
Class Notes 3-11-2019

• Linear Transformations g(X) = aX + b, a 6= 0:
Let X be a continuous random variable with cdf FX(x) and pdf fX(x). In Problem 4 of HW
5 you worked out the cdf and pdf of Y = g(X) = bX + a. For b > 0 we have

FY (y) = P (Y ≤ y) = P (bX + a ≤ y) = P

(
X ≤ y − a

b

)
= FX

(
y − a
b

)
with pdf fY (y) = 1

b
fX
(
y−a
b

)
. When b < 0 we get

FY (y) = P (Y ≤ y) = P (bX + a ≤ y) = P

(
X ≥ y − a

b

)
= 1− FX

(
y − a
b

)
with pdf fY (y) = −1

b
fX
(
y−a
b

)
= 1
|b|fX

(
y−a
b

)
where the latter form also holds for b > 0.

Comment: Such densities of the form fY (y) = 1
|b|fX

(
y−a
b

)
with fX some known standard

density such as fX = ϕ(x) (standard normal density) are very useful models when Y1, . . . , Yn
iid ∼ Y are observed but the transformation parameters a and b in the linear transform
Yi = a+ bXi are unknown. If we denote Ȳ = 1

n

∑n
i=1 Yi = a+ bX̄ we have

Yi − Ȳ
b

=
a+ bXi − (a+ bX̄)

b
=
bXi − bX̄

b
= Xi − X̄ and

Ȳ − a
b

= X̄

and thus ∑n
i=1(Yi − Ȳ )2

b2
=

n∑
i=1

(Xi − X̄)2

and since the Xi have a known distribution the distribution of
∑n

i=1(Xi − X̄)2 can either be
derived mathematically or to arbitrary accuracy by simulating lots of samples X1, . . . , Xn ∼
fX(x) and computing

∑n
i=1(Xi−X̄)2 each time. From such a distribution (exact or simulated)

we could then get values D and G such that

.95 = (≈)P

(
D ≤

∑n
i=1(Yi − Ȳ )2

b2
≤ G

)
= P

(∑n
i=1(Yi − Ȳ )2

G
≤ b2 ≤

∑n
i=1(Yi − Ȳ )2

D

)
i.e., the interval [

∑n
i=1(Yi − Ȳ )2/G,

∑n
i=1(Yi − Ȳ )2/D] captures the unknown parameter b2

with probability .95 and by taking square roots the parameter b with probability .95. Such
intervals are referred to as confidence intervals for b2 or b. It is the intervals whose randomness
is expressed by the probability statement. The parameters b2(b) are not random and simply
unknown. In any specific instance we will not know whether our interval captured the unknown
parameter or not. We only have the assurance (confidence) that in 95% of the cases of applying
this method we would have captured our target. In this context it is worth quoting Myles
Hollander: “Statistics means never having to say you are certain,”

In a similar fashion you can exploit the known or simulated distribution of

Ȳ − a√∑n
i=1(Yi − Ȳ )2

=
(Ȳ − a)/b√∑n
i=1(Yi − Ȳ )2/b2

=
X̄√∑n

i=1(Xi − X̄)2

1



to get

.95 = (≈)P

(
D ≤ Ȳ − a√∑n

i=1(Yi − Ȳ )2
≤ G

)

= (≈)P

Ȳ −G
√√√√ n∑

i=1

(Yi − Ȳ )2 ≤ a ≤ Ȳ −D

√√√√ n∑
i=1

(Yi − Ȳ )2


for a confidence interval for a.

• A Monotone Transformation of a Continuous Random Variable:
Let U ∼ Unif[0, 1] and let Y = − ln(1 − U). Since 1 − U ∼ Unif[0, 1] as well, we have that
Y = − ln(1− U) and Y ∗ = − ln(U) have the same distribution, namely for y > 0

P (− ln(U) > y) = P (U < e−y) = e−y so that FY ∗(y) = P (− ln(U) ≤ y) = 1−e−y for y > 0

while FY ∗(y) = 0 for y ≤ 0. Hence both Y = − ln(1 − U) and Y ∗ = − ln(U) have an
exponential distribution with mean 1.

