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Hypothesis Testing

We have addressed the question: Does the type of flux affect SIR?

Formally we have tested the

null hypothesis H0: The type of flux does not affect SIR

against the

alternative hypothesis H1: The type of flux does affect SIR.

While H0 seems fairly specific, H1 is open ended. H1 can be anything but H0.

There may be many ways for SIR to be affected by flux differences,

e.g., change in mean, median, or scatter. Different effects for different boards?

Such differences may show up in the data vector Z through an appropriate test

statistic s(Z). Here Z = (X1, . . . ,X9,Y1, . . . ,Y9).
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Test Criteria or Test Statistics

In the flux analysis we chose to use the absolute difference of sample means,

s(Z) = |Ȳ − X̄ |, as our test criterion or test statistic for testing the null hypothesis.

A test statistic is a value calculated from data and other known entities,

e.g., assumed (e.g., hypothesized) parameter values.

We could have worked with the absolute difference in sample medians or with the

ratio of sample standard deviations and compared that ratio with 1, etc.

Different test statistics are sensitive to different deviations from the null hypothesis.

A test statistic, when viewed as a function of random input data, is itself a random

variable, and has a distribution, its sampling distribution.
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Sampling Distributions

For a test statistic s(Z) to be effective in deciding between H0 and H1, the sampling

distributions of s(Z) under H0 and H1 should be separable to some degree.
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Sampled and Sampling Distributions
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When to Reject H0

The previous illustration shows a specific sampling distribution for s(Z) under H1.

Typically H1 consists of many different possible distributional models leading to

many possible sampling distributions under H1.

Under H0 we often have just a single sampling distribution, the null distribution.

If under H1 the test statistics s(Z) tends to have mostly higher values than under

H0, we would want to reject H0 when s(Z) is large, as on the previous slide.

How large is too large? Need a critical value Ccrit and reject H0 when s(Z)≥Ccrit.

Choose Ccrit such that P(s(Z)≥Ccrit|H0) = α, a pre-chosen significance level.

Typically α = .05 or .01. It is the probability of the type I error.

The previous illustration also shows that there may be values s(Z) in the overlap

of both distributions. Decisions are not clear cut =⇒ type I or type II error
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Decision Table

Truth

Decision H0 is true H0 is false

accept H0 correct decision type II error

reject H0 type I error correct decision

Testing hypotheses (like estimation) is a branch of a more general framework ,

namely decision theory. Decisions are optimized with respect to penalties

for wrong decisions, i.e., P(Type I Error) and P(Type II Error), or

the mean squared error of an estimate θ̂ of θ, namely E((θ̂−θ)2).
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The Null Distribution and Critical Values

Sampling Distribution under H0
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Critical Values and p-Values

The p-value(s(z)) for the observed test statistic s(z) is P(s(Z)≥ s(z)|H0).

Note that p-value(s(z))≤ α is equivalent to rejecting H0 at level α.

Sampling Distribution under H0
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p-Values and Significance Levels

We just saw that knowing the p-value allows us to accept or reject H0 at level α.

However, the p-value is more informative than saying that we reject at level α.

It is the smallest level α at which we would still have rejected H0.

It is also called the observed significance level.

Working with predefined α made it possible to choose the best level α test.

Best: Having highest probability of rejecting H0 when H1 is true.

This makes for nice and useful mathematical theory, but p-values should be

the preferred way of judging and reporting test results for a specific test statistic.

It may well be that a different test statistic s1(z) gives a smaller p-value than what

the optimal test statistic s0(z) might give for a given z.

This complicates finding optimal tests based on p-value behavior.
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The Power Function

The probability of rejecting H0 is denoted by β. It is a function of the distributional

model F governing Z, i.e., β = β(F). It is called the power function of the test.

When the hypothesis H0 is composite and when s(Z) has more than one

possible distribution under H0 one defines the highest probability of type I error

as the significance level of the test. Hence α = maximum{β(F) : F ∈ H0}.

α limits the type I error probability.

