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Comparative Studies

Often comparative studies involve more than two treatments, or treatment-control.

Or we have s samples obtained under different conditions and we wish to examine

whether such differences are statistically significant or not.

If the differences appear insignificant one could pool the samples into a single

sample that gains in impact through its larger sample size N = n1 + . . .+ns.
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Three Tranquilizers

We have three brands of tranquilizers A, B, C. Seven comparable mental patients

are assigned randomly to these tranquilizer, two each to A and C and three to B.

After a month the seven patients are ranked w.r.t. the perceived treatment effect.

A : 2,4 B : 3,5,7 C : 1,6

Consider the hypothesis H0 : no difference between the treatments.

Under H0 the patients would have had the same respective rankings no matter

how they were assigned to the treatments.

Under H0 the random assignment of the 2 A’s, 2 B’s and 3 C’s have equal chance

to be assigned to the 7 patients and thus to their inherent ranks 1,2, . . . ,7.

What is that chance for any such assignment?
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Counting the Possibilities

The number of possible choices for ordered rank pairs in group A is
(7

2
)

= 21

12 13 14 15 16 17 23
24 25 26 27 34 35 36
37 45 46 47 56 57 67

For each such choice for group A, there remain five ranks to choose from for B.

For example, when the A-ranks are 13, the B-ranks must be chosen from 24567.

See first row in the table below. As further illustrations, the second and third rows

show the possible B-ranks when the A-ranks are 16 and 23, respectively.

A-ranks Possible choices for B-ranks
13 245 246 247 256 257 267 456 457 467 567
16 234 235 237 245 247 257 345 347 357 457
23 145 146 147 156 157 167 456 457 467 567
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Counting the Possibilities (continued)

For each of the 21 choices of two ranks for A there are
(5

3
)

= 10 choices

of three ranks for B.

That amounts to 21×10 = 210 combined choices of ranks for A and B.

Once these choices have been made, there is only one choice to give

the remaining two ranks to C.

Thus the total number of ordered rank allocations (2 to A, 3 to B, and 2 to C)

is 21×10×1 = 210.

Under H0 the chance for each one of these allocations is 1/210 based on our

initial random assignment of 2 A’s, 3 B’s and 2 C’s to the subjects at hand.
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Generalizing

Suppose we have N subjects and s treatments.

We want to assign ni of these subjects to treatment i, where i = 1, . . . ,s.

Using all subjects and each subject just once we must have n1 + . . .+ns = N.

There are then
( N

n1,...,ns

)
such possible assigments where(

N
n1, . . . ,ns

)
=

(
N
n1

)
×

(
N−n1

n2

)
× . . .×

(
ns−1 +ns

ns−1

)
=

N!
n1!× (N−n1)!

× (N−n1)!
n2!× (N−n1−n2)!

× . . .× (ns−1 +ns)!
ns−1!×ns!

=
N!

n1!× . . .×ns!( N
n1,...,ns

)
is referred to as the multinomial coefficient.
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Randomization
Again we assign the subjects at random to the s treatments,

in group sizes n1, . . . ,ns, with n1 + . . .+ns = N.

The subjects are ranked according to some measure of treatment effectiveness.

This can be subjective or be based on some numerical score or measurement.

Our hypothesis H0: there is no difference between the s treatments.

Under H0 all subject rankings are preordained (not influenced by the treatments).

Under H0 each split of the ranks 1,2, . . . ,N into groups of respective sizes n1, . . . ,ns

is equally likely with probability 1/
( N

n1,...,ns

)
each.

Denote the set of ordered ranks for the s groups by

R11 < .. . < R1n1 , R21 < .. . < R2n2 , . . . , Rs1 < .. . < Rsns
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The Basic Null Distribution of Ranks

PH0

(
R11 = r11, . . . ,R1n1 = r1n1, . . . , Rs1 = rs1, . . . ,Rsns = rsns

)
=

1( N
n1,...,ns

)
This generalized our previous null distribution of ranks in the case of s = 2.

This distribution generates the null distributions of all derived rank statistics.
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The Growth of
( N

n1,...,ns

)
Full enumeration of all possible rankings becomes quickly unwieldy.

(
15

5,5,5

)
= choose(15,5)∗choose(10,5)

= 3003∗252 = 756756(
18

6,6,6

)
= choose(18,6)∗choose(12,6)

= 18564∗924 = 17153136(
16

4,4,4,4

)
= choose(16,4)∗choose(12,4)∗choose(8,4)

= 1820∗495∗70 = 63063000
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What Alternatives to H0?