• A Non-monotone Transform of Z ∼ N (0, 1): Y = g(Z) = Z2

FY (y) = P (Y ≤ y) = P (Z2 ≤ y) = P (−√y ≤ Z ≤ √y) = 2Φ(
√
y)− 1 for y > 0

and FY (y) = 0 for y ≤ 0 and with density

fY (y) =
1
√
y
ϕ(
√
y)I(0,∞)(y) =

1√
2πy

e−y/2I(0,∞)(y)

The distribution of Z2 is said to have a chi-squared distribution with one degree of freedom.
We also write Z2 ∼ χ2

1.

• General Monotone Transformations:
Let X be a continuous random variable with pdf fX(x). Let g be a monotone increasing
function with derivative 6= 0 except at finitely many points so that it has an inverse g−1(y).
Then Y = g(X) has cdf

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y))

for y in the range D = (A,B) of g(x). Here A and/or B may be ±∞, respectively. Below that
range FY (y) = 0 and above that range FY (y) = 1. By differentiation we get the corresponding
density as

fY (y) = fX(g−1(y))
d

dy
g−1(y)I(A,B)(y) = fX(g−1(y))

1

g′(g−1(y))
I(A,B)(y)

with zero density outside (A,B). The derivative of the inverse g−1(y) follows from

y = g
(
g−1(y)

)
=⇒ d

dy
g
(
g−1(y)

)
= 1 = g′(g−1(y))

d

dy
g−1(y)

When g be a monotone decreasing function with derivative 6= 0 except at finitely many points
so that it has an inverse g−1(y). Then Y = g(X) has cdf

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≥ g−1(y)) = 1− FX(g−1(y))
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for y in the range D = (A,B) of g(x). Here A and/or B may be ±∞, respectively. Below that
range FY (y) = 0 and above that range FY (y) = 1. By differentiation we get the corresponding
density as

fY (y) = −fX(g−1(y))
d

dy
g−1(y)I(A,B)(y) = −fX(g−1(y))

1

g′(g−1(y))
I(A,B)(y)

with zero density outside (A,B). The two cases can be combined in the following way for any
monotone differentiable function Y = g(X) with zero derivative at at most a finite number of
places.

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣ I(A,B)(y) = fX(g−1(y))
1

|g′(g−1(y))|
I(A,B)(y)

with zero density outside (A,B).

• Weibull-Gumbel Example:
Let X ∼Weib(α, β) for α > 0 abd β > 0, i.e., FX(x) = 1− e−(x/α)β for x ≥ 0. Find cdf and
density of Y = ln(X) = g(X). By differentiation the Weibull density is

fX(x) =
β

α

(x
α

)β−1
e−(x/α)

β

I[0,∞)(x)

We have g−1(y) = ey with derivative ey, so that for all y ∈ R

fY (y) =
β

α

(
ey

α

)β−1
e−(e

y/α)βI[0,∞)(e
y)ey = βe−(e

y/α)β(ey/α)β =
1

b
e
y−a
b e−e

y−a
b =

1

b
g

(
y − a
b

)
where a = logα and b = 1/β and

g(x) = e−e
x

ex is the standard Gumbel density

and the parametrization with (a, b) is much easier to understand in its location/scale character.

A more direct way is to derive the cdf of Y as follows

P (Y > y) = P (X > ey) = e−( e
y

α )
β

= e−e
y−logα

1/β
= e−e

y−a
b with FY (y) = P (Y ≤ y) = 1−e−e

y−a
b

and the density is obtained by differentiation.

• General Formula for Density of Y = g(X) when g is not 1-1

fY (y) =
∑

x:g(x)=y

g′(x)6=0

fX(x)
1

|g′(x)|

Here we do not replace x in fX(x) and g′(x) by x = g−1(y) because g does not necessarily
have an inverse. There may be several values x that map into the same y. That is the reason
for the notation used.
The above formula for fY (y) can easily be derived via the infinitesimal interpretation of
fY (y)dy as approximation to P (Y ∈ [y, y + dy]), i.e., P (Y ∈ [y, y + dy]) ≈ fY (y)dy
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x1 x2 x3

y
y + dy

x1 + dx1 x2 + dx2 x3 + dx3

g(x)

In the plot the xi abscissa values correspond to the intersect locations of the non-monotone
function with the horizontal y line, i.e., g(xi) = y.
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