
Class Notes 3-13-2019

• General Formula for Density of Y = g(X) when g is not 1-1

fY (y) =
∑

x:g(x)=y

g′(x)6=0

fX(x)
1

|g′(x)|

Here we do not replace x in fX(x) and g′(x) by x = g−1(y) because g does not necessarily
have an inverse. There may be several values x that map into the same y. That is the reason
for the notation used.
The above formula for fY (y) can easily be derived via the infinitesimal interpretation of
fY (y)dy as approximation to P (Y ∈ [y, y + dy]), i.e., P (Y ∈ [y, y + dy]) ≈ fY (y)dy
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In the plot the xi abscissa values correspond to the intersect locations of the non-monotone
function with the horizontal y line, i.e., g(xi) = y. The intercepts xi + dxi correspond to
the corresponding locations of the intercepts with the y + dy line, i.e., g(xi + dxi) = y + dy.
The thick red secants linearly connect (xi, y) with (xi + dxi, y+ dy) with slope approximately
g′(xi) ≈ dy

dxi
. We then have in this particular case (with 3 intersects, i.e., 3 x’s with g(x) = y),

P (Y ∈ [y, y + dy]) = P (X ∈ [x1, x1 + dx1]) + P (X ∈ [x2 + dx2, x2]) + P (X ∈ [x3, x3 + dx3])

where the reversal of endpoints in the interval [x2 + dx2, x2] results from the fact the g(x)
is decreasing over that interval, i.e., dx2 < 0. Using the infinitesimal interpretation of such
probabilities we have

P (X ∈ [xi, xi +dxi] ≈ fX(xi)dxi, for i = 1, 3 and P (X ∈ [x2 +dx2, x2]) ≈ −fX(x2)dx2,

Hence
fY (y)dy ≈ P (Y ∈ [y, y + dy]) ≈ fX(x1)dx1 − fX(x2)dx2 + fX(x3)dx3

or, after dividing both sides by dy

fY (y) ≈ fX(x1)
1
dy
dx1

−fX(x1)
1
dy
dx2

+fX(x3)
1
dy
dx3

−→ fX(x1)
1

|g′(x1)|
+fX(x2)

1
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as all the infinitesimals become arbitrarily small, resulting in the above more general expression
in this case.

• Revisiting Y = g(Z) = Z2 with Z ∼ N (0, 1):
Since Y = g(Z) we use the symbol z in place of x in our formula above. We have g′(z) = 2z
and z2 = g(z) = y has two solutions for y > 0, namely z1 =

√
y and z2 = −√y. Thus for

y > 0 our formula for fY (y) becomes

fY (y) = fZ(z1)
1

|2z1|
+ fZ(z2)
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= ϕ(
√
y)

1
√
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exactly the same expression we got via the cdf approach and differentiation.

• Some Special Transforms Involving the CDF F (x) of X
Let us take the standard definition of the inverse cdf F−1(u), namely

F−1(u) = inf{x : u ≤ F (x)} and note that F−1(u) ≤ x ⇐⇒ u ≤ F (x)

so that for U ∼ Unif(0, 1) we have P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x) for all x ∈ R.
This gives us a recipe for generating random variables X ∼ F once we have a way of generating
U ∼ Unif(0, 1) and if we know how to compute the inverse F−1(u).
We note that F−1(p) is not the same definition as given previously for the p-quantile of a
distribution. When F (x) = p happens to occur over an interval [a, b) then any x ∈ [a, b)
would qualify as a p-quantile. While F−1(p) is also a p-quantile, it is a unique choice.