For various F ∈ H1 the power function gives us the corresponding probabilities

of type II error as 1−β(F).

Note that some people denote the probability of type II error by β = β(F).

Thus make sure what is meant by β(F) when you read or write about it.
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Samples and Populations

So far we have covered inference based on a randomization test. This relied heavily

on our randomized assignment of flux X and flux Y to the 18 circuit boards.

Such inference can logically only say something about flux differences

in the context of those 18 boards.

To generalize any conclusions to other boards would require some assumptions,

judgement, and ultimately a step of faith.

Would the same conclusion have been reached for another set of 18 boards?

What if one of the boards was an outlier board or something else was peculiar?

To be representative of the population of all boards we should view these 18 boards

and their processing as a random sample from a conceptual population of such

processed boards.
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Conceptual Populations
Clearly the 18 boards happened to be available at the time of the experiment.

They could have been a random sample of all boards available at the time.

However, they also may have been taken sequentially in the order of production.

They certainly could not be a sample from future boards, yet to be produced.

They could not be a sample of boards already in use on aircrafts.

The randomized processing steps might give the appearance of random samples,

assuming that these steps are mostly responsible for response variations.

Thus we could regard the 9+9 SIR values as two random samples from two

very large or infinite conceptual populations of SIR values.

One sample of 9 boards from all boards/processes treated with flux X and

one sample of 9 boards from all boards/processes treated with flux Y.

A board can only be treated with flux X or Y (not both at the same time)

⇒ further conceptualization.
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Population Distributions and Densities
Such infinite populations of Z-values are conveniently described by densities f (z),

with the properties f (z)≥ 0 and
R

∞
−∞ f (z)dz = 1.

The probability of observing a randomly chosen element Z with Z ≤ x is

F(x) = P(Z ≤ x) =
Z x

−∞

f (z)dz =
Z x

−∞

f (t)dt

z & t are just dummy variables. Avoid using x as dummy integration variable.

F(x) as a function of x is also called the cumulative distribution function (CDF)

of the random variable Z. F(x)↗ from 0 to 1 as x goes from −∞ to ∞.

For discrete populations with a finite or countably infinite number of distinct possible

values z, we replace f (z) by the probability mass function p(z) = P(Z = z)≥ 0

and write

F(x) = P(Z ≤ x) = ∑
z≤x

p(z) with ∑
z

p(z) = 1 .
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Means, Expectations and Variances

The mean or expectation of Z or its population is defined by

µ = µZ = E(Z) =
Z

∞

−∞

z f (z)dz or µ = E(Z) = ∑
z

zp(z)

a probability weighted average of z values = center of probability mass balance.

By extension, the mean or expectation of g(Z) is defined by

E(g(Z)) =
Z

∞

−∞

g(z) f (z)dz or E(g(Z)) = ∑
z

g(z)p(z)

Using g(z) = (z−µ)2 the variance of Z is defined by

σ
2 = var(Z) = E

(
(Z−µ)2

)
=

Z
∞

−∞

(z−µ)2 f (z)dz or σ
2 = ∑

z
(z−µ)2p(z)

σ = σZ =
√

var(Z) is called the standard deviation of Z or its population.

It is a measure of distribution spread.
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p-Quantiles zp

The p-quantile zp of a distribution is defined as the lowest point z with F(z)≥ p.

When the distribution of Z is continuous and strictly increasing, zp is defined by

F(zp) = p. This is the case typically encountered in this course.

If there is a whole interval [z1,z2] over which we have F(z) = p for z ∈ [z1,z2]

then any point in that interval could qualify as p-quantile, although the lowest point

(z1) is customarily chosen.

For p = .5 one may prefer the midpoint of such an interval.

If Z has a discrete distribution, i.e., F(z) has jumps, then zp could coincide with

one of the jump points and we could have F(zp) > p.
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p-Quantile Illustrations
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Multivariate Densities or Populations

f (z1, . . . ,zn) is a multivariate density if it has the following properties:

f (z1, . . . ,zn)≥ 0 for all z1, . . . ,zn and
Z

∞

−∞

. . .
Z

∞

−∞

f (z1, . . . ,zn) dz1 . . .dzn = 1 .

