Class Notes 3-4-2019

• The Law of Large Numbers (LLN):
 Although the LLN can/will be proved without using the CLT we give here a first look at it.
 The LLN states that for any \(p \in [0, 1] \) that for any \(\epsilon > 0 \) we have
 \[
P \left(\left| \frac{S_n}{n} - p \right| < \epsilon \right) \to 1 \quad \text{as } n \to \infty
 \]
 For \(p = 0 \) and \(p = 1 \) this is trivially true since \(P(S_n/n = 0) = 1 \) for \(p = 0 \) and \(P(S_n/n = 1) = 1 \)
 for \(p = 1 \). For \(0 < p < 1 \) we have from the CLT
 \[
P \left(\left| \frac{S_n}{n} - p \right| < \epsilon \right) = P \left(\left| \frac{\bar{S}/n - p}{\sqrt{p(1-p)/n}} \right| < \frac{\epsilon}{\sqrt{p(1-p)/n}} \right) \approx P \left(\left| Z \right| < \frac{\sqrt{n}\epsilon}{\sqrt{p(1-p)}} \right)
 \]
 \[
 = 2\Phi \left(\frac{\sqrt{n}\epsilon}{\sqrt{p(1-p)}} \right) - 1 \to 1 \quad \text{as } n \to \infty
 \]
 HW 7, Problem 2 lets you work out a specific example case.

• Sampling with and without Replacement:
 Suppose we have a large population of size \(N \) from which we sample at random \(n \) items
 without replacement, either one by one or as a single unordered grab of \(n \). Then the outcome
 \(\omega \) is either an ordered \(n \)-tuple, denoted by \(\omega \), each with probability
 \[
P(\omega) = \frac{1}{N \cdot (N-1) \cdot (N-2) \cdots (N-n+1)} = \frac{1}{(N)_n}
 \]
 or an unordered set of \(n \) items representing all \(n! \) permutations of the previous \(\omega \). We will
 denote this set by \(\{\omega\} \) and it has probability
 \[
P^*(\{\omega\}) = \frac{n!}{N \cdot (N-1) \cdot (N-2) \cdots (N-n+1)} = \frac{1}{(N)_n}
 \]
 Suppose now that our population consists of two types of items, say \(M \) red balls and \(N - M \)
 blue balls. We are interested in the random variable \(X \) that counts the number of red balls in \(\omega \)
 or in \(\{\omega\} \). We can find \(P(X = k) = P(\omega : X(\omega) = k) \) or \(P^*(X = k) = P^*(\{\omega\} : X(\{\omega\}) = k) \).
 Any \(n \)-tuple \(\omega \) with \(k \) red balls in specified position and with blue balls in the other positions
 can be obtained in
 \[
 M \cdot (M-1) \cdots (M-k+1) \cdot (N-M) \cdot (N-M-1) \cdots (N-M-(n-k-1)) = (M)_k(N-M)_{n-k}
 \]
 ways. As far as \(P(X = k) = P(\omega : X(\omega) = k) \) is concerned there are \(\binom{n}{k} \) \(n \)-tuples \(\omega \) which
 have \(k \) red balls and \(n - k \) blues balls in one of the chosen \(\binom{n}{k} \) positions of the \(n \)-tuple. Thus
 \[
P(X = k) = \frac{\binom{n}{k}(M)_k(N-M)_{n-k}}{(N)_n} = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}} = P^*(X = k)
 \]
 where the \(= P^* \) derives from the fact that in order to get a set \(\{\omega\} \) with exactly \(k \) red balls I
 have to grab \(k \) from \(M \) red balls in one of \(\binom{M}{k} \) ways and combine that with a grab of \(n - k \)
blue balls from $N - M$ in $\binom{N-M}{n-k}$ possible ways. This equality $P(X = k) = P^*(X = k)$ should have been made clear in the beginning of this class and it is predicated on the fact that the event $X = k$ does not involve any order. This common distribution of X is referred to as the hypergeometric distribution and we write $X \sim \text{Hypergeom}(N, M, n)$. See HW 4, Problem 4.

