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Paired Comparisons

So far we compared treatment and control over two subject groups or samples.

Sometimes the background variation among study subjects or within the samples

is quite large and it becomes difficult to detect treatment effects.

We dealt with this already in Example 3 (Cultural Influences on IQ).

The effectiveness of treatment/control comparison can be increased if we make

such comparisons separately within several homogeneous subgroups.

The responses from subgroup to subgroup are allowed to vary substantially.

The smallest type of subgroup consists of two subjects.
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Natural Subgroups of Size Two

Twins or identical twins are good homogeneous subgroups of size two.

The feet, legs, hands or eyes of the human body are natural “twins” or pairs.

Subject can serve as control and treatment by applying both in some random order.

We can also create pairs of subjects by matching many of their background

characteristics, e.g., age, sex, health history, severity of disease under study,

geographic region, community size, etc.
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Randomization Model for Paired Comparisons

We have N paired subjects (homogeneous within, possibly quite variable between).

Assign the treatment at random, i.e., with probability 1/2, to one subject in each

pair and use the other as a control.

At this point we treat the subjects as given and not as a random selection from

some population.

Randomness only enters through the treatment assignment coin flip.

If a subject serves both for treatment and control, then the order is randomized.

This is called the randomization model for paired comparisons.

A corresponding population version of this model is discussed in Chapter 4.
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The Sign Test

Let SN be the number of pairs in which the response of the treated subject is “better”

than the response obtained for the corresponding control subject.

The hypothesis H0 of no difference between treatment and control is rejected

whenever SN is too large.

Often the designation of “better” is based on the difference of some score under

treatment and control, and a positive difference is interpreted as better.

That’s is the reason for calling this test the sign test.

At this points we assume just + and − judgments. Zeros will be addressed later.
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Null Distribution of the Sign Test

Under the hypothesis H0 we perform N independent coin flips.

The responses of both subjects within any given pair would be the same,

regardless of the assignment of treatment and control.

Thus SN has a binomial distribution with parameters N and p = 1/2, i.e.,

PH0(SN = k) =
(

N
k

)
1

2N for k = 0,1,2, . . . ,N.

It is easy to find p-values for any observed value sN of SN , i.e.,

PH0(SN ≥ sN) =
N

∑
i=sN

(
N
i

)
1

2N

Working with p-values to judge level α significance is more effective than using the

critical points available for a finite number α’s.
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Example 1: A Headache Remedy

15 subjects are each given two two bottles, one containing the standard drug for

tension headache and the other the new treatment.

Each bottle had been randomly labeled A and B. Only the experimenter knows

whether A or B corresponds to the new treatment for any given patient.

The patients are asked to alternate taking pills from the two bottles at the onset of

any tension headache and to make an overall judgment as to which bottle

generally gave better results, A or B.

It turned out that 10 of 15 subjects preferred the new drug.

=⇒ p-value = PH0(S15≥ 10)= 1−PH0(S15≤ 9)=1-pbinom(9,15,.5)=0.15088
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Large Sample Approximation

Under H0 : no difference ( =⇒ p = .5) the mean and variance of SN are

EH0(SN) = N p =
N
2

and varH0(SN) = N p(1− p) =
N
4

.

For large N the null distribution of SN is well approximated by a normal distribution

(the quality of the normal approximation to Binomial(N, p) is best when p = .5)

SN−N/2√
N/4

−→N (0,1)

Again, the continuity correction greatly improves the approximation.

For our previous example we get

PH0(SN ≥ 10) = PH0

(
SN−N/2√

N/4
≥ 9.5−7.5√

15/4

)
= Φ

(
−2

1.936492

)
= 0.15085

remarkably close to 0.15088.
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Zero Differences
So far we acted as though we will have just + and − responses.

However, in some cases we may get a zero or a tie,

neither control nor treatment comes out ahead.

In such situations we will have to track three counts N+, N0, and N−.

If we attach scores of 1, 1
2, and 0 to each subject pair response and then proceed

analogous to our tie version of the Mann-Whitney statistic W∗XY , we would take
N+ + N0/2 as our test statistic.

Note that under H0 the count N0 will always be fixed, since the nature of a tie is

preordained under H0. Thus N+ + N0/2 and N+ are equivalent test statistics.

Under H0 we have N+ ∼ Binom(N−N0,1/2) and we reject H0 for large N+.

We discard the tie subjects and work with fewer subjects, suffering a loss of power.
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Using More Than Just the Signs

The sign test only uses the signs of differences.

A more effective comparison would use the magnitudes of the differences as well.

Example 2: Testing a new fertilizer

Three strawberry fields are divided into two parts each. Two fertilizers, a new one

and the traditional one, are randomly assigned to one of the parts in each field.

The yields on the fields are: 76 and 78 lb for field 1, 82 and 91 lb for field 2, and

80 and 86 lb for field 3, with corresponding differences of 2, 9 and 6 lb.

The sign test uses only the signs of the differences based on fertilizer assignments.

Testing H0: no fertilizer difference, two + signs would seem to present a stronger

case against H0 when the + signs go with 6 and 9 rather than with 2 and 6.
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Signed Differences and Signed Ranks

signed differences −2,−6,−9 −2,−6,+9 −2,+6,−9 −2,+6,+9

signed ranks −1,−2,−3 −1,−2,+3 −1,+2,−3 −1,+2,+3

signed differences +2,−6,−9 +2,−6,+9 +2,+6,−9 +2,+6,+9

signed ranks +1,−2,−3 +1,−2,+3 +1,+2,−3 +1,+2,+3

Under H0 all yields would be the same no matter which fertilizer was used.

The randomized ferilizer assignment simply determines whether we evaluate the

yields of 76 and 78 lb on the first field as 76−78 =−2 lb or 78−76 = 2 lb,

and similarly for the other fields, i.e., −9 or +9 and −6 or +6.

There 2×2×2 = 8 possible fertilizer assignments, i.e., sign combinations, and

thus signed rank sets. This gives us the null distribution of the signed rank sets.
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Signed Ranks in General
The previous, deliberately simple example easily generalizes to N pairs of subjects.

We have N differences of scores, treatment score − control score.

N+ = n with a + sign and N− = m with a − sign, with N+ +N− = N.

The absolute differences are ranked 1,2, . . . ,N. We assume no ties among

absolute ranks and also no zero differences. We will revisit that issue later.

The ranks corresponding to the + signs are denoted by S1 < .. . < Sn and those

corresponding to − signs are R1 < .. . < Rm.

There are 2N possible sign combinations ±1,±2, . . . ,±N.

There is a one-to-one correspondence between sign combinations and ranks sets

(S1, . . . ,Sn) (including also the empty set, corresponding to N − signs).
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Binomial Identity and 1-1 Correspondence
For any given n there are

(N
n
)

ways to select any ordered subset S1 < .. . < Sn from

1,2, . . . ,N.

This covers n = 0 as well, since
(N

0
)

= 1 and there is just one way to choose n = 0

ranks from 1,2, . . . ,N, just as there is
(N

N
)

= 1 way to choose all when n = N.