When testing H0 one should be guided by the anticipated alternatives.

In the case of s = 2 we focussed first on the general level of the ranks

in the two groups =⇒Wilcoxon rank-sum test.

Next we focussed on changes of dispersion of ranks

=⇒ Siegel-Tukey test and Ansari-Bradley test.

Finally we considered all possible ways for ranks to express differences

=⇒ Kolmogorov-Smirnov test.

9



The Kruskal-Wallis Test
We will deal first with the changes in rank levels from treatment group

to treatment group.

Express the rank level in each group by the average group rank

Ri. =
Ri1 + . . .+Rini

ni
=

Ri
ni

for i = 1,2, . . . ,s

If there is little variation between these average ranks they would all be close to

R.. =
R11 + . . .+R1n1 + . . .+Rs1 + . . .+Rsns

N
=

s

∑
i=1

ni
N

Ri. =
1
N

s

∑
i=1

Ri =
N +1

2

This motivates the Kruskal-Wallis test statistic

K =
12

N(N +1)

s

∑
i=1

(
Ri.−

N +1
2

)2

We reject H0 when K ≥ c for appropriate critical values c.

The factor 12
N(N+1) facilitates a simple large sample approximation

for the null distribution of K.
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Some Comments

For s = 2 this test is equivalent to the two-sided Wilcoxon rank-sum test.

Alternate computational expression (no longer so relevant):

K =
12

N(N +1)

s

∑
i=1

R2
i

ni
−3(N +1)

In principle the computation of the null distribution for K is straightforward, based

on the null distribution of the sets of ordered ranks, all equally likely.

“Simply” evaluate K for all splits of 1,2, . . . ,N into s rank subsets of

respective sizes n1, . . . ,ns.

However, the volume of these evaluations grows quickly beyond practical bounds.
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KW3

For s = 3 treatment groups the R function KW3 (see class web site) implements the

complete enumeration of the Kruskal-Wallis test null distribution.

It either provides the exact p-value for Kobs or it gives the tail probability for a

given critical value c and the implied group sizes of the input list of three sets

of treatment group scores.

This covers and extends the territory of Table I in the Text. Table I covers tail

probabilities ≤ .15 (≤ .2 in some extreme cases) for group sizes ni ≤ 5, i = 1,2,3.

For n1 = n2 = n3 = 5 the full enumeration amounts to 756756 cases.

For n1 = n2 = 5,n3 = 6 the full enumeration amounts to 2018016 cases.

For n1 = n2 = n3 = 6 the full enumeration amounts to 17153136 cases.

This laptop was still able to allocate x=rep(0,17153136) but with much

disk drive activity, i.e., it was using virtual memory (not RAM).
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KW3: Three Tranquilizers

Kruskal−Wallis Statistic
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x1 = 2, 4
x2 = 3, 5, 7
x3 = 1, 6

K−W observed = 1.1786
p−value = 0.619
chi−square appr.

  =  0.5547

Kruskal−Wallis Null Distribution,   n1 == 2,,  n2 == 3,,  n3 == 2
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KW3: Three Tranquilizers with Critical Value

Kruskal−Wallis Statistic
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critical value c = 4.5
tail probability = 0.0667

Kruskal−Wallis Null Distribution,   n1 == 2,,  n2 == 3,,  n3 == 2

chi−square appr.

  =  0.1054
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Large Group Size Approximation

For large group sizes n1, . . . ,ns the null distribution of K becomes approximately

a chi-square distribution with s−1 degrees of freedom, i.e., K ≈ χ2
s−1.

For s = 3 (s−1 = 2) this distribution is an exponential distribution with mean 2, i.e.,

with density f (x) = exp(−x/2)/2 for x≥ 0. It is overlaid in the previous two slides.

When Z1, . . . ,Z f are i.i.d. ∼N (0,1) then Z2
1 + . . .+Z2

f is said to have a chi-square

distribution with f degrees of freedom.

ni

(
Ri.−

N +1
2

)2
=

1
ni

(
Ri−

ni(N +1)
2

)2

look like squared, approximately normal random variables with zero means.

However, they are not all independent since ∑
s
i=1 Ri = N(N +1)/2,

hence the loss of one degree of freedom.
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Chi-Square Approximation

Kruskal−Wallis Statistic for  n1 == 5,,  n2 == 5,,  n3 == 5

D
en

si
ty

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

16



Ties
In case of ties we use the midrank vector in all calculations.

