• Example: Cards
We draw a card at random from a standard deck of 52 cards. The event A that the card is an ace is independent of the event C that the card is a club. However, this breaks down as soon as the king of diamonds is missing from the deck, but not when all kings are missing.

• Theorem: Independence of E,F implies independence of E,F^c, of E^c,F and of E^c,F^c.
Proof (partial):
\[P(EF^c) + P(EF) = P(E) \Rightarrow P(EF^c) = P(E) - P(E)P(F) = P(E)(1-P(F)) = P(E)P(F^c) \]

• Assume A and B are independent. Find an expression, in terms of only $P(A)$ and $P(B)$, for the probability of the event C that only exactly one of A and B occur.
Solution: $C = AB^c \cup A^cB$ is a disjoint union, thus
\[P(C) = P(AB^c) + P(A^cB) = P(A)P(B^c) + P(A^c)P(B) = P(A)(1-P(B)) + (1-P(A))P(B) \]
where the second $=$ uses the previous theorem.

• Mutually Independent: Events A_1, \ldots, A_n are called mutually independent if for every collection A_{i_1}, \ldots, A_{i_k} with $2 \leq k \leq n$ and $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ we have
\[P(A_{i_1}A_{i_2}\cdots A_{i_k}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k}) \]

• Mutual Independence of 3 Events A, B, C
Need to check the truth of
\[P(AB) = P(A)P(B), \ P(AC) = P(A)P(C), \ P(BC) = P(B)P(C), \ P(ABC) = P(A)P(B)P(C) \]

• Mutual Independence Carries over to Complements:
If events A_1, \ldots, A_n are mutually independent so are A_1^*, \ldots, A_n^*, where A_i^* is either A_i or A_i^c.

• Example of Events not Mutually Independent:
Choose a point randomly on the interval $\Omega = [0,1]$ and consider the events
\[A = \left[\frac{1}{2}, 1 \right], \ B = \left[\frac{1}{2}, \frac{3}{4} \right] \ \text{and} \ \ C = \left[\frac{1}{16}, \frac{9}{16} \right] \ \text{then} \ ABC = \left[\frac{1}{2}, \frac{9}{16} \right] \]
and $P(ABC) = \frac{1}{16} = \frac{111}{2^{12}} = P(A)P(B)P(C)$ but $P(AB) = \frac{1}{4} \neq \frac{1}{8} = P(A)P(B)$.

• Pairwise Independence:
Events A_1, \ldots, A_n are pairwise independent if any two of its events are independent, i.e., $P(A_iA_j) = P(A_i)P(A_j)$ for any $i \neq j$.
This is a weaker form of independence than mutual independence.

• Example of Pairwise but not Mutual Independence:
Flip 3 fair coins and consider the following events. A is the event of exactly one tails in the
first two flips, \(B \) is the event of exactly one tails in the last two flips, \(C \) is the event of exactly one tails in the first and last flip.

\[
A = \{(T, H, H), (T, H, T), (H, T, H), (H, T, T)\} \quad P(A) = \frac{1}{2}
\]

\[
B = \{(H, T, H), (T, T, H), (H, H, T), (T, H, T)\} \quad P(B) = \frac{1}{2}
\]

\[
C = \{(T, H, H), (T, T, H), (H, H, T), (H, T, T)\} \quad P(C) = \frac{1}{2}
\]

\[
AB = \{(T, H, T), (H, T, H)\}, \quad AC = \{(T, H, H), (H, T, T)\}, \quad BC = \{(T, T, H), (H, H, T)\}, \quad ABC = \emptyset
\]

\[
P(AB) = \frac{1}{4} = P(A)P(B), \quad P(AC) = \frac{1}{4} = P(A)P(C), \quad P(BC) = \frac{1}{4} = P(B)P(C)
\]

\[
P(ABC) = 0 \neq P(A)P(B)P(C) = \frac{1}{8}
\]

- **A Reliability Example:**
 A system functions, event \(D \), as long as one of two subsystems \(C_1 \) or \(C_2 \) functions. Subsystem \(C_1 \) functions as long both its components function, denoted as events \(S_1 \) and \(S_2 \). \(C_2 \) functions as long as its one component functions, event \(S_3 \). Assume that all components function or fail independently, with \(P(S_i) = p_i \)

\[
D = C_1 \cup C_2 = (S_1S_2) \cup S_3
\]

\[
P(D) = P(C_1 \cup C_2) = P(C_1) + P(C_2) - P(C_1C_2) = P(S_1S_2) + P(S_3) - P(S_1S_2S_3)
\]

\[
= p_1p_2 + p_3 - p_1p_2p_3
\]

Boeing’s Scientific Research Laboratory (BSRL) played a big role in developing the field of **Reliability Theory**. Z.W. Birnbaum, founding father of statistics at the UW, was an active contributor to BSRL, as were Barlow, Proschan, Saunders and Pyke.

- **Independence of Random Variables:**
 Random variables \(X_1, \ldots, X_n \), defined on the same probability space \(\Omega \), are called independent if

\[
P(X_1 \in B_1, \ldots, X_n \in B_n) = \prod_{i=1}^{n} P(X_i \in B_i)
\]

for all reasonable subsets \(B_1, \ldots, B_n \) on the real line \(\mathbb{R} \).

This is not very practical to check, because of the innumercy of such subsets. For discrete random variables we have the following equivalence.