Class Notes 2-27-2019

• The Gaussian Distribution:

A random variable Z has the standard normal distribution (or standard Gaussian distribution) and we write $Z \sim \mathcal{N}(0, 1)$ if Z has pdf

$$
\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \quad \text{for all } x \in \mathbb{R}
$$

Its cdf is

$$
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-s^2/2} \, ds
$$

There is no closed form anti-derivative for $\varphi(x)$. To show that it is a density we resort to the trick of computing

$$
\left(\int_{-\infty}^{\infty} e^{-x^2/2} dx\right) \left(\int_{-\infty}^{\infty} e^{-y^2/2} dy\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy
$$

Rather than summing the areas dx dy of the rectangles $[x, x + dx] \times [y, y + dy]$ multiplied by the function value $\exp(-(x^2+y^2)/2)$ at its rectangle corner (x, y) we represent the points (x, y) in the plane \mathbb{R}^2 by polar coordinates, namely $x = r \cos \theta$ and $y = r \sin \theta$, and sum the wedge shaped areas cut out of the annulus defined by radii r and $r + dr$ and by angles θ and $\theta + d\theta$ and multiply them by the function value $\exp(-(x^2 + y^2)/2) = \exp(r^2/2)$ at the wedge corner (r, θ) . The annulus area is $\pi (r + dr)^2 - \pi r^2$ and the angular $d\theta$ slices represent $\frac{d\theta}{2\pi}$ of the full circumference 2π . Thus these wedge areas are

$$
(\pi(r+dr)^2 - \pi r^2)\frac{d\theta}{2\pi} = rdrd\theta + \frac{1}{2}dr^2d\theta \approx rdrd\theta
$$

Thus we get with $x^2 + y^2 = r^2 \cos^2 \theta + r^2 \sin^2 \theta = r^2$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy = \int_{0}^{2\pi} \int_{0}^{\infty} r e^{-r^2/2} dr d\theta = 2\pi \left(-e^{-r^2/2} \right) \Big|_{0}^{\infty} = 2\pi \Rightarrow \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}
$$

i.e., $\varphi(x)$ is a density.

A more compact way of showing the same is to turn the 2 dimensional integral into a 1 dimensional one by realizing that $e^{-(x^2+y^2)/2}$ is constant on concentric circles around $(0,0)$. Rather than integrating/summing over small rectangular cells we integrate/sum over thin annuli of radii r and $r + dr$. These have area $\pi (r + dr)^2 - \pi r^2 = 2\pi r dr + \pi (dr)^2 \approx 2\pi r$. On each such annulus the function $e^{-(x^2+y^2)/2} \approx e^{-r^2/2}$ and thus the 2 dimensional integral becomes

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dx dy = \int_{0}^{\infty} 2\pi r e^{-r^2/2} dr = -2\pi e^{-r^2/2} \Big|_{0}^{\infty} = 2\pi
$$

• The cdf $\Phi(x)$:

Appendix E gives us $\Phi(x)$ as tabled values for $x \in [0, 3.49]$. Because of the symmetry of $\varphi(x)$ around zero, i.e., $\varphi(-x) = \varphi(x)$, we get $P(Z \leq -x) = \Phi(-x) = 1 - \Phi(x) = P(Z \geq x)$ and thus we also get $\Phi(x)$ for $x \in [-3.49, 0]$.

• Examples of Standard Normal Probabilities:

$$
P(Z \le 1.7) = \Phi(1.7) = .9554
$$

\n
$$
P(Z \le -1.7) = 1 - \Phi(1.7) = .0446
$$

\n
$$
P(-1 \le Z \le 1.5) = P(Z \le 1.5) - P(Z \le -1)
$$

\n
$$
= \Phi(1.5) - (1 - \Phi(1)) = .9332 - (1 - .8413)
$$

Find z such that $P(-z < Z < z) = 2/3$, i.e., $P(Z < z) = 5/6 = .8333$. We have $P(Z \le .96) = .8315$ and $P(Z \le .97) = .8340$, thus $z = .97$ comes close. People tend to be more cavalier and use $z = 1$ instead to store $P(-1 < Z < 1) \approx 2/3$ in their memory bank, when in fact $P(-1 < Z < 1) = 0.6827 > .6666$.

• Mean and Variance of the Standard Normal Z:

$$
E(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x e^{-x^2/2} dx
$$

is an improper integral. Need to show that it exists no matter how we approach $\pm \infty$. To that end we examine

$$
\int_{-\infty}^{\infty} |x| e^{-x^2/2} dx = 2 \int_{0}^{\infty} x e^{-x^2/2} dx = -2e^{-x^2/2} \Big|_{0}^{\infty} = 2 < \infty
$$

thus $E(Z)$ exists and is zero because $g(x) = x\varphi(x)$ is odd, i.e., $g(-x) = -g(x)$, so that

$$
\int_{-a}^{a} g(x)dx = 0 \quad \text{for all } a > 0 \text{ and thus } \lim_{a \to \infty} \int_{-a}^{a} g(x)dx = \int_{-\infty}^{\infty} g(x)dx = 0 = E(X)
$$

$$
E(Z^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-x^2/2} dx
$$
 integrating by parts
= $-\frac{1}{\sqrt{2\pi}} xe^{-x^2/2} \Big|_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} dx = 1$ thus $\text{var}(Z) = 1$

where we used $\lim_{x\to\pm\infty} xe^{-x^2/2} = 0$.

• General Normal Random Variables:

General normal random variables can be viewed as linear transforms of a standard normal random variable Z. Let $\mu \in \mathbb{R}$ and $\sigma > 0$ then $X = \sigma Z + \mu$ is said to have a normal distribution with mean μ and variance σ^2 and we write $X \sim \mathcal{N}(\mu, \sigma^2)$. Its cdf is

$$
P(X \le x) = P(\mu + \sigma Z \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)
$$

and by differentiation its density is

$$
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

If $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y = aX + b$ with $a \neq 0$, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$, since $Y = aX + b = a(\sigma Z + \mu) + b = a\sigma Z + a\mu + b$. In particular, $Z = (X - \mu)/\sigma \sim \mathcal{N}(0, 1)$.

• Normal Probability Calculations:

Say we have $X \sim \mathcal{N}(-3, 4)$, find $P(X \le -1.7)$.

$$
P(X \le -1.7) = P\left(\frac{X - (-3)}{2} \le \frac{-1.7 - (-3)}{2}\right) = P(Z \le .65) = \Phi(.65) = .7422
$$

If $X \sim \mathcal{N}(\mu, \sigma^2)$, find $P(|X - \mu| > 2\sigma)$.

$$
P(|X - \mu| > 2\sigma) = P(|(X - \mu)/\sigma| > 2) = P(|Z| > 2) = 2(1 - \Phi(2)) \approx 2(1 - .9772) = .0456
$$

roughly 95% of the probability under the normal curve lies within $\mu \pm 2\sigma$ and about 66% lies within $\mu \pm \sigma$.