The formula for the Kruskal-Wallis test statistic K changes to

K∗ =
12/[N(N +1)]∑s

i=1 R∗2
i /ni−3(N +1)

1−∑
e
i=1(d

3
i −di)/(N3−N)

Here e denotes the number of distinct values in the pooled set of all N scores.

di is the multiplicity of the ith smallest of those distinct values, i = 1, . . . ,e.

R∗i is the sum of midranks for the ith treatment group.

The denominator dfac = 1−∑
e
i=1(d

3
i −di)/(N3−N) reduces to 1

when there are no ties and K∗ reverts back to K.

Again we have K∗ ≈ χ2
s−1 for large n1, . . . ,ns. KW3 works in case of ties.
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Simulated Null Distribution
The null distribution is easily simulated in a loop (here just illustrated for s = 3)

z=c(x1,x2,x3)

nvec=c(length(x1),length(x2),length(x3))

rz=rank(z); N=length(rz)

out=rep(0,Nsim)

for(i in 1:Nsim){

rzi=sample(rz,replace=F); K=0; jx=0

for(j in 1:3){

K=K+sum(rzi[jx+1:nvec[i]])/nvec[i]; jx=jx+nvec[i]

}

out[i]=12*K/(N*(N+1))-3*(N+1)}

here out is a vector of Nsim randomly generated K statistics.

Note how easily it also handles tied ranks through the midrank vector rz.

Of course, K still needs to be divided by dfac.
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KW.sim

Such a simulation is implemented more generally in the R function KW.sim

using a default value Nsim=10000 (see class web site).

Its usage is documented internally.

The basic inputs are a list of treatment score vectors and Nsim.

It returns the p-value for the computed Kobs or the upper tail probability

for a given critical value c.

It also poduces the plots shown on the next slides.
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The Data for the Next Slide

> z1=rnorm(15)

> z2=rnorm(20)

> z3=rnorm(25)

> z4=rnorm(16)

> z5=rnorm(22)

> z6=rnorm(15)

> KW.sim(list(z1,z2,z3,z4,z5,z6),PDF=T)

KW.observed p-value chi-square approx.

5.148224 0.398700 0.398100

> length(c(z1,z2,z3,z4,z5,z6))

[1] 113

> length(unique(c(z1,z2,z3,z4,z5,z6)))

[1] 113 # NO TIES
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Chi-Square Approximation

Simulated Kruskal−Wallis Statistic
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The Data for the Next Slides
> y1=round(rnorm(10),1); sort(y1)
[1] -2.3 -1.7 -1.1 -0.8 -0.5 0.3 0.3 0.4 0.5 0.8

> y2=round(rnorm(20),1); sort(y2)
[1] -1.3 -1.3 -1.0 -0.9 -0.7 -0.5 -0.4 -0.4 -0.3 -0.1 0.1 0.2 0.6

[14] 0.6 0.6 0.9 0.9 1.1 1.7 1.7
> y3=round(rnorm(25,-.5),1); sort(y3)
[1] -2.1 -2.1 -2.0 -1.7 -1.7 -1.7 -1.6 -1.5 -1.2 -0.9 -0.8 -0.7 -0.7

[14] -0.6 -0.6 -0.6 -0.4 -0.3 -0.2 0.1 0.3 0.3 0.5 0.6 0.7
> y4=round(rnorm(30),1); sort(y4)
[1] -2.2 -1.5 -1.1 -1.1 -1.0 -1.0 -1.0 -1.0 -0.9 -0.8 -0.8 -0.6 -0.5

[14] -0.5 -0.3 -0.3 -0.2 -0.2 -0.2 0.0 0.1 0.2 0.2 0.5 0.6 0.9
[27] 1.1 1.2 1.2 1.8
> KW.sim(list(y1,y2,y3,y4),PDF=T)

KW.observed p-value chi-square approx.
7.407918 0.054200 0.060000

> length(c(y1,y2,y3,y4))
[1] 85
> length(unique(c(y1,y2,y3,y4)))
[1] 34 # QUITE A FEW TIES
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Chi-Square Approximation

Simulated Kruskal−Wallis Statistic
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The Data for the Next Slide

> yy2=round(rnorm(20,.2),1) # y1, y3, y4 as before

> sort(yy2)

[1] -1.9 -1.8 -1.2 -1.0 -0.8 -0.7 -0.5 -0.4 -0.2 -0.1 0.0 0.2 0.5

[14] 0.5 0.6 0.9 1.4 1.9 2.2 2.3

> KW.sim(list(y1,yy2,y3,y4),PDF=T)

KW.observed p-value chi-square approx.