Our previous equivalence is just a reformulation of the following binomial identity

2N = (1+1)N =
(

N
0

)
+
(

N
1

)
+ . . .+

(
N

N−1

)
+
(

N
N

)
which in more general form is written as

(x+ y)N =
(

N
0

)
x0yN−0 +

(
N
1

)
x1yN−1 + . . .+

(
N

N−1

)
xN−1y1 +

(
N
N

)
xNy0

=
N

∑
i=0

(
N
i

)
xiyN−i
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The Wilcoxon Signed Rank Test

Under H0 each sign vector has same chance 1/2N of occurring.

Another way to express this is by

PH0(N+ = n,S1 = s1, . . . ,Sn = sn) =
1

2N

If we test H0 against the alternative of a beneficial treatment effect we would

consider a lot of positive score differences and in addition high positive differences

as strong evidence against H0.

These two criteria can be combined in the following signed-rank test statistic

Vs = S1 + . . .+Sn with Vs = 0 when n = 0.

We reject H0 when Vs ≥ c. This is the Wilcoxon signed-rank test.
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Wilcoxon Rank-Sum and Signed-Rank Tests

We note the formal similarity in the two Wilcoxon type tests

Ws = S1 + . . .+Sn ≥ c and Vs = S1 + . . .+Sn ≥ c

In the first (rank-sum) test the Si are the ranks (among 1,2, . . . ,N) of the treated

subjects scores. In that case n is fixed a priori.

In the second (signed rank) test the Si are the ranks of the positive signed ranks,

among±1, . . . ,±N. In that case n is random and can take any value from 0,1, . . . ,N.

The two rank statistics Ws and Vs have quite different null distributions and thus

different critical points c for any given α.

When no confusion is possible we refer to the Wilcoxon signed-rank test simply

as the Wilcoxon test, just as we did in discussing the Wilcoxon rank-sum test.
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The Null Distribution of Vs
We illustrate the calculation of the null distribution of Vs by using the previous

fertilizer example. We simply compute Vs for each realization of signed ranks and

aggregate probabilities for common results.

signed ranks v

(−1,−2,−3) 0

(−1,−2,+3) 3

(−1,+2,−3) 2

(−1,+2,+3) 5

(+1,−2,−3) 1

(+1,−2,+3) 4

(+1,+2,−3) 3

(+1,+2,+3) 6

v PH0(Vs = v)

0 1/8

1 1/8

2 1/8

3 2/8

4 1/8

5 1/8

6 1/8
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Another Example

The following table gives the tensile strengths of tape-closed and suture-closed

wounds. These results were obtained on 10 rats, 40 days after incisions on the

rats’ backs were treated by tape or suture.

Rat 1 2 3 4 5 6 7 8 9 10

Tape 659 984 397 574 447 479 676 761 647 577
Suture 452 587 460 787 351 277 234 516 577 513

Difference 207 397 -63 -213 96 202 442 245 70 64
signed rank 6 9 -1 -7 4 5 10 8 3 2

Suppose we test the hypothesis H0 of no differences in method against the

alternative that tape-closed wounds tend to be stronger.
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Computing Effort

If we were to repeat the full enumeration for all signed rank vectors as in the

previous example, where 2N = 23 = 8, we would now face 2N = 210 = 1024,

a more substantial undertaking.

Since Vs +Vr = N(N +1)/2 and since there are only few negative signs, it is

computationally more effective to use Vr = R1 + . . .+Rm as test statistic and

reject H0 when Vr is too small, since that is equivalent to Vs being too large.

The observed value of Vr is Vr = 1+7 = 8 and we won’t have to gather too many

signed rank vectors to get the p-value or observed significance level for v = 8.
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The Calculation

To obtain the p-value of v = 8 we need to list all m and rank vectors r1 < .. . < rm

for which Vr ≤ 8.

m = 0 empty set

m = 1 r1 = 1,2, . . . ,8

m = 2 (r1,r2) = (1,2),(1,3), . . . ,(1,7),(2,3), . . . ,(2,6),(3,4),(3,5)

m = 3 (r1,r2,r3) = (1,2,3),(1,2,4),(1,2,5),(1,3,4)

with a total number of signed-rank cases of 1+8+(6+4+2)+(3+1) = 25

=⇒ p-value(8) = PH0(Vr ≤ 8) =
25

1024
= 0.0244

In comparison, the sign test would have given us a less significant p-value of

PH0(S10 ≤ 2) =
[(

10
0

)
+
(

10
1

)
+
(

10
2

)]
1

210 =
1+10+45

1024
= .0547

18



Sign Test & Signed-Rank Test

The Wilcoxon test is typically more powerful than the sign test.

The sign test statistic in the case N = 3 has just 4 possible values, namely 0,1,2,3.

The Wilcoxon test statistic for N = 3 had 7 possible values 0,1,2, . . . ,6.

This gives it more discriminatory possibilities and thus more power.

Why then use the sign test?

There are situations where only + and − can be obtained in paired comparisons.
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Computational Issues
The two examples treated so far were either for

very small N = 3, where we gave the full null distribution of Vs, or

for moderate N = 10, where a full null distribution was not attempted manually,

since 210 = 1024, but a p-value was easily managed by taking advantage of

circumstances and organized listing of more extreme cases than the observed one.

2N grows very rapidly, in fact more rapidly than
(N

n
)
, see previous binomial identity.

R provides the function psignrank and other associates (→ documentation).

psignrank(8,10) = 0.02441406

I don’t know its limitations. It may switch to a normal approximation.

Vs and Vr have the same distribution, symmetric around its mean N(N +1)/4,

and with variance var(Vs) = N(N +1)(2N +1)/24.
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Normal Approximation

Vs =
N

∑
i=1

i ·Bi with Bi independent Bernoulli random variables with p = 1/2

suggests a normal approximation should be reasonable for moderate or large N.

The above representation of Vs easily leads to the previous mean and variance

formulas, using ∑
N
i=1 = N(N +1)/2 and ∑

N
i=1 i2 = N(N +1)(2N +1)/6.

For our previous wound treatment example involving N = 10 rats we get

PH0(Vr ≤ 8) = PH0

(
Vr−N(N +1)/4√

N(N +1)(2N +1)/24
≤ 8+ .5−10 ·11/4√

10 ·11 ·21/24

)
≈ Φ(−1.9367) = 0.0264 (reasonably close to .0244)

Note again the use of the continuity correction 8+ .5 in place of just 8.
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Approximation Quality N = 10
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Approximation Quality N = 15
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Approximation Quality N = 20
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Approximation Quality N = 25
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Approximation Quality N = 30
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Comments on Approximation Quality

The previous plots compare left tail probabilities p = PH0(Vs ≤ v)

over the range [.01, .2] on a logarithmic scale.

The continuity correction appears to be better than the straight normal

approximation for p≥ .04, for p < .04 the situation appears reversed.

However, the differences become smaller as N gets larger.

Since we have psignrank at our disposal, this is no great issue for us.
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Using wilcoxsign test

tape=c(659 , 984 , 397 , 574 , 447 , 479 , 676 , 761 , 647 , 577)

suture=c(452 , 587 , 460 , 787 , 351 , 277 , 234 , 516 , 577 , 513)

wilcoxsign_test(tape˜suture,alter="greater",dist=exact())

Exact Wilcoxon-Signed-Rank Test

data: y by x (neg, pos)

stratified by block

Z = 1.9876, p-value = 0.02441

alternative hypothesis: true mu is greater than 0
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Some Comments

Previously we computed the p-value via P0(Vr ≤ 8) by careful enumeration

or using psignrank(8,10) = 0.02441.

