Class Notes 3-4-2019

• The Law of Large Numbers (LLN):

Although the LLN can/will be proved without using the CLT we give here a first look at it. The LLN states that for any $p \in [0, 1]$ that for any $\epsilon > 0$ we have

$$
P\left(\left|\frac{S_n}{n} - p\right| < \epsilon\right) \to 1 \qquad \text{as } n \to \infty
$$

For $p = 0$ and $p = 1$ this is trivially true since $P(S_n/n = 0) = 1$ for $p = 0$ and $P(S_n/n = 1) = 1$ for $p = 1$. For $0 < p < 1$ we have from the CLT

$$
P\left(\left|\frac{S_n}{n} - p\right| < \epsilon\right) = P\left(\left|\frac{\frac{S_n}{n} - p}{\sqrt{p(1-p)/n}}\right| < \frac{\epsilon}{\sqrt{p(1-p)/n}}\right) \approx P\left(|Z| < \frac{\sqrt{n}\epsilon}{\sqrt{p(1-p)}}\right)
$$
\n
$$
= 2\Phi\left(\frac{\sqrt{n}\epsilon}{\sqrt{p(1-p)}}\right) - 1 \to 1 \quad \text{as } n \to \infty
$$

HW 7, Problem 2 lets you work out a specific example case.

• Sampling with and without Replacement:

Suppose we have a large population of size N from which we sample at random n items without replacement, either one by one or as a single unordered grab of n . Then the outcome ω is either an ordered *n*-tuple, denoted by ω , each with probability

$$
P(\omega) = \frac{1}{N \cdot (N-1) \cdot (N-2) \cdot \cdot \cdot (N-n+1)} = \frac{1}{(N)_n}
$$

or an unordered set of n items representing all n! permutations of the previous ω . We will denote this set by $\{\omega\}$ and it has probability

$$
P^*(\{\omega\}) = \frac{n!}{N \cdot (N-1) \cdot (N-2) \cdots (N-n+1)} = \frac{1}{\binom{N}{n}}
$$

Suppose now that our population consists of two types of items, say M red balls and $N - M$ blue balls. We are interested in the random variable X that counts the number of red balls in ω or in $\{\omega\}$. We can find $P(X = k) = P(\omega : X(\omega) = k)$ or $P^*(X = k) = P^*(\{\omega\} : X(\{\omega\}) = k)$. Any *n*-tuple ω with k red balls in specified position and with blue balls in the other positions can be obtained in

$$
M \cdot (M-1) \cdot \ldots \cdot (M-k+1) \cdot (N-M) \cdot (N-M-1) \cdot \ldots \cdot (N-M-(n-k-1)) = (M)_k (N-M)_{n-k}
$$

ways. As far as $P(X = k) = P(\omega : X(\omega) = k)$ is concerned there are $\binom{n}{k}$ $\binom{n}{k}$ *n*-tuples ω which have k red balls and $n - k$ blues balls in one of the chosen $\binom{n}{k}$ $\binom{n}{k}$ positions of the *n*-tuple. Thus

$$
P(X = k) = \frac{\binom{n}{k} (M)_k (N - M)_{n-k}}{(N)_n} = \frac{\binom{M}{k} \cdot \binom{N - M}{n - k}}{\binom{N}{n}} = P^*(X = k)
$$

where the $= P^*$ derives from the fact that in order to get a set $\{\omega\}$ with exactly k red balls I have to grab k from M red balls in one of $\binom{M}{k}$ ways and combine that with a grab of $n - k$

blue balls from $N-M$ in $\binom{N-M}{n-k}$ possible ways. This equality $P(X=k) = P^*(X=k)$ should have been made clear in the beginning of this class and it is predicated on the fact that the event $X = k$ does not involve any order. This common distribution of X is referred to as the hypergeometric distribution and we write $X \sim$ Hypergeom (N, M, n) . See HW 4, Problem 4.

