
Class Notes 2-1-2019

• Independence of Discrete Random Variables:
Discrete random variables defined on the same Ω are independent if and only if

P (X1 = x1, . . . , Xn = xn) =
n∏

i=1

P (Xi = xi)

for all choices x1, . . . , xn of possible values of X1, . . . , Xn.

• Three Fair Coin Flips:
Ω consists of all 8 3-tuples, like (H, T, H), etc. Let X1 = 1 if the ith flip is heads, and Xi = 0
otherwise. We check just one example:

P (X1 = 1, X2 = 0, X3 = 1) = P ((H, T, H)) =
1

8
=

1

2

1

2

1

2
= P (X1 = 1)P (X2 = 0)P (X3 = 1)

where for example we have

P (X1 = 1) = P ({(H, H, H), (H, H, T), (H, T, H), (H, T, T)}) =
4

8
=

1

2

• Sampling with and without replacement:
Randomly select one by one k elements from {1, 2, . . . , n}. Xi denotes the number on the ith

draw, i = 1, . . . , k.

– with replacement: Here Ω = {1, . . . , n}k, all nk k-tuples filled with any numbers from
{1, 2, . . . , n}. For any x ∈ {1, 2, . . . , n} we have

P (Xi = x) =
nk−1

nk
=

1

n

since Xi = x for all nk−1 k-tuples that have x in position i and anything in the other
k − 1 positions, anything being any number from {1, 2, . . . , n}. Thus for any selections
x1, . . . , xk ∈ {1, 2, . . . , n} we have

P (X1 = x1, . . . Xk = xk) =
1

nk
=

k∏
i=1

1

n
=

k∏
i=1

P (Xi = xi)

i.e., X1, . . . , Xk are (mutually) independent.

– without replacement: Here Ω consists of all (n)k = n(n− 1) · · · (n− k + 1) k-tuples filled
with distinct elements from {1, 2, . . . , n}. We must have k ≤ n.
Again we have but by different counting, fixing x in position i

P (Xi = x) =
(n− 1)k−1

(n)k
=

1

n

For any selections of distinct x1, . . . , xk ∈ {1, 2, . . . , n} we have

P (X1 = x1, . . . Xk = xk) =
1

(n)k
6=

k∏
i=1

1

n
=

k∏
i=1

P (Xi = xi)

Thus X1, . . . , Xk are not independent, not even pairwise.
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• Independent Trials:
The simplest case is the repeated trials of an experiment with two possible outcomes, say
success or failure with probability p and 1 − p respectively. The trials are assumed to be
independent and are repeated n times, like flipping a biased coin. As sample space we take

Ω = {ω = (s1, . . . , sn) : each si = 0 or 1}

We assign probabilities as follows:

P (ω) = pk(1− p)n−k where k is the number of 1’s in ω

These probabilities add to 1 when summed over all ω ∈ Ω.

• Bernoulli Distribution:
The Bernoulli random variable records the outcome 1 or 0 of a single trial. The random vari-
able X has the Bernoulli distribution with success probability p, 0 ≤ p ≤ 1 if it has possible
values 0 or 1 with P (X = 1) = p and P (X = 0) = 1− p. In shorthand we write X ∼ Ber(p).
A sequence of n independent Bernoulli trials with success probability p gives rise to indepen-
dent Bernoulli random variables X1, . . . Xn. For example, we then have

P (X1 = 0, X2 = 1, X3 = X4 = 0, X5 = 1, X6 = 0) = p2(1− p)4

• Binomial Distribution:
Most often we are not so much interested in the pattern of zeros and ones as they might
occur in a sequence of n independent Bernoulli trials but more so in the number of successes
Sn = X1 + . . . + Xn in such trials.
There are

(
n
k

)
n-tuple patterns with exactly k 1’s and (n−k) 0’s (combinatorics), each pattern

has probability pk(1− p)n−k and they are all mutually exclusive. This gives us

P (Sn = k) =

(
n

k

)
pk(1− p)n−k

Sn is said to have a binomial distribution with parameters n ≥ 1 and p ∈ [0, 1].
In shorthand we write Sn ∼ Bin(n, p). These probabilities add to one via the binomial theorem
(google Binomial Theorem for its history):

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p + 1− p)n = 1

If n = 1 then Bin(n, p) = Ber(p).

• Dice Rolls:
Roll a die 5 times and count the number S5 of sixes. What is the chance of getting two or
three sixes? S5 ∼ Bin(5, 1/6) and

P (S5 = 2 ∪ S5 = 3) = P (S5 = 2) + P (S5 = 3) =

(
5

2

)(
1

6

)2(
5

6

)3

+

(
5

3

)(
1

6

)3(
5

6

)2

= 10

(
1

6

)2(
5

6

)2(
5

6
+

1

6

)
=

250

1296
≈ .193
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• Geometric Distribution:
To properly introduce this distribution we need to consider a sample space consisting of all
countably infinite sequences ω of zeros and ones. Again define the Bernoulli random variable
Xi(ω) = 1 if the ith position of ω holds a 1, otherwise Xi(ω) = 0. When 0 < p < 1 (the
interesting case) we will always have P (ω) = 0 since the product of infinitely many p′s and
(1 − p)′s is zero. However, the set of all ω’s for which a specified finite segment of length n
holds a specific pattern of zeros and ones has the usual probability pk(1 − p)n−k, where k is
the number of ones in the pattern. There is an uncountable infinite number of such ω’s with
such a specified finite segment. Thus all these uncountable infinite number of zero probability
add up to something sensible, namely pk(1 − p)n−k, which is just the probability of seeing
such a pattern in such a segment of length n, regardless what happens in all the other trials
outside that segment. Think of this as being analogous to the length of an interval made
up of uncountable infinite many points with length zero. A fully rigorous treatment of such
issues, the Kolmogorove extension theorem, can be found in a course on measure theory or
probability theory at the next level after this.

In the context of an infinite number of independent Bernoulli trials we can consider the number
N of trials needed to see the first success. Clearly,

P (N = k) = P (X1 = 0, . . . , Xk−1 = 0, Xk = 1) = (1− p)k−1p

A random variable X has a geometric distribution with parameter 0 < p ≤ 1 if the possible
values of X are 1, 2, 3, . . . and P (X = k) = (1 − p)k−1p for k = 1, 2, 3, . . .. In shorthand we
write X ∼ Geo(p).
Clearly these probabilities add to one, using the geometric series.
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