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Poisson-Binomial Approximation

Theorem 1: Let X1 and X2 be independent Poisson random variables with respective parameters
λ1 > 0 and λ2 > 0. Then S = X1 +X2 is a Poisson random variable with parameter λ1 + λ2.
Proof:

P (X1 +X2 = z) =
∞∑
i=0

P (X1 +X2 = z,X2 = i) =
∞∑
i=0

P (X1 + i = z,X2 = i)

=
z∑
i=0

P (X1 = z − i,X2 = i) =
z∑
i=0

P (X1 = z − i)P (X2 = i) =
z∑
i=0

e−λ1λz−i1

(z − i)!
e−λ2λi2
i!

=
e−(λ1+λ2)(λ1 + λ2)

z

z!

z∑
i=0

z!

i!(z − i)!

(
λ2

λ1 + λ2

)i ( λ1
λ1 + λ2

)z−i
=
e−(λ1+λ2)(λ1 + λ2)

z

z!

Corollary: If X1, . . . , Xn are independent Poisson random variables with respective parameters
λ1, . . . , λn then S = X1 + . . .+Xn is a Poisson random variable with parameter λ1 + . . .+ λn.
Proof: By induction over n.

Lemma 1: Let S and T be two random variables with some joint distribution for (S, T ). Then

|P (S ∈ A)− P (T ∈ A)| ≤ P (S 6= T ).

Proof:

P (S ∈ A) = P (S ∈ A,S = T ) + P (S ∈ A,S 6= T ) = P (T ∈ A,S = T ) + P (S ∈ A,S 6= T )

= P (T ∈ A,S = T ) + P (T ∈ A,S 6= T )− P (T ∈ A,S 6= T ) + P (S ∈ A,S 6= T )

= P (T ∈ A)− P (T ∈ A,S 6= T ) + P (S ∈ A,S 6= T )

Thus

P (S ∈ A)− P (T ∈ A) = P (S ∈ A,S 6= T )− P (T ∈ A,S 6= T ) ≤ P (S ∈ A,S 6= T ) ≤ P (S 6= T )

and similarly P (T ∈ A)− P (S ∈ A) ≤ P (S 6= T ), thus |P (T ∈ A)− P (S ∈ A)| ≤ P (S 6= T )
Lemma 2: Let S = X1 + . . .+Xn and T = Y1 + . . .+ Yn then

P (S 6= T ) ≤
n∑
i=1

P (Xi 6= Yi).

Proof: First note that S 6= T implies that at least one pair of summands (Xi, Yi) must differ, i.e.,
Xi 6= Yi (otherwise the sums would agree). Thus

{S 6= T} ⊂
n⋃
i=1

{Xi 6= Yi}.

The inclusion inequality followed by Boole’s inequality yields

P (S 6= T ) ≤ P
(

n⋃
i=1

{Xi 6= Yi}
)
≤

n∑
i=1

P (Xi 6= Yi)
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Lemma 3: For p ≤ .8 let (X,Y ) have a joint probability distribution given by

y \ x 0 1 2 3 . . . P (Y = y)

0 e−p(1 + p)− p 0 p2e−p/2! p3e−p/3! . . . 1− p
1 p− pe−p pe−p 0 0 . . . p

P (X = x) e−p pe−p/1! p2e−p/2! p3e−p/3! . . . 1

Note that g(g) = e−p(1 + p)− p has derivative g′(p) = −e−pp− 1 < 0 and g(.8) = .00879 > 0, thus all
tabled probabilities are ≥ 0 when p ≥ .8.

Then Y is a Bernoulli random variable with parameter p, i.e., P (Y = 1) = 1− P (Y = 0) = p
and X is a Poisson random variable with parameter λ = p. Further, P (X 6= Y ) ≤ 2p2.

Proof: The marginal distributions of X and Y are evident from the table and

P (X 6= Y ) = 1− P (X = Y ) = 1− P (X = Y = 0)− P (X = Y = 1)

= 1− e−p(1 + p) + p− pe−p = 1 + p− (1 + 2p)e−p

≤ 1 + p− (1 + 2p)(1− p) = 2p2 using e−p ≥ 1− p for all p

Theorem 2: Let Y1, . . . , Yn be independent Bernoulli RVs with P (Yi = 1) = 1 − P (Yi = 0) = pi,
respectively. Let T = Y1 + . . . + Yn and let S be a Poisson random variable with parameter λ =
p1 + . . .+ pn. Then

|P (S ∈ A)− P (T ∈ A)| ≤ 2
n∑
i=1

p2i for all sets A

Proof: For each i let (X ′i, Y
′
i ) have the joint distribution stipulated in Lemma 3 with p = pi. Do this