Based on the above result about the cdf of F−1(U) one might suspect that U = F (X) is
distributed like Unif(0, 1). That is not the case in general and can easily be seen for discrete
random variables. The simplest case is that of a constant random variable, e.g., P (X = 0) = 1.
Then F (X) can take on only the value F (X) = F (0) = P (X ≤ 0) = 1 while P (X < 0) = 0
so that P (F (X) = 1) = 1, i.e., F (X) 6∼ Unif(0, 1).
However, F (X) ∼ Unif(0, 1) when the cdf F (x) is continuous.
This is seen as follows: If for a given u ∈ (0, 1) we have that u = F (x) at a unique point
x = F−1(u), i.e., F crosses the level u in strictly monotone increasing fashion.
Then P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u.
If we have F (x) = u for all x ∈ [a, b] and F (x) < u for x < a and F (x) > u for x > b then

P (F (X) ≤ u) = P (X ≤ x) = u for all x ∈ [a, b]

Where does continuity of F come in?
We need a value x where F (x) = u, i.e., F (x) cannot jump over the level u.

This latter result that F (X) ∼ Unif(0, 1) when F is continuous is extremely important in
the study of large sample theory (asymptotics) because is allows us to reduce many results
concerning iid X1, . . . , Xn ∼ F to the study of iid U1, . . . , Un ∼ Unif(0, 1), i.e., we don’t have
to prove theorems over and over for different F .

• The Sum of Independent Poisson Random Variables:
Theorem 1: Let X1 and X2 be independent Poisson random variables with respective pa-
rameters λ1 > 0 and λ2 > 0. Then S = X1 +X2 is a Poisson random variable with parameter
λ1 + λ2.
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Proof:

P (X1 +X2 = z) =
∞∑
i=0

P (X1 +X2 = z,X2 = i) =
∞∑
i=0

P (X1 + i = z,X2 = i)

=
z∑
i=0

P (X1 = z − i,X2 = i) =
z∑
i=0

e−λ1λz−i1

(z − i)!
e−λ2λi2
i!

=
e−(λ1+λ2)(λ1 + λ2)

z

z!

z∑
i=0

z!

i!(z − i)!

(
λ2

λ1 + λ2

)i(
λ1

λ1 + λ2

)z−i
=

e−(λ1+λ2)(λ1 + λ2)
z

z!

Corollary: If X1, . . . , Xn are independent Poisson random variables with respective parame-
ters λ1, . . . , λn then S = X1+. . .+Xn is a Poisson random variable with parameter λ1+. . .+λn.

Proof: By induction over n.

X1 + . . .+Xn−1 ∼ Pois(λ1 + . . .+ λn−1) and Xn ∼ Pois(λn)

=⇒ X1 + . . .+Xn ∼ Pois(λ1 + . . .+ λn)

Chapter 9: Tail Bounds, Section 9.1-9.2

• Markov’s Inequality:

P (|X| ≥ c) ≤ E(|X|)
c

for any c > 0

Proof: |X| = |X|I{|X|≥c} + |X|I{|X|<c} ≥ |X|I{|X|≥c} ≥ cI{|X|≥c}. Thus

E(|X|) ≥ cE
(
I{|X|≥c}

)
= cP (|X| ≥ c)

• Chebychev’s Inequality:
Let X be a random variable with finite mean µ = E(X) and finite variance σ2 = var(X).
Then for any c > 0 we have

P (|X − µ| ≥ c) ≥ σ2

c2

Proof: Using Markov’s inequality on ||X − µ|2| = |X − µ|2 we have

P (|X − µ| ≥ c) = P
(
|X − µ|2 ≥ c2

)
≤ E(|X − µ|2)

c2
=
σ2

c2

• The Law of Large Numbers: Let X1, X2, . . . , Xn be independent identically distributed
(iid) Bernoulli random variables, Xi ∼ Ber(p). and denote by X̄n = (X1 + . . . + Xn)/n the
proportion of successes in these n independent trials. Then

P (
∣∣X̄n − p

∣∣ < ε) −→ 1 as n→∞, for any ε > 0

The proof is an immediate consequence of var(X̄n) = p(1− p)/n and Chebychev’s inequality.

The same applies for X1, X2, . . . , Xn iid ∼ Pois(λ). We saw that X1 + . . .+Xn ∼ Pois(nλ) so
that E(X̄n) = nλ/n = λ and var(X̄n) = nλ/n2 = λ/n so that

P (
∣∣X̄n − λ

∣∣ < ε) −→ 1 as n→∞, for any ε > 0
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