6.00119 0.10490 0.11160

> length(unique(c(y1,yy2,y3,y4)))

[1] 38 # QUITE A FEW TIES

The p-value increased even though we shifted the mean of yy2 away from zero.
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Chi-Square Approximation

Simulated Kruskal−Wallis Statistic
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Data Plot (with Ties)
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The Data for the Next Slide

> x1

[1] 2 4

> x2

[1] 3 5 7

> x3

[1] 1 6

> x4

[1] 2 6 8

> x5

[1] 5 8 9

> KW.sim(list(x1,x2,x3,x4,x5),PDF=T)

KW.observed p-value chi-square approx.

4.361111 0.415500 0.359300

> length(unique(c(x1,x2,x3,x4,x5)))

[1] 9
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Chi-Square Approximation

Simulated Kruskal−Wallis Statistic
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The Data for the Next Slide

> u1=round(rnorm(20),0); sort(u1)

[1] -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 3

> u2=round(rnorm(10,.5),0); sort(u2)

[1] -1 0 0 0 0 1 1 1 2 3

> u3=round(rnorm(10,-.5),0); sort(u3)

[1] -1 -1 -1 -1 -1 0 0 0 1 1

> u4=round(rnorm(30),0); sort(u4)

[1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1

[21] 1 1 1 1 1 1 1 1 1 2

> length(unique(c(u1,u2,u3,u4)))

[1] 5

> KW.sim(list(u1,u2,u3,u4))

KW.observed p-value chi-square approx.

4.848572 0.178200 0.183200
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Chi-Square Approximation

Simulated Kruskal−Wallis Statistic
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kruskal.test

> kruskal.test(list(u1,u2,u3,u4))

Kruskal-Wallis rank sum test

data: list(u1, u2, u3, u4)

Kruskal-Wallis chi-squared = 4.8486, df = 3, p-value = 0.1832

The intrinsic R function kruskal.test uses the chi-square approximation

to calculate p-values.
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Comments

In all the previous applications of KW.sim we used the default Nsim=10000.

The chi-square approximation appears to remain valid even for strongly tied data

as long as the sample sizes are not too small.

K measures the overall discrepancy of the sample rank averages Ri. from the

grand average of all ranks, i.e., (N +1)/2

K =
12

N(N +1)

s

∑
i=1

(
Ri.−

N +1
2

)2

It will be sensitive to level changes in the ranks, but not to dispersion changes.

This is the same behavior as was seen w.r.t. the Wilcoxon rank-sum test.
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Insensitivity to Dispersion Changes

> s1=rnorm(20,0,1)

> s2=rnorm(15,0,3)

> s3=rnorm(25,0,2)

> s4=rnorm(10,0,1)

> KW.sim(list(s1,s2,s3,s4))

KW.observed p-value chi-square approx.

3.320499 0.344100 0.344800

The simulated null distribution is still well approximated by the χ2
3 distribution.

However, Kobs does not stand out. K is not sensitive the scale changes.
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Chi-Square Approximation

Simulated Kruskal−Wallis Statistic
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Population Model

We dealt with a limited set of N subjects and s treatments were randomly assigned

to n1, . . . ,ns of them, n1 + . . .+ns = N. Conclusions are limited to these subjects.

Now consider s random samples from populations with respective CDF’s F1, . . . ,Fs.

Our null hypothesis is H0 : F1 = . . . = Fs without specifying the common CDF F .

In the context of s treatments we can consider a random sample from a population

and randomly assign s treatments to n1, . . . ,ns of them, n1 + . . .+ns = N.

This is equivalent to getting independent random samples of such sizes from

s distinct treatment populations with respective CDF’s F1, . . . ,Fs.
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Distribution of Ranks

Assume a continuous population, probability of ties is zero.

Under H0 the distribution of the ranks of the pooled observations is the same as in

our randomization model.

=⇒ The Kruskal-Wallis test is applicable with the same null distribution.

When ties are a possibility we can enter the same discussion as in the population

model for the Wilcoxon rank-sum test in case of ties.