The previous slide rejects H0 when Vs is too large.

Since Vs +Vr = N(N +1)/2 = 55 we have Vr ≤ 8 ⇐⇒ Vs ≥ 55−8 = 47

with p-value 1−psignrank(46,10) = 1−0.9756 = 0.02441.

wilcoxsign_test(tape˜suture,alter="less",dist=exact())

will give you a p-value of P0(Vr ≤ 47) = 0.9814

which includes P0(Vr = 47) just as P0(Vr ≥ 47) did.

That is why the two p-values don’t add to 1.
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Alternative Interpretation of Vs

Let Z1, . . . ,ZN denote the comparison differences for the N subjects.

Consider the
(N

2
)
+N averages (Zi +Z j)/2 with i≤ j. Then

Vs = number of positive averages (Zi +Z j)/2 with i≤ j

Proof: Assume that the Zi are indexed such that 0 < |Z1|< |Z2|< .. . < |ZN|

∑
i≤ j

I[Zi+Z j>0] =
N

∑
j=1

j

∑
i=1

I[Zi+Z j>0] =
N

∑
j=1

j× I[Z j>0] = Vs

where the indicator function IB is 1 when B is true and 0 otherwise.

For the second = in the above equation note that

Z j > 0 =⇒ ±Zi < Z j = |Z j| for i≤ j , i.e., Zi +Z j > 0 for all i≤ j

Z j < 0 =⇒ ±Zi > Z j =−|Z j| for i≤ j , i.e., Zi +Z j < 0 for all i≤ j �
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Possibility of Ties and Zeros
Our previous treatment assumed that there are no ties among the absolute

differences |Zi| and that no differences Zi are zero.

Example: Suppose that we have N = 7 pairs of scores, each score on a scale
of −2,−1,0,1,2, corresponding to an assessment of very poor, poor, indifferent,
good, and very good.

Suppose the 7 observed pairs (control,treatment) of scores are

(−1,0), (−2,0), (1,0), (2,2), (0,0), (−1,1), (0,0)

with corresponding score differences, treatment − control, of 1, 2, −1, 0, 0, 2, 0,

with absolute values in increasing order given by 0, 0, 0, 1, 1, 2, 2

with midranks 2, 2, 2, 4.5, 4.5, 6.5, 6.5.

The example covers all contingencies of violating our previous assumption:

we have zeros, even several zeros, we have tied absolute values,

some with same sign, some not.
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Signed Midrank Statistic with Ties and Zeros

Multiplying each midrank by +1, −1, or 0, as the corresponding difference is

positive, negative or zero, we get the signed midranks shown in the table below

Difference −1 0 0 0 +1 +2 +2

Signed Midrank −4.5 0 0 0 +4.5 +6.5 +6.5

The sum of positive signed midranks is then

V ∗s = 4.5+6.5+6.5 = 17.5

To assess the significance of the observed value 17.5 we need to get the

null distribution of V ∗s .

32



The Null Distribution of V ∗s (Special Case)
Under H0 the zeros are not affected by treatment/control assignments, thus we

disregard them after midranking of the |Zi|. Due to Pratt (1959) JASA 655-667.

(s∗1, . . . ,s
∗
n) None 4.5 6.5 4.5,4.5 4.5, 6.5 6.5, 6.5 4.5, 4.5, 6.5 4.5, 6.5, 6.5 4.5, 4.5, 6.5, 6.5

V ∗s 0 4.5 6.5 9 11 13 15.5 17.5 22

Probability 1
16

2
16

2
16

1
16

4
16

1
16

2
16

2
16

1
16

For midranking after discarding zeros→ Text under Further Developments 5B.

The null distributions are not necessarily equivalent.

If a priori large values of V ∗s are considered to be significant evidence against H0,

then we get as observed significance level or p-value from the above table

PH0(V
∗
s ≥ 17.5) =

3
16

= .1875
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The Null Distribution of V ∗s (General Case)
It becomes quickly impossible to obtain the null distribution of V ∗s manually.

psignrank does not apply in such situations (zeros and ties).

We can use combn to accumulate all possible sums of positive signed midranks.

This may work when M = N−d0 is not too large, where d0 = # of zero differences.

We can use

wilcoxsign test(y1∼x1,alter="greater",dist=exact(), ties = "Pratt")

where y is the vector of treatment scores and x is the vector of control scores.

We could estimate the null distribution by simulation, i.e., simulating multipliers ±1

according to independent fair coin flips. 2*rbinom(10,1,.5)-1 produces such a

vector of length 10. The multipliers are used to create the signed rank statistics.

We can use a normal approximation for moderate or large N.
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Normal Approximation for the V ∗s Null Distribution

The mean and variance of V ∗s under H0 are given by

EH0(V
∗
s ) =

N(N +1)−d0(d0 +1)
4

, where d0 = number of zero differences,

and

varH0(V
∗
s ) =

N(N +1)(2N +1)−d0(d0 +1)(2d0 +1)
24

− 1
48

e

∑
i=1

di(di−1)(di +1)

where d1, . . . ,de are the numbers of ties for each of the e distinct nonzero absolute

differences.

A limit theorem shows that

(V ∗s −EH0(V
∗
s ))
/√

varH0(V
∗
s ) ≈ N (0,1) as N−d0 −→ ∞

Again we do not use a continuity correction in the approximation.
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Symmetry of the V ∗s Null Distribution

The distribution of V ∗s is symmetric around its mean, i.e.,

V ∗s −EH0(V
∗
s ) D=−[V ∗s −EH0(V

∗
s )] = [EH0(V

∗
s )−V ∗s ]

We will use the following representation of V ∗s

V ∗s =
M

∑
i=1

Biai =⇒ EH0(V
∗
s ) =

1
2

M

∑
i=1

ai and varH0(V
∗
s ) =

1
4

M

∑
i=1

a2
i

Here the Bi are independent Bernoulli random variables with p = .5 and the ai are

the remaining midranks of the absolute M ≤ N differences

(after omission of those corresponding to zeros).

V ∗s =
M

∑
i=1

Biai
D=

M

∑
i=1

(1−Bi)ai =
M

∑
i=1

ai−
M

∑
i=1

Biai =
M

∑
i=1

ai−V ∗s

V ∗s −
1
2

M

∑
i=1

ai
D=

1
2

M

∑
i=1

ai−V ∗s �
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Example 4: Vitamin B and IQ
74 children in an orphanage were divided into 37 matched pairs, a randomly chosen

child in each pair got the Vitamin B pill each day while the other got a placebo.