independently for i = 1, . . . , n, i.e., (X ′1, Y
′
1), . . ., (X ′n, Y

′
n) are independent pairs. Then Y ′i has the

same distribution as Yi and thus T ′ = Y ′1 + . . . + Y ′n has the same distribution as T = Y1 + . . . + Yn.
According to the corollary to Theorem 1 we have that S = X ′1 + . . .+X ′n has a Poisson distribution
with parameter λ = p1 + . . .+ pn. Now chaining Lemmas 1, 2 and 3 we get

|P (S ∈ A)− P (T ∈ A)| = |P (S′ ∈ A)− P (T ′ ∈ A)| ≤ 2
n∑
i=1

p2i

Comment 1: The above proof is due to Hodges and Le Cam (1960). With more work, the factor 2
in the error bound can be dropped. In fact, by fairly elementary steps it is possible to replace 2 by
min(1, λ−1), where λ = p1 + . . . + pn, see Barbour et al. (1992), p. 8. The advantage in the factor
min(1, λ−1) is that the bound gets smaller the more of the pi are added up. In some sense we do
not just account for the error made within each pair (Xi, Yi), i.e., for P (Xi 6= Yi), but we also take
advantage that there is error cancellation across the sums, i.e., some of the Xi 6= Yi cancel to some
extent when assessing S 6= T .

Another type of error bound is as follows (without proof):

|P (S ∈ A)− P (T ∈ A)| ≤ 9 max(p1, . . . , pn) .

Further improvements (Arratia et al. (1990)) relax the independence conditions on the Bernoulli trials.

2



Comment 2: The distribution of T , often called the Poisson-Binomial distribution, depends on the
parameter vector (p1, . . . , pn) and is rather complicated. It can be approximated by a simple Poisson
distribution, depending only on the single parameter λ = p1+ . . .+pn. This approximation is accurate
provided all the pi are quite small so that the bound 2(p21 + . . . + p2n) on the approximation error is
sufficiently small.
Comment 3: In the special case, when p1 = . . . = pn = p, T has the well known binomial distribution
and page 144 of Anderson et al (2018) gives a limiting argument for the Poisson approximation to a
binomial distribution under the assumption that p = pn → 0 as n → ∞ so that npn ≈ λ > 0. This
approximation falls out easily from Theorem 2, since under these assumptions

2
n∑
i=1

p2i = 2np2 ≈ 2
λ2

n
→ 0

as n → ∞. The limiting argument does not tell us how good the approximation is when used for a
finite n. Theorem 2 gives us a crude but nevertheless useful bound on the approximation error. See
the following example for a concrete application.

Example: Suppose during a particular minute of the day the n = 2000000 people serviced in a
particular telephone service area decide independently of each other whether to place an emergency
call to 911 or not. Each person has his/her own probability pi of doing so. Suppose that the average
probability for all n persons is about p = (p1 + . . .+pn)/n = .000005, i.e., on average about 10 persons
makes such a call in that minute. Suppose further that these pi never exceed .00001. Let T be the
actual random number of 911 callers in that minute. Its exact distribution is extremely complicated,
depending on n = 2000000 parameters p1, . . . , pn. Using the approximation error bound of Theorem
2 and λ = np = 10 we find

2
n∑
i=1

p2i ≤ 2 max(p1, . . . , pn)
n∑
i=1

pi ≤ 2 · .00001 · λ = .0002.

Actually this bound on the error of computing P (T ∈ A) instead of P (S ∈ A) is quite exaggerated
as can be seen by the many inequalities that were employed in proving Theorem 2. Thus the Poisson
approximation is much more trustworthy than it looks. When using min(1, λ−1) instead of the factor
2 our error bound for the approximation becomes .00001.

The Poisson Process Derivation

Poisson distribution for counts of random incidents in time:
Sometimes we observe random incidents occurring in time, e.g. arrival of customers, meteoroids,

lightning etc. (I use the word incident, instead of event, to avoid confusion with our other usage of
the term event in probability theory.) Quite often these random phenomena appear to satisfy the
following basic assumptions for some positive constant λ:

1. The probability that exactly one incident occurs during a short time interval of length h is
approximately proportional to h (with proportionality factor λ) , i.e., that probability is λh+o(h)
where o(h) is a function of h which goes to 0 faster than h, i.e. o(h)/h → 0 as h → 0 (e.g.
o(h) = h2).

2. The probability that two or more events occur in a short time interval of length h is negligible,
i.e., equal to o(h).
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3. For any integers n and nonoverlapping time intervals I1, . . ., In any events E1, . . ., En pertaining
to the separate counts of incidents occurring in these intervals are independent.

If N(I) denotes the random number of incidents in the time interval I. Then we can rephrase the
above postulates as follows:

1.

P (N((t, t+ h]) = 1) = λh+ o(h) for any h > 0 , t ≥ 0 .

2.

P (N((t, t+ h]) ≥ 2) = o(h) for any h > 0 , t ≥ 0 .

