
Class Notes 2-20-2019

• Properties of CDFs:

(i) Monotonicity: F (s) ≤ F (t) for all s < t.

(ii) Right continuity: F (t) = lims↘t F (s) = lims→t+ F (s) = F (t+) for all t ∈ R
(iii) Limits: limt→−∞ F (t) = 0 and limt→∞ F (t) = 1

• P (X ≤ x) = F (x) and P (X < x) = F (x−):

P (X < x) = lim
s↗x

F (s) = lim
s→x−

P (X ≤ s) = F (x−)

The proof of this and the previous two limits follows from (Finer Points Fact 1.39)

A1 ⊂ A2 ⊂ ... ⊂ An ⊂ ... with A = ∪∞i=1Ai ⇒ P (An)→ P (A) as n→∞

or its equivalent (by complement) form

B1 ⊃ B2 ⊃ ... ⊃ Bn ⊃ ... with B = ∩∞i=1B1 ⇒ P (Bn)→ P (B) as n→∞

This limit behavior is a direct consequence of axiom iii) of probability measures.

∪∞n=1

(
−∞, x− 1

n

]
= (−∞, x) ⇒ P (X ≤ x− 1/n) = F (x− 1/n)→ P (X < x) = F (x−)

In olden times it was custom to define the cdf via P (X < x) east of the iron curtain and
as P (X ≤ x) to the west. That may not have changed. Thus you need to watch out what
definition is used. PX < x) is left continuous in x. They used to joke about this. Note that

F (x)− F (x−) = P (X ≤ x)− P (X < x) = P (X = x) = size of the jump in F at x

• Example: CDF of f(x) = x−2I[1,∞)(x)

F (s) =

∫ s

−∞
f(x)dx =

∫ s

1

1

x2
dx =

(
−1

x

)∣∣∣∣s
1

= 1− 1

s
for s ≥ 1 and F (s) = 0 for s < 1

• Dartboard Example Revisited: Consider a disk with radius r0. A dart is thrown randomly
at it with an assumed uniform distribution for its point of impact. Define as random variable
its distance R from the center of the disk. Find its cdf and density.

FR(t) = P (R ≤ t) =
πt2

πr20
=
t2

r20
for 0 ≤ t ≤ r0, FR(t) = 0 for t < 0 and F (t) = 1 for T > r0

fR(t) =
2t

r20
I[0,r0](t)

• Examples where X is neither Discrete nor Continuous:
Peter has an insurance policy with a $ 500 deductible, i.e., he pays any claims up to $ 500, any
amount above is covered by the insurance. Suppose that the damage from the next accident
is a random variable Y uniformly distributed over [100, 2000]. Let X be the random variable
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which is the amount that Peter pays in the case of such an accident. What is the distribution
function of X. Clearly X = Y if Y < 500 and X = 500 otherwise. We have

FX(x) = P (X ≤ x) = P (Y ≤ x) =
x− 100

1900
for 100 ≤ x < 500 the continuous part

P (X = 500) = P (Y ≥ 500) =
2000− 500

1900
=

15

19
the discrete part

• Expectation (Discrete Case): The expectation or mean of a discrete random variable X
is defined as

E(X) =
∑
k

kpX(k) with summation over all possible values k of X

It is also called the first moment of X and is commonly denoted by µ = µ(X) = µX = E(X).
It can be viewed as the center of gravity of the possible values of X when these are loaded
with weights equal to the corresponding probabilities. If a denoted the location of a fulcrum
among the values of X endowed with such probability weights then we have balance when

∑
k≤a

(a− k)pX(x) =
∑
k>a

(k − a)pX(x)

(
⇐⇒

∑
k<a

(a− k)pX(x) =
∑
k>a

(k − a)pX(x)

)

the moments on the left balance out the moments on the right. This happens when a = E(X)

0 =
∑
k≤a

(a− k)pX(k)−
∑
k>a

(k − a)pX(k) = a
∑
k

pX(k)−
∑
k

kpX(k) = a−
∑
k

kpX(k)

• Gambling:
When placing bets in games of chance the payouts or losses are discrete random variables
and the expected value represents the expected payout or loss (if negative) in the long run.
Casinos make sure that it is always slightly negative, i.e., in their favor. The phrase in
the long run will become more meaningful later. On how to beat the house in roulette
see https://en.wikipedia.org/wiki/Eudaemons or read the entertaining book The Eudae-
monic Pie by Thomas A Bass.

• Mean of a Binomial Random Variable:

k

(
n

k

)
= n

(
n− 1

k − 1

)
E(X) =

n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k

using j = k − 1 = np

n−1∑
j=0

(
n− 1

j

)
pj(1− p)n−1−j = np

The mean is linearly increasing in n and in p, intuitively appealing.

• Mean of a Bernoulli Random Variable:
This is the simplest it can get (except for constant RVs).
X has values 0 and 1 with P (X = 1) = 1 and P (X = 0) = 1− p.

E(X) = 0 · (1− p) + 1 · p = p
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A particular case of a Bernoulli RV is the indicator random variable of an event B ⊂ Ω,
denoted by

IB(ω) = 1 if ω ∈ B and IB(ω) = 0 if ω ∈ Bc or ω 6∈ B ⇒ E(IB) = P (B)

• Expectation of a Geometric Random Variable:
P (X = k) = p(1− p)k−1 = pqk−1 for k = 1, 2, . . ., where q = 1− p. Then

E(X) =
∞∑
k=1

kpqk−1 = p
∞∑
k=0

d

dq
qk = p

d

dq

∞∑
k=0

qk = p
d

dq

1

1− q
= p

1

(1− q)2
=

1

p

which is inversely linear in p, also intuitively appealing.

• Expectation of Continuous Random Variables:
If a continuous RV X has density f(x) we define its expectation as

E(X) = µ =

∫ ∞
−∞

xf(x)dx =

∫ ∞
−∞

yf(y)dy

The x and y in the integration are just dummy variables and can be any (non-confusing) letter
symbol. The X in E(X) is the name of the random variable used in this instance. We have
been using that symbol X a lot in naming all kinds of RVs.
The above definition is very analogous to the summation in the discrete case if we view the∫

as a summation of infinitesimals over the continuum of R.

• Mean of a Uniform Random Variable X ∼ Unif[a, b]:

E(X) =

∫ ∞
−∞

x
1

b− a
I[a,b](x)dx =

∫ b

a

x
1

b− a
dx =

(
1

b− a
x2

2

)∣∣∣∣b
a

=
b2 − a2

2(b− a)
=
a+ b

2

again an intuitive center of gravity or balance.
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