After 6 weeks the gains in IQ were obtained. The table shows results for 12 pairs

Pair 2 5 8 11 14 17 20 23 26 29 32 35

Treated 14 18 2 4 -5 14 -3 -1 1 6 3 3

Control 8 26 -7 -1 2 9 0 -4 13 3 3 4

Difference 6 -8 9 5 -7 5 -3 3 -12 3 0 -1

Signed Midrank 8 -10 11 6.5 -9 6.5 -4 4 -12 4 0 -2

with V ∗s = 40, EH0(V
∗
s ) = 38.5, varH0(V

∗
s ) = 161.625 and

p-value(40) = PH0(V
∗
s ≥ 40) = 1−Φ

(
40−38.5√

161.625

)
= .45304

=⇒ vitamin treatment clearly is not significant, at least not over this time span.
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Example 4: Vitamin B and IQ (Simulation)
VitaminBsim=function(Nsim=10000){
y=c(14, 18, 2, 4, -5, 14, -3, -1, 1, 6, 3, 3)
x=c(8, 26, -7, -1, 2, 9, 0, -4, 13, 3, 3, 4)
dyx=y-x ; adyx=abs(dyx)
signyx=rep(0,length(dyx)) ; signyx[dyx>0]=1 ; signyx[dyx<0]=-1
rd=rank(adyx)*signyx
Vstar=sum(rd[rd>0])
adyxr=adyx[signyx!=0] ; Nr=length(adyxr)
rdr=abs(rd[signyx!=0])
Vvec=NULL
for(i in 1:Nsim){

signyxr=rbinom(Nr,1,.5)*2-1
Vvec[i]=sum(rdr[signyxr>0])

}
pval.sim=mean(Vvec>=Vstar)
pval.sim
}
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Simulation Result for Nsim = 100,000
Running

VitaminBsim(Nsim = 100000)

yielded 46138/100000 =0.46138 (≈ 80 seconds)

A 99% confidence interval (.4573, .4654) for the true p-value can be computed via

> qbeta(.005,46138,100000+1-46138) # 99.5% lower bound
[1] 0.4573163
> qbeta(.995,46138+1,100000-46138) # 99.5% upper bound
[1] 0.4654473

This interval just misses the normal approximation value .45304.

This reflects on the quality of the normal approximation, not on the interval.

Another run gave .46123 with 99% confidence interval (0.4572,0.4653) /∈ .45304.
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Example 4: Vitamin B and IQ (Exact)

> y=c(14 , 18 , 2 , 4 , -5 , 14 , -3 , -1 , 1 , 6 , 3 , 3)

> x=c(8 , 26 , -7 , -1 , 2 , 9 , 0 , -4 , 13 , 3 , 3 , 4)

> wilcoxsign_test(y˜x,alternative="greater",distr=exact())

Exact Wilcoxon-Signed-Rank Test

data: y by x (neg, pos)

stratified by block

Z = 0.0891, p-value = 0.4741

alternative hypothesis: true mu is greater than 0

> wilcoxsign_test(y˜x,alternative="greater",distr=exact())

The exact value falls outside the previous confidence interval by an even larger

margin. Given that it is exact, there is no excuse. What gives?
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SignedRankExact
We can use combn to go through all 2M possibilities of summing k of the midranks

to form V ∗s , for k = 0,1,2, . . . ,M.

M = N−d0 is the number of midranks left after those midranks corresponding to

zero differences are deleted.

The R function SignedRankExact (→ class web site) computes the exact null

distribution of V ∗s , returns its mean and standard deviation, its observed value

V ∗s,obs, the corresponding Z value, and the p-value, assuming that Y will tend to

be larger than X under the alternative.

For the opposite alternative reverse the roles of X and Y .

SignedRankExact has a flag argument. If flag=TRUE (FALSE) the ranking is

done before (after) the removal of the zero cases. The next two plots show the

results for flag=TRUE and flag=FALSE for the Vitamin B-IQ data.
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Exact Null Distribution (Vitamin B-IQ)
remove zeros after ranking

Vs
*

D
en

si
ty

0 20 40 60 80

0.
00

0.
01

0.
02

0.
03

PH((Vs
* ≥≥ 40)) == 0.4609

42



Exact Null Distribution (Vitamin B-IQ)
ranking after removing zeros

Vs
*

D
en

si
ty

0 20 40 60

0.
00

0.
01

0.
02

0.
03

0.
04

PH((Vs
* ≥≥ 34)) == 0.4741

43



Some Comments

It appears that wilcoxsign test uses the flag=FALSE option.

This was the version of the test originally proposed by Wilcoxon.

It is also the choice in Hollander and Wolfe, Nonparametric Statistical Methods,

(1999, 2nd edition). However, Pratt (1958) makes a strong case for using the

version in the Text. This limits our use of wilcoxsign test to the non-zero case.

I have probed SignedRankExact a little to find out how large a value of M

could still be used, but I have not pushed it to the limit.

For M = 20 we have 2M = 1,048,576

It took about about 57 seconds on this old 900 MHz laptop with 500MB RAM.

A 1.73 GHz laptop with 2GB of RAM took 21 seconds. Both are on Unbuntu Linux.

For M = 25, i.e., 2M = 33,554,432, the latter took 555 seconds or 9.25 minutes.
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Revised Version of wilcoxsign test
These findings on the treatment of zero rankings =⇒ updated coin package.

wilcoxsign test in coin 1.0-3 now has an additional argument ties.

> y1 <- c(14 , 18 , 2 , 4 , -5 , 14 , -3 , -1 , 1 , 6 , 3 , 3)
> x1 <- c(8 , 26 , -7 , -1 , 2 , 9 , 0 , -4 , 13 , 3 , 3 , 4)
> pvalue(wilcoxsign_test(y1˜x1,alter="greater",dist=exact()))
[1] 0.4741211
> pvalue(wilcoxsign_test(y1˜x1,alter="greater",dist=exact(),
+ ties = "Pratt"))
[1] 0.4609375

Note the use of pvalue(...) which extracts the p-value from the structure

returned by wilcoxsign test(...)

The other value for ties is ties="HollanderWolfe" which also is the default

when ties is omitted.
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Alternate Form of V ∗s

Suppose the N differences are denoted by Z1, . . . ,ZN .

Then

V ∗s =
[
number of positive averages (Zi +Z j)/2 with i≤ j

]
+ 1

2

[
number of averages (Zi +Z j)/2 with i≤ j that are zero

]
− 1

4
d0(d0 +1)

The proof is similar to the previous one for Vs.
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Combining Data from Several Experiments or Blocks

Sometimes it is desirable to combine results from several comparative studies

concerning the same treatment, with the hope of increasing the power of detecting

a treatment effect.

Example 5: Televised vs. Live Instruction

12 students of widely varying background and ability are divided into 6 more

homogeneous pairs. One student in each pair is randomly selected to be part of

the live instruction class, the other is put in the televised version.

Then it became known that another instructor had carried out a similar experiment

with 5 matched student pairs.
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Televised vs. Live Instruction Results
TV 70 77 80 80 84 73

Live 73 75 80 83 85 74

Difference −3 2 0 −3 −1 −1

Signed midrank −5.5 +4 0 −5.5 −2.5 −2.5

TV 85 93 90 91 89

Live 89 92 90 98 87

Difference −4 1 0 −7 2

Difference −7 −4 −3 −3 −1 −1 0 0 1 2 2

Signed midrank −11 −10 −8.5 −8.5 −4 −4 0 0 4 6.5 6.5

=⇒ V ∗s = 4+6.5+6.5 = 17
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Comments

Under H0 of no difference between live and TV instruction the scores for all 11

pairwise comparisons would have been the same, with equal chance of± assigned

to each absolute score.

We took the signed rank sum of midranks, as obtained before discarding zeros.