Let us next consider sampling n items with replacement from the same population and let X again denote the number of red balls. Then we are dealing with n independent trials and with success (red ball chosen in a given trial) probability $p = M/N$ and we have $X \sim \text{Bin}(n, p)$. We write

$$\tilde{P}(X = k) = \binom{n}{k} \left(\frac{M}{N} \right)^k \left(1 - \frac{M}{N} \right)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

Let A denote the set of all n-tuples with distinct elements, assuming all N items are labeled $1, 2, \ldots, N$. Then

$$\tilde{P}(A) = \frac{N \cdot (N-1) \cdot (N-2) \cdot \ldots \cdot (N-n+1)}{N^n} \to 1 \quad \text{as } N \to \infty, \ n \text{ staying fixed}$$

and since $\tilde{P}(A^c) \to 0$ as $N \to \infty$ we then have

$$\tilde{P}(X = k) = \tilde{P}(X = k|A)\tilde{P}(A) + \tilde{P}(X = k|A^c)\tilde{P}(A^c) \approx \tilde{P}(X = k|A)$$

For n-tuples $\omega \in A$ we have

$$\tilde{P}(\omega|A) = \frac{\tilde{P}(\omega)}{\tilde{P}(A)} = \frac{1}{\frac{N \cdot (N-1) \cdot (N-2) \cdot \ldots \cdot (N-n+1)}{N^n}} = \frac{1}{(N)_n} = P(\omega)$$

and thus

$$\tilde{P}(X = k) \approx \tilde{P}(X = k|A) = \tilde{P}(\{\omega : X(\omega) = k\}|A) = P(\omega : X(\omega) = k) = P(X = k) = P^*(X = k)$$

Thus the “two sampling without replacement” schemes give approximately the same distribution to X as the sampling with replacement, provided N is large. In order for the binomial distribution $\text{Bin}(n, p = M/N)$ to stay stable we would also need to assume that $p = M/N$ stay stable and stay away from zero or one. In that case the CLT applied to the binomial distribution \tilde{P} equally applies to the nonreplacement schemes, where the sequential selections (if we sample one by one) are certainly no longer independent.

The Poisson Distribution and Poisson Approximation to the Binomial:

If $S_n \sim \text{Bin}(n, p)$ with $p \approx 0$ or $p \approx 1$ presents a problem for the CLT, at least for moderate n. In that case the Poisson distribution provides a very useful alternative for $p \approx 0$ and for $p \approx 1$ we switch to $\tilde{S}_n = n - S_n \sim \text{Bin}(n, 1 - p)$, counting the number of failures instead.

A random variable X has a Poisson distribution with parameter $\lambda > 0$, and we write $X \sim \text{Poisson}(\lambda)$ or $X \sim \text{Pois}(\lambda)$, when

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \quad \text{for } k = 0, 1, 2, \ldots$$

Its mean and variance are given by

$$E(X) = \lambda \quad \text{and} \quad \text{var}(X) = \lambda$$
\[E(X) = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^k}{(k-1)!} = \lambda \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = \lambda \]

\[E(X(X-1)) = \sum_{k=0}^{\infty} k(k-1) \frac{e^{-\lambda} \lambda^k}{k!} = \sum_{k=2}^{\infty} k(k-1) \frac{e^{-\lambda} \lambda^k}{k!} = \lambda^2 \sum_{k=2}^{\infty} \frac{e^{-\lambda} \lambda^{k-2}}{(k-2)!} = \lambda^2 \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = \lambda^2 \]

Thus \(\text{var}(X) = E(X(X-1)) + E(X) - [E(X)]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda \)

- **Law of Rare Events Or Law of Small Numbers**
 Let \(\lambda > 0 \) and consider positive integer \(n \) with \(\lambda/n < 1 \). Let \(S_n \sim \text{Bin}(n, \lambda/n) \). Then
 \[
 \lim_{n \to \infty} P(S_n = k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{for} \quad k = 0, 1, 2, \ldots
 \]

Proof:
\[
P(S_n = k) = \binom{n}{k} \left(\frac{\lambda}{n} \right)^k \left(1 - \frac{\lambda}{n} \right)^{n-k} = \frac{n(n-1) \cdots (n-k+1) \lambda^k}{n^k} \frac{1 - \frac{\lambda}{n}}{k!} \left(1 - \frac{\lambda}{n} \right)^{n-k} \rightarrow \frac{\lambda^k}{k!} e^{-\lambda} \quad \text{as} \quad n \to \infty \quad \text{for any fixed} \quad k
\]