3. For any integers n ≥ 1, k1 ≥ 0, . . ., kn ≥ 0 and s1 ≤ t1 ≤ s2 ≤ t2 ≤ . . . ≤ sn ≤ tn we have

P (N((s1, t1]) = k1, N((s2, t2]) = k2, . . . , N((sn, tn]) = kn)

= P (N((s1, t1]) = k1) · P (N((s2, t2]) = k2) · . . . · P (N((sn, tn]) = kn) ,

i.e., independence of the incident counts.

Under these postulates it follows that N((s, s + t]) is a Poisson random variable with parameter
λt, i.e.,

P (N((s, s+ t]) = k) =
exp(−λt)(λt)k

k!
. (1)

Proof: Without loss of generality assume s = 0 and hence take as time interval (0, t] and divide it
into n equal length subintervals I1, . . ., In. Then the event C = {N((0, t]) = k} can be written as the
disjoint union of the following two events:

A = {k of the intervals contain exactly one incident and n− k contain 0 incidents}

and
B = {N((0, t]) = k and at least one subinterval contains two or more incidents}

Hence
P (C) = P (A) + P (B) . (2)

If we denote Ei = {N(Ii) ≤ 1} then the second postulate above says P (Eci ) = o(t/n).
Since the event B implies ∪ni=1 E

c
i , i.e., B ⊂ ∪ni=1 E

c
i , it follows that

P (B) ≤ P (∪ni=1 E
c
i ) ≤

n∑
i=1

P (Eci ) ≤ n · o(t/n)→ 0 as n→ ∞ .

using Boole’s inequality for the second ≤ above. It remains to show that

P (A) → exp(−λt)(λt)k

k!
as n→∞ .

Since the left side of (2) does not depend on n it does not matter into how many subintervals we divide
(0, t]. Hence we can freely let n become arbitrarily large and this would prove the claim (1).
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Before doing this final step we prove some preliminaries using the independence assumptions from
postulate 3:

P (N(I1) = k1, . . . , N(In) = kn| ∩ni=1 Ei) =
P ({N(I1) = k1} ∩ E1 ∩ . . . ∩ {N(In) = kn} ∩ En)

P (∩ni=1Ei)

=
P ({N(I1) = k1} ∩ E1) · . . . · P ({N(In) = kn} ∩ En)

P (E1) · . . . · P (En)

= P ({N(I1) = k1}|E1) · . . . · P ({N(In) = kn}|En) .

Further, again using the independence assumptions from postulate 3:

P ({N(I1) = k1}|E1) =
P ({N(I1) = k1} ∩ E1)

P (E1)
=
P ({N(I1) = k1} ∩ E1)P (E2) . . . P (En)

P (E1) · P (E2) · . . . · P (En)

=
P ({N(I1) = k1} ∩ E1 ∩ . . . ∩ En)

P (E1 ∩ . . . ∩ En)
= P

(
{N(I1) = k1}| ∩nj=1 Ej

)
and similarly for i > 1:

P ({N(Ii) = ki}|Ei) = P
(
{N(Ii) = ki}| ∩nj=1 Ej

)
.

Note also that given ∩nj=1Ej the random variables N(Ii) can only take on the values 0 and 1 and are
conditionally independent, which follows from putting the above two preliminaries together. Hence
conditionally we deal with independent Bernoulli trials with success probabilities

pi,n = P
(
N(Ii) = 1| ∩nj=1 Ej

)
= P (N(Ii) = 1|Ei) =

P (N(Ii) = 1 ∩ Ei)
P (Ei)

=
P (N(Ii) = 1)

P (Ei)
=
λt/n+ o(t/n)

1− P (Eci )
=
λt/n+ o(t/n)

1− o(t/n)
with

n∑
i=1

pi,n → λt as n→∞

Next note that with F = ∩ni=1Ei we have

P (A) = P (A|F )P (F ) + P (A|F c)P (F c) .

We pointed out above that P (F c) = P (∪ni=1 Eci ) → 0 as n → ∞ and thus also P (F ) → 1 as
n → ∞. Therefore P (A) and P (A|F ) have the same limit. But with the preliminaries shown above
the conditional probability P (A|F ) is the Poisson-binomial probability for exactly k successes in n
independent trials with success probabilities pi,n, i = 1, . . . , n, which converges to the desired Poisson
probability (with mean λt) by the Poisson-binomial approximation result. This concludes the proof.

References:

Arratia, R., Goldstein, L., and Gordon, L. (1990), “Poisson Approximation,” Statistical Science, Vol.
5, No. 4, 403-424.

Barbour, A.D., Holst, L. and Janson, S. (1992), Poisson Approximation, Clarendon Press, Oxford.

Hodges, J.L., Jr. and Le Cam, L. (1960), “The Poisson Approximation to the Poisson Binomial
Distribution,” Ann. Math. Statist. 31, 737-740.
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