> SignedRankExact(TV,Live,alternative="less")

Vs.star.obs meanVs.star sigVs.star Z p.val p.val.normal

17.0000 31.5000 11.1580 -1.2995 0.1074 0.0969

The normal approximation gives a reasonable result.
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Exact Null Distribution (Live-TV Instruction)
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Different Experimental Scenario for Live-TV Instruction

Without pairing any of the 10 students we randomly select 5 to get TV instruction,

the other 5 getting live instruction. We obtain the following scores

68 69 74 82 93 and 72 75 83 95 100

for televised and live instruction, respectively.

Assume the comparison is repeated in another semester with 8 students, split

randomly into groups of 4 and 4 with corresponding scores

47 51 52 56 and 54 59 60 70

Can we combine the scores for each teaching method into 9 and 9 scores and

apply the Wilcoxon rank-sum test?
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Block to Block Variation
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Joint Ranking?

As the previous plot made clear, there is a substantial difference between the

two groups or blocks, the scores of the second group being generally lower.

Such block effects may be due to a different teacher, harder tests,

stiffer grading, different groups of students.

In performing a joint ranking we would compare treatment scores from the

second group with control scores from the first.

The fact that these control scores would be higher than the second group’s

treatment scores would confuse the group difference with possible score

differences due to treatment.
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Blocked Comparison Situations

Blocking of subjects occurs frequently: animal litters, observations taken on the
same day, in the same clinic or school, composite material produced from same
chemical batch, and so on.

Blocks can also be created by matching subjects on extraneous variables

such as age, sex, income, etc.

Let there be b blocks of Ni respective experimental subjects, i = 1, . . . ,b.

ni randomly chosen subjects within the ith block receive the treatment,

the other mi = Ni−ni act as controls. Let

N = N1 + . . .+Nb n = n1 + . . .+nb m = m1 + . . .+mb = N−n

By design, the n treatment assignments are no longer completely random, since

not all
(N

n
)

treatment assignment are possible.

Instead we have
(N1

n1

)(N2
n2

)
. . .
(Nb

nb

)
possible treatment assignments, all equally likely.
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Ranking within Blocks

In order to avoid having block effects getting tangled up with treatment effects

we should rank the subjects separately within each block.

Let Si1 < .. . < Sini be the ranks of the treated subjects in the ith block and denote

their rank-sum by

W (i)
s = Si1 + . . .+Sini

Before we examined a set of treatment ranks for treatment effect by taking their

rank-sum as a single univariate criterion.

Similarly we could take the sum of block rank-sums as a single univariate criterion.

Better yet, since different block sizes Ni are involved with each block rank-sum, it

might make sense to take a weighted linear combination, i.e., ∑i ciW
(i)
c .
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Optimally Weighted Sum of Rank-Sums
It turns out that taking the coefficients ci = 1/(Ni+1) gives optimal power in certain

settings, see the Text, Further Developments 5D.

This leads to the blocked comparison Wilcoxon test statistic

Ws =
b

∑
i=1

W (i)
s

Ni +1
note Ws +Wr =

b

∑
i=1

W (i)
s +W (i)

r
Ni +1

=
b

∑
i=1

Ni(Ni +1)/2
Ni +1

=
b

∑
i=1

Ni
2

Ws is equivalent to the straight sum of block rank-sums when all Ni are the same.

Due to the complexity of the possible blocking structures ((Ni,ni), i = 1 . . . ,b) it is
no longer feasible to tabulate the null distribution of Ws.

However, the normal approximation can be applied quite easily and R allows

computation of the exact null distribution by successive uses of combn and outer,

provided
(N1

n1

)(N2
n2

)
. . .
(Nb

nb

)
does not get too large.

These two approaches balance each other.
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Comments on Symmetry

If the rankings in each block avoid ties then the resulting symmetry of the W (i)
s

distributions implies symmetry of the Ws distribution.

W (i)
s −ai

D= ai−W (i)
s for i = 1, . . . ,b

=⇒
b

∑
i=1

ciW
(i)
s −

b

∑
i=1

ciai =
b

∑
i=1

ci(W
(i)
s −ai)

D=
b

∑
i=1

ci(ai−W (i)
s )=

b

∑
i=1

ciai−
b

∑
i=1

ciW
(i)
s

With ties in the within block rankings such symmetry may no longer hold.
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Example 4: Advertising Methods

Two methods of advertising are to be compared for the same product.

One method is aggressive and obnoxious (treatment),

the other is pleasing (control). The treatment is conjectured to improve sales.

The success is measured by the consumption/sales of that product.

Test market cities vary greatly in size. If consumption were proportional to size,

one could adjust for that. But that assumption is doubtful.

Hence we block by the size of the test market cities.

2 large cities, 2 groups of 3 intermediate size cities, and one group of 6 small towns.

The treatments are randomly assigned within each block.
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Results of Advertising Experiment
consumption figures ranks

Block Control Treatment Control Treatment

1 236 255 1 2

2 183 179, 193 2 1, 3

3 115, 128 132 1, 2 3

4 61, 70, 79 67, 84, 88 1, 3, 4 2, 5, 6

For convenience we work with the smaller numbers and use

Wr =
4

∑
i=1

W (i)
r

Ni +1
=

W (1)
r
3

+
W (2)

r
4

+
W (3)

r
4

+
W (4)

r
7

We reject H0 : no treatment effect, when Wr ≤ c. Since it is easier to work with

integers, we use the smallest common denominator multiple of Ws, i.e.,

84Wr = 28W (1)
r +21W (2)

r +21W (3)
r +12W (4)

r
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The Calculation
The observed value of 84Wr is

84Wr = 28×1+21×2+21× (1+2)+12× (1+3+4) = 229

For the p-values we need to find PH0(84Wr ≤ 229).

28W (1)
r 21W (2)

r 21W (3)
r 12W (4)

r

28 56 21 42 63 63 84 105 72 84 96 108 120 · · ·
1
2

1
2

1
3

1
3

1
3

1
3

1
3

1
3

1
20

1
20

2
20

3
20

3
20 · · ·

Note that the 63’s come about as 21W (2)
r = 21×3 and 21W (3)

r = 21× (1+2).

Fix 28W (1)
r ,21W (2)

r ,21W (3)
r at their lowest values 28,21,63 with sum 112,

with probability 1
2×

1
3×

1
3 = 1

18.

To get 84Wr ≤ 229 we need 12W (4)
r ≤ 229−112 = 117 with probability 7

20,

with total probability 7
360 for all 4 conditions.
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The Calculation (continued)

The next smallest sum for 28W (1)
r +21W (2)

r +21W (3)
r has to be 21 higher

28+21+84 = 28+42+63 = 133 with probability 2
18.

To have 84Wr ≤ 229 we need 12W (4)
r ≤ 229−133 = 96, with probability 4

20,

thus with overall probability 8
360 for these cases.

