
Class Notes 2-6-2019

• Geometric Distribution Dice Example:
What is the chance that it takes more than 10 rolls to roll a six? Let N be the number of
rolls until the first six appears.

P (N > 10) =
∞∑

k=11

P (N = k) =
∞∑

k=11

p(1− p)k−1 where p = P ( six in one roll) = 1/6

= p(1− p)10
∞∑
k=0

(1− p)k = p(1− p)10 1

1− (1− p)
= (1− p)10

= P (no sixes in the first 10 rolls)

• Dice Example:
Roll two fair dice until you get a sum of 6 or a sum of 7. What is the chance you get a 7 first?
Again this should be viewed in the context of a probability space with an infinite number of
trials. We finesse the resulting issues by expressing the event in question as an infinite union
of disjoint events, each concerning the outcomes of finite number of rolls, namely

An = {no 6 or 7 in the first n− 1 rolls, and a 7 on the nth roll} , n = 1, 2, . . .

The disjoint union A = ∪∞i=1An describes all possible outcomes of interest. For any pair of
dice rolls we have

P (sum = 7) =
6

36
and P (sum = 6) =

5

36
thus P (An) =

(
1− 11

36

)n−1
6

36

and

P (A) =
∞∑
n=1

P (An) =
∞∑
n=1

(
1− 11

36

)n−1
6

36
=

1

1− (1− 11/36)

6

36
=

6

11
=

6

5 + 6

which intuitively makes sense. Note also that

P (sum = 7|sum = 6 ∪ sum = 7) =
P (sum = 7)

P (sum = 6 ∪ sum = 7)
=

P (sum = 7)

P (sum = 6) + P (sum = 7)

=
6/36

5/36 + 6/36
=

6

5 + 6

• Probability Distributions of Random Variables:
An important aspect of any random variable X is its probability distribution which enables
us to calculate P (X ∈ B) for any (reasonable) subset B of the real line R.

• Probability Mass Function (p.m.f.) for Discrete Random Variables:
The distribution of a discrete random variable X with distinct possible values k1, k2, k3, . . . can
be described by its probability mass function (p.m.f.) p(k) = P (X = k) for k = k1, k2, k3, . . .
and p(k) = 0 otherwise. If we wish to emphasize the random variable X for which it applies
we also write pX(k).
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We must have ∑
k

pX(k) =
∑
k

P (X = k) =
∞∑
i=1

P (X = ki) = 1

If X has only a finite number N of possible values we replace this by

∑
k

pX(k) =
∑
k

P (X = k) =
N∑
i=1

P (X = ki) = 1

For any B ⊂ R we get

P (X ∈ B) =
∑
k∈B

pX(k)

• Maximum of Two Fair Dice Rolls:
Let X1, X2 represent the two fair dice rolls and focus on X = max(X1, X2). X has values
1, 2, . . . , 6 with probabilities 1/36, 3/36, 5/36, 7/36, 9/36, 11/36.

• Graphical Representation of a pmf:
A probability mass function can be represented graphically in various different forms. One
possibility is to mark the possible values on the x axis and place vertical rods at those locations
(in the y direction) or center vertical boxes at those locations with heights representing the
probabilities of the respective values. Others represent the probabilities by the areas of the
displayed boxes.

• Probability Density Functions (p.d.f.) of Random Variables:
If f(x) ≥ 0 ∀x ∈ R and

∫∞
−∞ f(x)dx = 1 and if a random variable X satisfies

P (X ≤ b) =

∫ b

−∞
f(x)dx ∀b ∈ R

then X is called a continuous random variable with p.d.f. f(x) = fX(x).
Such random variables are not discrete since

P (X = b) =

∫ b

b

f(x)dx = 0 ∀b ∈ R

For such continuous random variables we thus have

P (X ∈ [a, b]) = P (X ∈ (a, b]) = P (X ∈ [a, b)) = P (X ∈ (a, b))

For all reasonable subsets B ⊂ R we have
∫
B
f(x)dx = P (X ∈ B). Such sets B can be any

collection of disjoint intervals as long as we can figure out the area under f(x) over all those
intervals. See graphical representation in Fig. 3.1 (text)
If we change f(x) at a finite or countably infinite number of points that will not change
P (X ∈ B), i.e., we still have the same probability distribution. The term continuous random
variable is a bit of a misnomer, return to this later when introducing distribution functions.

• Potential Density Functions(??)
We use indicator functions such as IA(x) = 1 if x ∈ A and IA(x) = 0 if x /∈ A.

f1(x) =
1

x2
I{x≥1}(x), f2(x) = b

√
a2 − x2I[0,a](|x|), for a, b > 0, f3(x) = c sinx I[0,2π](x)
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f1 is a density function since f1 ≥ 0 ∀x ∈ R and∫ ∞
−∞

f1(x) dx =

∫ ∞
1

1

x2
dx =

(
−1

x

)∣∣∣∣∞
1

= 1

Since y =
√
a2 − x2 represents the y ordinate of a point on a circle with radius a at the

abscissa x (y2 + x2 = a2) we have∫ ∞
−∞

f2(x) dx = b

∫ a

−a

√
a2 − x2 dx = b

1

2
πa2

which is 1 exactly when b = 2/(πa2), i.e., f2 could be a p.d.f. However, f3 cannot be a density
for the simple reason that it switches sign for any c 6= 0 and is identically 0 when c = 0.

• Uniform Distributions or Random Variables:
Let [a, b] (a < b) be any finite interval on the real line R. A random variable X has the
uniform distribution on the interval [a, b] if X has density

f(x) =
1

b− a
I[a,b](x)

for short we write X ∼ Unif[a, b] or also X ∼ U[a, b], or also X ∼ U(a, b].
If [c, d] ⊂ [a, b] then

P (X ∈ [c, d]) = P (c ≤ X ≤ d) =

∫ d

c

1

b− a
dx =

d− c
b− a

• Uniform Example:
Let Y ∼ U(−2, 5), what is P (|Y | ≥ 1.5)?

P (|Y | ≥ 1.5) = P (Y ∈ [−2,−1.5] ∪ [1.5, 5]) = P (−2 ≤ Y ≤ −1.5) + P (1.5 ≤ X ≤ 5)

=
(−1.5)− (−2)

5− (−2)
+

5− 1.5

5− (−2)
=
.5

7
+

3.5

7
=

4

7

• Infinitesimals or Probability Interpretation of Densities:
f(x) is not the probability P (X = x) = 0. However, when f is continuous at a point a then

P (a− ε/2 < X < a+ ε/2) ≈ εf(a) for small ε > 0

because

P (a− ε/2 < X < a+ ε/2) =

∫ a−ε/2

a−ε/2
f(x) dx ≈ εf(a)

If f is right continuous at a we have

P (a < X < a+ ε) ≈ εf(a)

with a corresponding statement when left continuity holds at a.
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