Let us next consider sampling n items with replacement from the same population and let X again denote the number of red balls. Then we are dealing with n independent trials and with success (red ball chosen in a given trial) probability $p = M/N$ and we have $X \sim Bin(n, p)$. We write

$$
\tilde{P}(X=k) = {n \choose k} \left(\frac{M}{N}\right)^k \left(\frac{N-M}{N}\right)^{n-k} = {n \choose k} p^k (1-p)^{n-k}
$$

Let A denote the set of all n-tuples with distinct elements, assuming all N items are labeled $1, 2, \ldots, N$. Then

$$
\tilde{P}(A) = \frac{N \cdot (N-1) \cdot (N-2) \cdot \ldots \cdot (N-n+1)}{N^n} \to 1 \quad \text{as } N \to \infty, n \text{ staying fixed}
$$

and since $\tilde{P}(A^c) \to 0$ as $N \to \infty$ we then have

$$
\tilde{P}(X = k) = \tilde{P}(X = k|A)\tilde{P}(A) + \tilde{P}(X = k|A^c)\tilde{P}(A^c) \approx \tilde{P}(X = k|A)
$$

For *n*-tuples $\omega \in A$ we have

$$
\tilde{P}(\omega|A) = \frac{\tilde{P}(\omega)}{\tilde{P}(A)} = \frac{\frac{1}{N^n}}{\frac{N \cdot (N-1) \cdot (N-2) \cdot ... \cdot (N-n+1)}{N^n}} = \frac{1}{(N)_n} = P(\omega)
$$

and thus

$$
\tilde{P}(X = k) \approx \tilde{P}(X = k|A) = \tilde{P}(\{\omega : X(\omega) = k\}|A) = P(\omega : X(\omega) = k) = P(X = k) = P^*(X = k)
$$

Thus the "two sampling without replacement" schemes give approximately the same distribution to X as the sampling with replacement, provided N is large. In order for the binomial distribution $\text{Bin}(n, p = M/N)$ to stay stable we would also need to assume that $p = M/N$ stay stable and stay away from zero or one. In that case the CLT applied to the binomial distribution (\tilde{P}) equally applies to the nonreplacement schemes, where the sequential selections (if we sample one by one) are certainly no longer independent.

• The Poisson Distribution and Poisson Approximation to the Binomial:

If $S_n \sim \text{Bin}(n, p)$ with $p \approx 0$ or $p \approx 1$ presents a problem for the CLT, at least for moderate n. In that case the Poisson distribution provides a very useful alternative for $p \approx 0$ and for $p \approx 1$ we switch to $\tilde{S}_n = n - S_n \sim Bin(n, 1 - p)$, counting the number of failures instead.

A random variable X has a Poisson distribution with parameter $\lambda > 0$, and we write $X \sim \text{Poisson}(\lambda)$ or $X \sim \text{Pois}(\lambda)$, when

$$
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \quad \text{for } k = 0, 1, 2, \dots
$$

Its mean and variance are given by

$$
E(X) = \lambda
$$
 and $var(X) = \lambda$

$$
E(X) = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = \sum_{k=1}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = \lambda \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!} = \lambda \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = \lambda
$$

$$
E(X(X-1)) = \sum_{k=0}^{\infty} k(k-1) \frac{e^{-\lambda} \lambda^k}{k!} = \sum_{k=2}^{\infty} k(k-1) \frac{e^{-\lambda} \lambda^k}{k!} = \lambda^2 \sum_{k=2}^{\infty} \frac{e^{-\lambda} \lambda^{k-2}}{(k-2)!} = \lambda^2 \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = \lambda^2
$$

Thus
$$
var(X) = E(X(X-1)) + E(X) - [E(X)]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda
$$

• Law of Rare Events Or Law of Small Numbers

Let $\lambda > 0$ and consider positive integer n with $\lambda/n < 1$. Let $S_n \sim \text{Bin}(n, \lambda/n)$. Then

$$
\lim_{n \to \infty} P(S_n = k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{for } k = 0, 1, 2, \dots
$$

Proof:

$$
P(S_n = k) = {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}
$$

$$
\longrightarrow \frac{\lambda^k}{k!} e^{-\lambda} \quad \text{as } n \to \infty \text{ for any fixed } k \quad \Box
$$