After dealing with a few more cases in similar fashion we arrive at (Problem 46)

PH0

(
Wr ≤

229
84

)
= PH0(84Wr ≤ 229) =

20
360

= .0556

This calculation was tedious but manageable, because the problem was of small

size and we used a systematic process.
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Means & Variances for W (i)
r /(Ni +1) & W (i)

s /(Ni +1)

Means and variances of W (i)
r /(Ni +1) & W (i)

s /(Ni +1) are given (without ties) by

EH0
W (i)

r
Ni +1

=
mi
2

EH0
W (i)

s
Ni +1

=
ni
2

VarH0
W (i)

r
Ni +1

= VarH0
W (i)

s
Ni +1

=
mini

12(Ni +1)

i mi ni Ni EH0[(W
(i)
r /(Ni +1)] VarH0[W

(i)
r /Ni +1)]

1 1 1 2 1
2

1
36

2 1 2 3 1
2

1
24

3 2 1 3 1 1
24

4 3 3 6 3
2

3
28
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Means & Variances for Normal Approximation

EH0(Wr) =
4

∑
i=1

EH0

(
W (i)

r
Ni +1

)
=

4

∑
i=1

mi
2

=
1
2

+
1
2

+1+
3
2

=
7
2

and because of the independent randomizations from block to block

varH0(Wr) =
4

∑
i=1

varH0

(
W (i)

r
Ni +1

)
=

4

∑
i=1

mini
12(Ni +1)

=
1
36

+
1
24

+
1

24
+

3
28

=
55
252

= 0.218254

As normal approximation we thus get

PH0

(
Wr ≤

229
84

)
≈Φ

(
229/84−7/2√

55/252

)
= Φ(−1.6564) = 0.0488

as compared to the exact value of .0556 obtained earlier. The approximation quality

is not too bad given that we deal with very small block sizes.
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BlockedWilcoxon
BlockedWilcoxon=function(datlist,alternative="greater",

Nsim=10000,PDF=F){

# This function needs as input a list of lists, say b lists.

# Each of the b lists should consist of two vectors x and y

# in that order, where y represents the treatment scores

# and x represents the control scores for the block

# represented by this sublist.

# It is assumed that the random assigment of treatments

# from block to block are independent.

# alternative="greater" means that we expect that the y-scores

# will tend to be larger than the x-scores under the alternative.

# Other values for alternative are "less" and "two.sided", with

# corresponding meanings.

# This function evaluates the exact null distribution and

# exact p-value when the number of combined randomization

# combinations over all blocks does not exceed Nsim. Otherwise it

# estimates the null distribution by Nsim simulations.
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Input List for BlockedWilcoxon

The following shows how to construct the input list for the advertising example.

> advertising=list()

> advertising[[1]]=list(x=236,y=255)

> advertising[[2]]=list(x=183,y=c(179,193))

> advertising[[3]]=list(x=c(115,128),y=132)

> advertising[[4]]=list(x=c(61,70,79),y=c(67,84,88))

The call BlockedWilcoxon(advertising) produces the plot on the next slide.

Note that we show there the distribution for Ws and not that of the equivalent Wr.

However, for Ws we would reject H0 when Ws is too large. Recall

Ws +Wr =
b

∑
i=1

W (i)
s

Ni +1
+

b

∑
i=1

W (i)
r

Ni +1
=

b

∑
i=1

Ni
2

The p-values are the same.
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Null Distribution of Ws = ∑
4
i=1W (i)

s /(Ni +1)
Block Combined Wilcoxon Test

D
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Ws == ∑∑
i==1

4
Ws

(i) ((Ni ++ 1))

exact
p−value = 0.0556

normal approximation
p−value = 0.0488

66



Comments on Normal Approximation

Note the symmetry of the Ws distribution (no ties in within block ranking).

It can be shown that
Wr−EH0(Wr)√

varH0(Wr)
−→ N (0,1)

when either the Ni→ ∞ for i = 1, . . . ,b

or when the number b of blocks → ∞.

Thus we can use the normal approximation when either b is large or

when the Ni are large.

Considering that in our example we had b = 4 and min(N1, . . . ,N4) = 2,

not exactly large, the approximation was not too bad.
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Special Case of Blocked Comparison

Let Ni = 2 for i = 1, . . . ,b, with mi = ni = 1.

Then each W (i)
s has either rank 1 or rank 2, depending on whether Yi < Xi or

Yi > Xi, which translates to Yi−Xi < 0 or Yi−Xi > 0.

Assuming no ties we thus have

Ws =
b

∑
i=1

W (i)
s =

b

∑
i=1

(
1× I[Yi−Xi<0] +2I[Yi−Xi>0]

)
= b+

b

∑
i=1

I[Yi−Xi>0]

=⇒ The blocked comparison Wilcoxon test is equivalent to the sign test.
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Some Discussion of the Special Case
We remarked previously that the sign test typically has low power.

Thus the blocked comparison Wilcoxon test has relatively low power

when Ni = 2, i = 1, . . . ,b.

For small block sizes subjects are typically easy to rank without scores.

The deficiency in power decreases as b increases.

The deficiency and advantage of the blocked comparison Wilcoxon test

derive from the same circumstance:

Within each block we need to make only few comparisons (easy ranking)

That reduces the total number of possible comparisons
(Ni

2
)

per block,

compared to doing all
(N

2
)
. We get less comparison information, thus less power.
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Aligning Scores
The scores in the 4 blocks were compared (ranked) within each block.

The differences in treatment and control ranks were assessed within blocks

and then accumulated over all blocks.

From block to block we refrained from such comparisons in order not

to entangle treatment and block effects.

Now we will remove the block effect to some extent by subtracting the block

averages from all scores within respective blocks.

This should bring all the adjusted scores into the same ballpark, i.e., the scores

will be aligned. They are now jointly comparable. Any differences will be mainly

due to treatment affects alone or due to the randomization under H0.

The aligned scores are ranked jointly across all blocks.

=⇒We get a more extensive ranking scale for all subjects =⇒ more power.
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Results of Advertising Experiment

consumption figures ranks

Block Control Treatment Control Treatment

1 236 255 1 2

2 183 179, 193 2 1, 3

3 115, 128 132 1, 2 3

4 61, 70, 79 67, 84, 88 1, 3, 4 2, 5, 6
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Example 6: Advertising (Continued)
The average of scores in the 3rd block is (115+128+132)/3 = 125.

To align the scores we subtract it from all scores in that block

115−125 =−10, 128−125 = 3, 132−125 = 7

Proceeding in this way with each of the four blocks we get these aligned scores

aligned scores aligned ranks

Block Control Treatment Control Treatment

1 −91
2 91

2 3 13

2 −2 −6, 8 7 5, 11

3 −10, 3 7 2, 8 10

4 −135
6, −45

6, 41
6 −75

6, 91
6, 131

6 1, 6, 9 4, 12, 14

Since the scores are aligned they are now comparable. It makes some sense

to rank all 14 observations jointly, as shown on the right side under aligned ranks.
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Comments on Aligned Ranks

Note the generally lower control ranks and higher treatment ranks.

Block Control Treatment

1 3 13

2 7 5, 11

3 2, 8 10

4 1, 6, 9 4, 12, 14

Ranking across all 4 blocks allows for a wider ranking spectrum 1,2, . . . ,13,14

rather than the shorter ranking spectra for each block.

This allows greater expression depth for the strength of the treatment effect.

=⇒ greater discrimination power.
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Joint Null Distribution of Aligned Ranks
Under H0 treatment and control have the same effect.

The assignment of treatment or control label to subjects has no effect on the scores.

Randomization of treatment/control labels is done separately within each block.

