
Class Notes 3-4-2019

• The Law of Large Numbers (LLN):
Although the LLN can/will be proved without using the CLT we give here a first look at it.
The LLN states that for any p ∈ [0, 1] that for any ε > 0 we have

P

(∣∣∣∣Snn − p
∣∣∣∣ < ε

)
→ 1 as n→∞

For p = 0 and p = 1 this is trivially true since P (Sn/n = 0) = 1 for p = 0 and P (Sn/n = 1) = 1
for p = 1. For 0 < p < 1 we have from the CLT
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HW 7, Problem 2 lets you work out a specific example case.

• Sampling with and without Replacement:
Suppose we have a large population of size N from which we sample at random n items
without replacement, either one by one or as a single unordered grab of n. Then the outcome
ω is either an ordered n-tuple, denoted by ω, each with probability
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or an unordered set of n items representing all n! permutations of the previous ω. We will
denote this set by {ω} and it has probability
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)
Suppose now that our population consists of two types of items, say M red balls and N −M
blue balls. We are interested in the random variable X that counts the number of red balls in ω
or in {ω}. We can find P (X = k) = P (ω : X(ω) = k) or P ∗(X = k) = P ∗({ω} : X({ω}) = k).
Any n-tuple ω with k red balls in specified position and with blue balls in the other positions
can be obtained in
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ways. As far as P (X = k) = P (ω : X(ω) = k) is concerned there are
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have k red balls and n− k blues balls in one of the chosen
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where the = P ∗ derives from the fact that in order to get a set {ω} with exactly k red balls I
have to grab k from M red balls in one of

(
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)
ways and combine that with a grab of n − k
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blue balls from N −M in
(
N−M
n−k

)
possible ways. This equality P (X = k) = P ∗(X = k) should

have been made clear in the beginning of this class and it is predicated on the fact that the
event X = k does not involve any order. This common distribution of X is referred to as the
hypergeometric distribution and we write X ∼ Hypergeom(N,M, n). See HW 4, Problem 4.

Let us next consider sampling n items with replacement from the same population and let X
again denote the number of red balls. Then we are dealing with n independent trials and with
success (red ball chosen in a given trial) probability p = M/N and we have X ∼ Bin(n, p).
We write
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Let A denote the set of all n-tuples with distinct elements, assuming all N items are labeled
1, 2 . . . , N . Then

P̃ (A) =
N · (N − 1) · (N − 2) · . . . · (N − n+ 1)

Nn
→ 1 as N →∞, n staying fixed

and since P̃ (Ac)→ 0 as N →∞ we then have

P̃ (X = k) = P̃ (X = k|A)P̃ (A) + P̃ (X = k|Ac)P̃ (Ac) ≈ P̃ (X = k|A)

For n-tuples ω ∈ A we have
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and thus

P̃ (X = k) ≈ P̃ (X = k|A) = P̃ ({ω : X(ω) = k}|A) = P (ω : X(ω) = k) = P (X = k) = P ∗(X = k)

Thus the “two sampling without replacement” schemes give approximately the same distri-
bution to X as the sampling with replacement, provided N is large. In order for the binomial
distribution Bin(n, p = M/N) to stay stable we would also need to assume that p = M/N
stay stable and stay away from zero or one. In that case the CLT applied to the binomial dis-
tribution (P̃ ) equally applies to the nonreplacement schemes, where the sequential selections
(if we sample one by one) are certainly no longer independent.

• The Poisson Distribution and Poisson Approximation to the Binomial:
If Sn ∼ Bin(n, p) with p ≈ 0 or p ≈ 1 presents a problem for the CLT, at least for moderate
n. In that case the Poisson distribution provides a very useful alternative for p ≈ 0 and for
p ≈ 1 we switch to S̃n = n− Sn ∼ Bin(n, 1− p), counting the number of failures instead.

A random variable X has a Poisson distribution with parameter λ > 0, and we write
X ∼ Poisson(λ) or X ∼ Pois(λ), when

P (X = k) =
e−λλk

k!
for k = 0, 1, 2, . . .

Its mean and variance are given by

E(X) = λ and var(X) = λ
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Thus var(X) = E(X(X − 1)) + E(X)− [E(X)]2 = λ2 + λ− λ2 = λ

• Law of Rare Events Or Law of Small Numbers
Let λ > 0 and consider positive integer n with λ/n < 1. Let Sn ∼ Bin(n, λ/n). Then

lim
n→∞

P (Sn = k) = e−λ
λk

k!
for k = 0, 1, 2, . . .

Proof:
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