We simply perform the KW -test conditionally given the pattern of ties.

The overall significance level ≤ maximum conditional significance level.

36



The Anderson-Darling k-Sample Test
Test H0 : F1 = . . . = Fk, i.e., all k samples∗ come from a common distribution F .

Estimate Fi(x) by the ith sample distribution function, i.e., by its EDF F̂i(x)

Estimate the common cdf F(x) by the EDF F̂(x) of all samples combined.

Under H0 we expect that the F̂i(x) should not differ much from F̂(x).

Compare F̂i(x), i = 1, . . . ,k, and F̂(x) via the Anderson-Darling discrepancy metric

ADk =
k

∑
i=1

ni

Z
B

[F̂i(x)− F̂(x)]2

F̂(x)(1− F̂(x))
dF̂(x) =

k

∑
i=1

ni
N

N−1

∑
r=1

[F̂i(Zr)− F̂(Zr)]2

F̂(Zr)(1− F̂(Zr))

where B denotes the set of all x for which F̂(x) < 1

Assuming no ties Z1 < .. . < ZN denote the ordered combined sample values.

Reject H0 for large ADk.

∗k = s here
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The ADk Test Is a Rank Test

Assume that all N observation Yi`, ` = 1, . . . ,ni, i = 1, . . . ,k are distinct (no ties).

From the second and computational form of ADk one can see that it depends on

the observations Yi` only through its ranks.

This becomes clear when looking at F̂i(Zr) which is the proportion of Yi` values

that are ≤ Zr, i.e., only the rank of the Yi` matters in such comparisons, since

Yi` ≤ Zr ⇐⇒ rank(Yi`)≤ rank(Zr) = r ⇐⇒ Ri` ≤ r

Some thought makes clear that the argument stays the same in the case of ties.

38



The Package adk

For R code to carry out the ADk test install package adk and see ?adk.test

after invoking library(adk) for each new R session.

adk uses an approximate null distribution derived under the assumption that ni→∞

for i = 1, . . . ,k. The approximation is quite reasonable when ni ≥ 5, i = 1, . . . ,k.

The exact null distribution (conditionally even in the case of ties) is easily estimated

via simulation. However, that is not yet implemented in adk.
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Anderson-Darling Test for Laboratory Comparisons

Comparison of four laboratories. Following are four sets of eight measurements

each of the smoothness of a certain type of paper, obtained in four different

laboratories:∗

Laboratory
A 38.7 41.5 43.8 44.5 45.5 46.0 47.7 58.0
B 39.2 39.3 39.7 41.4 41.8 42.9 43.3 45.8
C 34.0 35.0 39.0 40.0 43.0 43.0 44.0 45.0
D 34.0 34.8 34.8 35.4 37.2 37.8 41.2 42.8

Test whether there is any difference between laboratories.

∗Part of the data from Mandel, The Statistical Analysis of Experimental Data, Wiley, Interscience,
New York. 1964. Table 13.3.
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Data Preparation and adk.test Call

> laboratory.list=list(

+ x1=c(38.7,41.5,43.8,44.5,45.5,46.0,47.7,58.0),

+ x2=c(39.2,39.3,39.7,41.4,41.8,42.9,43.3,45.8),

+ x3=c(34.0,35.0,39.0,40.0,43.0,43.0,44.0,45.0),

+ x4=c(34.0,34.8,34.8,35.4,37.2,37.8,41.2,42.8))

> adk.test(laboratory.list}
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adk.test Output
Anderson-Darling k-sample test.

Number of samples: 4
Sample sizes: 8 8 8 8
Total number of values: 32
Number of unique values: 29

Mean of Anderson Darling Criterion: 3
Standard deviation of Anderson Darling Criterion: 1.20377

T = (Anderson Darling Criterion - mean)/sigma

Null Hypothesis: All samples come from a common population.

t.obs P-value extrapolation
not adj. for ties 4.44926 0.00236 1
adj. for ties 4.47978 0.00228 1
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kruskal.test Output

> kruskal.test(laboratory.list)

Kruskal-Wallis rank sum test

data: laboratory.list

Kruskal-Wallis chi-squared = 12.8757, df = 3, p-value = 0.004913

Based 20000 simulations the estimated p-values for adk.test were .00150 (.00155),

for kruskal.test it was .00185

for the randomization version of the standard F-test it was .00165.

In 106 simulations the estimated p-value of kruskal.test was .002092.
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