The block averages are unchanged under all treatment/control assignments.

Although the alignment of blocks is different from block to block it does not matter

whether we randomly assign treatment labels before or after aligning the blocks.

Either way, all assignments are equally likely.

The set of aligned scores and thus the set of aligned ranks for each block is

completely determined by the subjects alone and not by the treatment/control label.

Randomly selecting subjects for treatment amounts to randomly selecting aligned

ranks to be associated with the treatment label.

Do this selection separately and independently within each block.
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Joint Null Distribution in Advertising Example
The single aligned treatment rank Ŝ11 in block 1 can be one of 3 and 13,

with probability 1/
(2

1
)

= 1/2 each.

The two aligned treatment ranks (Ŝ21, Ŝ22) from block 2 can be any ordered pair

taken from 7,5,11, with probability 1/
(3

2
)

= 1/3 each.

The single aligned treatment rank Ŝ31 from block 3 can be any one of 2,8,10,

with probability 1/
(3

1
)

= 1/3 each.

The three aligned treatment ranks (Ŝ41, Ŝ42, Ŝ43) from block 4 can be any ordered

triple taken from 1,6,9,4,12,14 with probability 1/
(6

3
)

= 1/20 each.

Jointly, each set of such four choices has probability

1(2
1
)× 1(3

2
)× 1(3

1
)× 1(6

3
) =

1
2
× 1

3
× 1

3
× 1

20
=

1
360
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Null Distribution of Aligned Rank-Sum

Smaller numbers are easier to deal with. Thus we use aligned control ranks R̂i j.

Using the joint null distribution for these aligned control ranks we can obtain the

null distribution of any statistic derived from them, in particular their sum Ŵr,

with observed value 3+7+2+8+1+6+9 = 36

Since we would reject H0 for small values of Ŵr, our p-value is PH0(Ŵr ≤ 36).

As in our previous treatment it is organizationally convenient to view Ŵr as the sum

of the aligned rank sums over each respective block, i.e., Ŵr = Ŵ (1)
r + . . .+Ŵ (4)

r .

The smallest value of Ŵ (1)
r +Ŵ (2)

r +Ŵ (3)
r is 3+5+10 = 18.

To have Ŵr ≤ 36 we then need Ŵ (4)
r ≤ 18.
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The Calculation

i 1 2 3 4

w 3 13 5 7 11 10 12 18 11 14 16 17 19

PH(Ŵ (i)
r = w) 1

2
1
2

1
3

1
3

1
3

1
3

1
3

1
3

1
20

1
20

1
20

1
20

2
20

Table =⇒ PH0(Ŵ
(4)
r ≤ 18) = 4/20, so that the combined probability of

Ŵ (1)
r = 3,Ŵ (2)

r = 5,Ŵ (3)
r = 10,Ŵ (4)

r ≤ 18 is 1/2×1/3×1/3×4/20 = 4/360

Ŵ (1)
r = 3,Ŵ (2)

r = 7,Ŵ (3)
r = 10,Ŵ (4)

r ≤ 16 is 1/2×1/3×1/3×3/20 = 3/360

Ŵ (1)
r = 3,Ŵ (2)

r = 5,Ŵ (3)
r = 12,Ŵ (4)

r ≤ 16 is 1/2×1/3×1/3×3/20 = 3/360

and so on

=⇒ PH0(Ŵr≤ 36)=
4+3+3+2+1

360
=

13
360

= 0.03611 as compared to .056
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AlignedBlockedWilcoxon

The class web page has an R function AlignedBlockedWilcoxon

that carries out the previous tedious calculations.

For its usage read the internal documentation.

The input data list is of the same form as for BlockedWilcoxon.

It has an additional argument align that specifies the alignment process,

implemented internally via an alignment function AlignFun=function(z){...}
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Alignment Options
The argument align allows for three different aligments.

The alignment is supposed to make scores from different blocks more comparable.

The crucial aspect of any alignment operation within a block is that it should yield

the same aligned scores no matter how we permute all scores z within the block,

i.e., no matter how the treatment labels are assigned to scores within each block.

Thus the aligned rank set corresponding to a block score vector z is not affected by

the treatment/control assignment within each block. All are equally likely under H0

If align="mean" we use as alignment function
AlignFun=function(z){z-mean(z)}

If align="median" we use as alignment function
AlignFun=function(z){z-median(z)}

If align="std.residual" we use as alignment function
AlignFun=function(z){(z-mean(z))/sqrt(var(z))}
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Aligning by Block Mean Subtraction
Aligned Block Combined Wilcoxon Test
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Aligning by Block Median Subtraction
Aligned Block Combined Wilcoxon Test
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Aligned Using Standardized Block Residual
Aligned Block Combined Wilcoxon Test
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Alignment: General Case

The previous specific advertising example generalizes easily.

We have b blocks, with mi +ni = Ni subject scores in the ith block.

Align the observations within each block (e.g., by subtracting the block mean).

Rank the N1 + . . .+Nb scores, using midranks if needed.

Denote the aligned treatment midranks in the ith block by Ŝi1, . . . , Ŝini, i = 1, . . . ,b.

The joint null distribution of all these n1 + . . .+nb midranks is

PH0

(
Ŝ11 = s11, . . . , Ŝ1ni = s1n1, . . . , Ŝb1 = sb1, . . . , Ŝbnb = sbnb

)
=

1(N1
n1

)(N2
n2

)
· · ·
(Nb

nb

)
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Null Distribution of Ŵs: General Case
The sum Ŵs of all aligned treatment midranks can be viewed as

Ŵs = Ŵ (1)
s + . . .+Ŵ (b)

s

where Ŵ (i)
s is the sum of aligned treatment midranks from the ith block.

The distribution vector z.i of Ŵ (i)
s can be obtained as before by using combn.

The distribution vector z.ij of a sum of independent Ŵ (i)
s and Ŵ ( j)

s can be

obtained by using the outer(z.i,z.j,"+") function call on their respective

distribution vectors z.i and z.j.

This is implemented repeatedly in the previously introduced function

AlignedBlockedWilcoxon.
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Comments on AlignedBlockedWilcoxon

AlignedBlockedWilcoxon works as long as
(N1

n1

)(N2
n2

)
· · ·
(Nb

nb

)
is not too large.

I tried mi = ni = 5 for i = 1,2,3 with
(10

5
)

= 252 and 2523 = 16,003,008.

On this laptop it ran in 76 seconds and produced the result on the next slide.

On my other laptop it took 15 seconds.

When I tried b = 4 (2524 = 4,032,758,016) I got an error message of

negative length vectors are not allowed, presumably memory overflow.

The 3×2 control/treatment samples came from a normal distribution with variance

1 and respective means of 1,2,3 under control and 1.5,2.5,3.5 under treatment.
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mi = ni = 5, i = 1,2,3
Aligned Block Combined Wilcoxon Test
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Ŵs == ∑∑
i==1

3

Ŵs
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Means and Variances of Ŵs
The insurmountable computational size involved in getting the exact null distribution

of Ŵs in general situations can be overcome by using a normal approximation.

