i≤ j, we proceed as follows

A = outer(Z,Z,”+ ”)/2 =⇒ A.vec = sort(A[row(A) <= col(A)])

For γ = .95: qsignrank(.025,12) = 14; psignrank(14,12) = 0.0261 > .025

=⇒ i0 = 14 and A.vec[14] = 4.75 , A.vec[12∗13/2−14+1] = 7.3

with achieved confidence level = γ̃i0 = 1−2∗psignrank(i0−1,N) = 0.9575195

and with Hodges-Lehmann estimate medi≤ j

(
Zi +Z j

2

)
= median(A.vec) = 5.85
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Example 4: R Function MuscleGain

MuscleGain=function(gamma=.9){

weight.diff=c(6, 7, 5, 10.5, 8.5, 3.5, 6.1,

4, 4.6, 4.5, 5.9, 6.5)

N=length(weight.diff); M=N*(N+1)/2

A=outer(weight.diff,weight.diff,"+")/2

A.vec=sort(A[row(A)<=col(A)])

i0=qsignrank((1-gamma)/2,N)

if(psignrank(i0,N)==(1-gamma)/2) i0=i0+1

index=c(i0,M-i0+1); names(index)=c("i0","M-i0+1")

Interval=c(A.vec[i0],A.vec[M-i0+1])

names(Interval)=c("Lower","Upper")

estimate=median(A.vec); names(estimate)="HL-estimate"

list(estimate=estimate,index=index,Interval=Interval,

achieved.confidence=1-2*psignrank(i0-1,N))

}
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MuscleGain(.9)

$estimate
HL-estimate

5.85

$index
i0 M-i0+1
18 61

$Interval
Lower Upper
4.95 7.00

$achieved.confidence
[1] 0.9077148

The Text erroneously has [9.9,14] = [2×4.95,2×7] as 90% interval, omitting the

division by 2. Manual calculation was easier with Zi +Z j than with (Zi +Z j)/2.
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wilcox.test

> wilcox.test(weight.diff,conf.int=T,exact=T,conf.level=.9)

Wilcoxon signed rank test

data: weight.diff

V = 78, p-value = 0.0004883

alternative hypothesis: true location is not equal to 0

90 percent confidence interval:

4.95 7.00

sample estimates:

(pseudo)median

5.85
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Without Assuming Symmetry

Without assuming symmetry in the muscle gain example, we still can get

confidence intervals for the median µ using [Z(i0),Z(N−i0+1)] for appropriate i0.

This is implemented in the function MuscleGain.median on the next slide.

Achievable confidence levels are much coarser than in the previous case.

The distribution of SN has just N +1 possible values: 0,1, . . . ,N.

The distribution of Vs has N(N +1)/2+1 possible values: 0,1, . . . ,N(N +1)/2,

=⇒ a much finer distributional graduation.

95



MuscleGain.median

MuscleGain.median=function(gamma=.9){

weight.diff=c(6, 7, 5, 10.5, 8.5, 3.5, 6.1,

4, 4.6, 4.5, 5.9, 6.5)

N=length(weight.diff)

Z.vec=sort(Z)

i0=qbinom((1-gamma)/2,N,.5)

if(pbinom(i0,N,.5)==(1-gamma)/2) i0=i0+1

index=c(i0,N-i0+1); names(index)=c("i0","N-i0+1")

Interval=c(Z.vec[i0],Z.vec[N-i0+1])

names(Interval)=c("Lower","Upper")

estimate=median(Z); names(estimate)="median"

list(estimate=estimate,index=index,Interval=Interval,

achieved.confidence=1-2*pbinom(i0-1,N,.5))

}
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MuscleGain.median(.9)
> MuscleGain.median(.9)
$estimate
median

5.95 # not too different from 5.85 previously

$index
i0 N-i0+1
3 10

$Interval
Lower Upper

4.5 7.0

$achieved.confidence
[1] 0.9614258

Note the more conservative achieved confidence of .96 over .91 previously.

Only the lower end point changed from 4.95 to 4.5.
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Normal Approximations

For large N normal approximations with continuity correction may be useful

P(µ≤ Z(i)) = P0(SN ≤ i−1)≈Φ

(
i−1+1/2−N/2√

N/4

)
= Φ

(
2i− (N +1)√

N

)

P(θ≤A(i))= P0(Vs≤ i−1)≈Φ

i−1+1/2− N(N+1)
4√

N(N+1)(2N+1)
24

= Φ

 2i−1− N(N+1)
2√

N(N+1)(2N+1)
6


These could then be used to approximate i for prescribed coverage probability.

Given current state of software this is no longer so relevant.
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Confidence Interval Building Blocks for zp

Our previous confidence intervals and bounds for the median µ are easily

generalized to any quantile zp with P(Z ≤ zp) = L(zp) = p for continuous L.

(The Text focusses on µp = z1−p. I don’t quite understand why.)

P(Z(i) < zp ≤ Z(i+1)) = Pp(SN = i) =
(

N
i

)
pi(1− p)N−i

Here Pp indicates that SN has a Binomial(N, p)-distribution.

Z(i) < zp ≤ Z(i+1) means that exactly i of the independent Z1, . . . ,ZN are < zp,

each with success probability p = P(Z < zp) = P(Z ≤ zp) by continuity of L.

The binomial distribution gives the above formula.
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Confidence Intervals for zp
As before, concatenation of such building block intervals easily leads to intervals

P(zp ≤ Z(`)) =
`−1

∑
i=0

P(Z(i) < zp ≤ Z(i+1)) = Pp(SN ≤ `−1)

P(Z(k) < zp ≤ Z(`)) = P(zp ≤ Z(`))−P(zp ≤ Z(k))

= Pp(SN ≤ `−1)−Pp(SN ≤ k−1) = Pp(k ≤ SN ≤ `−1)

Since the distribution of SN is no longer symmetric when p 6= 1/2 there is no

obvious natural relationship between k and ` for a given desired confidence level.

However, one could still choose k largest and ` smallest such that

Pp(SN ≤ k−1)≤ 1− γ

2
and Pp(SN ≥ `)≤ 1− γ

2
or Pp(SN ≤ `−1)≥ 1+ γ

2

=⇒ P(Z(k) < zp ≤ Z(`)) = Pp(k ≤ SN ≤ `−1)≥ 1+ γ

2
− 1− γ

2
= γ
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Practical Determination of k and `

Finding k:

Let k0 = qbinom((1− γ)/2,N,p)= smallest i such that pbinom(i,N,p)≥ (1− γ)/2,

then pbinom(k0−1,N,p) < (1− γ)/2.

If pbinom(k0,N,p) > (1− γ)/2 then k = qbinom((1− γ)/2,N,p) is it.

If pbinom(k0,N,p) = (1− γ)/2 then k = qbinom((1− γ)/2,N,p)+1 is it.

Finding `:

Let `0 = qbinom((1+ γ)/2,N,p)= smallest i such that pbinom(i,N,p)≥ (1+ γ)/2

Then ` = `0+1 is it.
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