
Class Notes 2-25-2019

• The Variance of a Random Variable:
The variance captures the amount of variation of X around the mean µ, presumed to be finite.
It is defined as

σ2 = var(X) = E[(X − µ)2], σ =
√

var(X) = standard deviation of X

The variance is easier to deal with mathematically than the more intuitive variation measure
mean absolute deviation E[|X − µ|].
In a way, σ is meant to counter the distortion of the square function used in the variance.

• Variance Computation and Alternate Forms:
In the discrete case with pmf pX(k)

var(X) =
∑
k

(k − µ)2P (X = k) =
∑
k

(k − µ)2pX(k) =
∑
k

k2pX(k)−
∑
k

2kµpX(k) +
∑
k

µ2pX(k)

= E(X2)− 2µ2 + µ2 = E(X2)− µ2 = E(X2)− [E(X)]2 = mean square − squared mean

In the continuous case with pdf fX(x)

var(X) =

∫ ∞
−∞

(x− µ)2fX(x)dx =

∫ ∞
−∞

x2fX(x)dx−
∫ ∞
−∞

2xµfX(x)dx+

∫ ∞
−∞

µ2fX(x)dx

= E(X2)− 2µ2 + µ2 = E(X2)− µ2 = E(X2)− [E(X)]2 = mean square − squared mean

The alternate expression E(X2)− [E(X)]2 for var(X) holds generally.
var(X) = 0⇔ P (X = c) = 1 for some c, in which case E(X) = c.

• Variance Example:
Let X take on the 2 values ±1 with equal probability and Y takes on the 2 values ±100 with
equal probability. We have E(X) = E(Y ) = 0 but

var(X) = E[X2]− 02 = 1 and var(Y ) = E[Y 2]− 02 = 10, 000 with σX = 1 and σY = 100

• Variance of a Bernoulli Random Variable:
Let X ∼ Ber(p) then var(X) = E(X2)− [E(X)]2 = p− p2 = p(1− p)

• Variance of a Binomial Random Variable:
Let X ∼ Bin(n, p) and g(X) = X2 = X(X − 1) + X. Using k(k − 1)

(
n
k

)
=
(
n−2
k−2

)
n(n− 1) we

get

E(X2) =
n∑

k=0

[k(k − 1) + k]

(
n

k

)
pk(1− pn−k =

n∑
k=0

k(k − 1)

(
n

k

)
pk(1− pn−k + np

= p2
n∑

k=2

n(n− 1)

(
n− 2

k − 2

)
pk−2(1− pn−2−(k−2) + np substitute k − 2 = `

= p2n(n− 1)
n−2∑
`=0

(
n− 2

`

)
p`(1− pn−2−` + np = p2n(n− 1) + np = n2p2 − np2 + np
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Thus E(X2)− [E(X)]2 = np(1− p) = var(X).
If we view X = X1 + . . .+Xn with Xi ∼ Ber(p) mutually independent we see that

var(X) = np(1− p) = var(X1) + . . .+ var(Xn) = p(1− p) + . . .+ p(1− p)

The variance of a sum of independent random variables is the sum of the variances of the
individual summands. This will be seen to hold generally later.

• Variance of X ∼ Unif[a, b] with a < b

E(X2) =

∫ b

a

x2
1

b− a
dx =

1

b− a
x3

3

∣∣∣∣b
a

=
b3 − a3

3(b− a)
=
b2 + ba+ a2

3

var(X) =
b2 + ba+ a2

3
−
(
a+ b

2

)2

=
4b2 + 4ba+ 4a2

12
− 3a2 + 6ab+ 3b2

12
=

(b− a)2

12

• Variance of X ∼ Geo(p):

E(X2) = E[X(X − 1) +X] = E[X(X − 1)] + E(X) =
∞∑
k=2

k(k − 1)pqk−1 +
1

p
q = 1− p

= pq
∞∑
k=2

k(k − 1)qk−2 +
1

p
= pq

∞∑
k=0

d2

dq2
qk +

1

p
= pq

d2

dq2

∞∑
k=0

qk +
1

p
= pq

d2

dq2
1

1− q
+

1

p

= pq
2

(1− q)3
+

1

p
=

1 + q

p2
and thus var(X) =

1 + q

p2
− 1

p2
=

1− p
p2

which has some intuitive appeal for p close to 0 or 1.

• Expectation and Variance of aX + b
Here a and b are given constant values in R.

E(aX + b) = aE(X) + b and var(aX + b) = a2var(X)

• Binomial Example:
Let Z ∼ Bin(10, 1/5), find E(3Z + 2) and var(3Z + 2).

E(Z) = 10 · 1

5
= 2 and var(Z) = 10 · 1

5
· 4

5
=

8

5

⇒ E(3Z + 2) = 3 · 2 + 2 = 8 and var(3Z + 2) = 32 · 8

5
=

72

5

• Linear Combinations of Higher Moments:

E

[
n∑

k=0

akX
k

]
=

n∑
k=0

akE
[
Xk
]

for constants a0, a1, . . . , an ∈ R
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• Prediction Mean Squared Error:
Suppose you will be observing a random variable X and you would want to predict its value
by some number a. Further assume that we measure the goodness of that prediction by the
mean squared error MSE= E(X − a)2. Which a gives you the smallest MSE?
Let µ = E(X) and we have

E(X−a)2 = E(X−µ+µ−a)2 = E(X−µ)2+2(µ−a)E(X−µ)+(µ−a)2 = E(X−µ)2+(µ−a)2

which is smallest for a = µ.
On the other hand E|X − a| is minimized by a = m = the median of X (HW6).
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