Since the randomizations are independent from block to block we have

E(Ŵs) = E(Ŵ (1)
s )+ . . .+E(Ŵ (b)

s ) and var(Ŵs) = var(Ŵ (1)
s )+ . . .+var(Ŵ (b)

s )

Let ki1, . . . ,kiNi denote the aligned midranks in the ith block. Then

E(Ŵ (i)
s ) = ni k̄i. and E(Ŵ (i)

r ) = mi k̄i. with k̄i. =
ki1 + . . .+ kiNi

Ni

var(Ŵ (i)
s ) = var(Ŵ (i)

r ) =
nimi

Ni(Ni−1)

Ni

∑
j=1

(ki j− k̄i.)2

See our previous finite population formulas for mean and variance of a sample sum.

Here we are dealing with b finite populations of midranks ki1, . . . ,kiNi, i = 1, . . . ,b.
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Comments on Normal Approximation
Under a variety of conditions, as discussed before in the unaligned case, we have(

Ŵs−E(Ŵs)
)√

var(Ŵs)
−→ N (0,1)

as min(N1, . . . ,Nb)−→ ∞ or as b−→ ∞.

In the latter case (b→ ∞) each block should contain positive and negative aligned

scores, as was the case in all three of our alignment schemes.

As the superimposed normal approximation in the last histogram shows,

the histogram has slightly less probability in the center compared to the

normal approximation.

This deficieny is mostly compensated by slight excesses of probability

in the shoulders. The tails appear to be well approximated.
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Special Case of Block Size Ni = 2
For alignment on the midpoint between the two observations of each the b = N

blocks it can be shown that

Ŵs = 2Vs−SN +
N(N +1)

2
where Vs is the Wilcoxon signed rank statistic (for N matched pairs) and SN

is the corresponding sign test statistic.

I don’t know whether the above identity holds (in modified form) in the case of ties.

In the case of no ties we have

var(SN) =
N
4

and var(Vs) =
N(N +1)(2N +1)

24
Thus the variability of SN is dwarfed by the variability of Vs.

This means that tests based on Ŵs and tests based on Vs will come to

approximately the same conclusion.
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Retrospective

We previously saw that the blocked comparison (non-aligned) Wilcoxon test

is equivalent to the sign test when the block sizes are Ni = 2, i = 1, . . . ,b.

The previous slide showed that the aligned block Wilcoxon test is basically

equivalent to the Wilcoxon signed rank test.

Thus we may view the aligned block Wilcoxon test as an extension of the

Wilcoxon signed rank test to block sizes Ni ≥ 2, which beats the sign test.

For efficiency reasons we should thus prefer the aligned block Wilcoxon test

over the blocked comparison (non-aligned) Wilcoxon test.
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Blocking or No Blocking?

Without block to block variation a completely randomized treatment design over

the full set of subjects would usually be more efficient than treatment randomization

within each block, even with alignment.

Recall: Response variability has a detrimental effect on detecting treatment effects.

The power is a function of ∆/σ.

We block to reduce this variability to within block variability.
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Confounding in Paired Comparisons

Sometimes paired subjects are distinguishable as being of type A or B.

First and second born twin, left and right hand, order of task performance

by same subject.

Even in deliberate matching of pairs based on other factors one could still

distinguish within each pair a high and a low level (A and B) of such factors

If treatment and control are randomly assigned (probability 1/2) to such pairs, it is

possible that all or an undue preponderance of A subjects get the treatment.

Then it would be unclear wether any seen effect is due to treatment or due to the

type A that occurred most often together with the treatment.

In such situations treatment and subject type become confounded.
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Balanced Design in Paired Comparisons

The previous confounding difficulty can and should be avoided by a different

random assignment of treatment and control.

Instead of having the number of treatment cases of type A be random we will fix

this number to some number a, typically a = N/2, when the number of available

pairs is even. The assigment is called balanced.

When N is odd, say N = 2k +1 we would choose a = k (or a = k +1).

Now we randomly choose a of the N available pairs, with equal chance 1/
(N

a
)
, and

assign the treatment to the type A member of the pair and let the type B member

act as control.

For the remaining N−a pairs we assign the treatment to the type B subjects and

let the A subjects act as controls.
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Analysis of Balanced Design Paired Comparisons

For each of the N pairs calculate the differences of A−B, i.e.,

response of type A subject − response of type B subject.

View the N pairs as N “subjects” and the differences A−B as their “responses.”

These “subjects” were randomly divided into two groups.

In group 1 we had the A-subjects treated and the B subjects act as control,

in group 2 we had the B-subjects treated and the A subjects act as control.

Under the hypothesis H0 of no difference between treatment and control there is

no difference between the two groups.

If we rank the A−B “responses” and take the rank sum for group 1, then we have

the Wilcoxon rank-sum test statistic, with known null distribution, with m = n = a

(when N is even, otherwise m = a,n = a+1 or m = a+1,n = a).
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Treatment Effect

If there is a beneficial treatment effect, then we would expext the A−B “response”

in group 1 to be higher than experienced under H0, and we would expect the A−B

“response” in group 2 to be lower than experienced under H0.

Taking both effects together, we would thus expect the A−B “response” in group 1

to be higher than the A−B “response” in group 2.

High values of the rank-sum Ws for group 1 would be judged significant.

The p-value of the observed ws is PH0(Ws ≥ ws).

If the treatment lowers the response relative to H0 responses then low values of

the rank-sum Ws for group 1 would be judged significant.

The p-value of the observed ws is PH0(Ws ≤ ws).
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Example 7: Effect of Hypnosis on Speech

To study the effect of hypnosis on speech (measured in number of words over a

given time span), 10 subjects were observed both under hypnosis (H) and waking

state (W ).

The hypothesis of no hypnosis effect was to be tested against the alternative of

fewer words under hypnosis.

The subjects were randomly split into 2 groups of 5

(waking state 1st, hypnosis 2nd) (WH) and ( hypnosis 1st, waking state 2nd) (HW )

Group 1: WH Group 2: HW

W 255 1250 126 480 371 308 688 345 264 306

H 67 67 89 129 491 304 49 281 131 107

Difference 188 1183 37 251 −120 4 639 64 133 199
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Analysis
The role of A and B here is the order of measurement on each subject.

A≡ 1st measurement and B≡ 2nd measurement.

A−B = W −H in Group 1 and A−B = H−W in Group 2.

According to the previous table we have

A−B = 188,1183,37,251,−120,−4,−639,−64,−133,−199 with respective ranks

R1, . . . ,R5,S1, . . . ,S5 = 8,10,7,9,4,6,1,5,3,2 =⇒Ws = 1+2+3+5+6 = 17.

Fewer words under hypnosis would be indicated in Group 1 by A−B =W−H high

and in Group 2 by A−B = H−W low.

Thus we should reject H0 for low Ws. Hence the p-value is

PH0(Ws ≤ 17) = PH0

(
WXY ≤ 17− 5(5+1)

2

)
= PH0 (WXY ≤ 2)

= pwilcox(2,5,5) = 0.01587302

97



Final Comments

There is a bit of a difference to the Wilcoxon rank-sum test as we used it previously.

In both cases the hypothesis is the same:

There is no difference between treatment and control.

Previously the alternative of a treatment effect would act on just one group

of subjects, namely those that were treated.

Now the alternative affects both groups in opposite directions, since the treatment

H affects the response differences W −H and H−W through opposite signs

in the respective groups.
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