It describes the behavior of the infinite population of such n-tuples (z1, . . . ,zn).

A random element (Z1, . . . ,Zn) drawn from such a population is a random vector.

We say that Z1, . . . ,Zn in such a random vector are (statistically) independent when

the following property holds:

f (z1, . . . ,zn) = f1(z1)×·· ·× fn(zn)

Here fi(zi) is the marginal density of Zi. It is obtainable from the multivariate density

by integrating out all other variables, e.g.,

f2(z2) =
Z

∞

−∞

. . .
Z

∞

−∞

f (z1,z2,z3, . . . ,zn) dz1dz3 . . .dzn .
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E(g(Z1, . . . ,Zn)) and cov(Z1,Z2)
In analogy to the univariate case we define

E(g(Z1, . . . ,Zn) =
Z

∞

−∞

. . .
Z

∞

−∞

g(z1, . . . ,zn) f (z1, . . . ,zn) dz1 . . .dzn

In particular, using g(z1,z2, . . . ,zn) = z1 · z2,

E(Z1Z2) =
Z

∞

−∞

Z
∞

−∞

z1 · z2 f (z1,z2) dz1dz2

For independent Z1 and Z2 we have

E(Z1Z2) =
Z

∞

−∞

Z
∞

−∞

z1 · z2 f (z1,z2) dz1dz2 =
Z

∞

−∞

Z
∞

−∞

z1 · z2 f1(z1) f2(z2) dz1dz2

=
Z

∞

−∞

z1 f1(z1) dz1 ·
Z

∞

−∞

z2 f2(z2) dz2 = E(Z1)E(Z2)

Define the covariance of Z1 and Z2 as

cov(Z1,Z2) = E [(Z1−E(Z1))(Z2−E(Z2))] = E(Z1Z2)−E(Z1)E(Z2)

Note that independent Z1 and Z2 =⇒ cov(Z1,Z2) = 0, but not ⇐=

Also note cov(Z1,Z1) = E(Z2
1)− [E(Z1)]2 = var(Z1).
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More on Independence
Conventionally, first definitions of independence start with

P(Z1∈A1, . . . ,Zn∈An)= P(Z1∈A1)×. . .×P(Zn∈An) for given sets A1, . . . ,An ,

but we get this from the density factorization as

P(Z1 ∈ A1, . . . ,Zn ∈ An) =
Z

A1
. . .

Z
An

f (z1, . . . ,zn)dz1 . . .dzn

=
Z

A1
. . .

Z
An

f1(z1)×·· ·× fn(zn)dz1 . . .dzn =
Z

A1
f1(z1)dz1×·· ·×

Z
An

fn(zn)dzn

= P(Z1 ∈ A1)×·· ·×P(Zn ∈ An)

By using Ai = [xi,xi +h], i = 1, . . . ,n we have from the conventional definition

P(Z1 ∈ A1, . . . ,Zn ∈ An) =
Z

A1
. . .

Z
An

f (z1, . . . ,zn)dz1 . . .dzn ≈ f (x1, . . . ,xn)hn

P(Z1 ∈ A1)×·· ·×P(Zn ∈ An) =
Z

A1
f1(z1)dz1×·· ·×

Z
An

fn(zn)dzn

≈ hn f1(x1)×·· ·× fn(xn)

≈’s−→= at continuity points of f =⇒ f (x1, . . . ,xn) = f1(x1)×·· ·× fn(xn).
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Random Sample

When drawing repeatedly values Z1, . . . ,Zn from a common infinite population with

density f (z) we get a multivariate random vector (Z1, . . . ,Zn).

If the drawings are physically unrelated or “independent,” we may consider Z1, . . . ,Zn

as statistically independent, i.e., the random vector has density

h(z1, . . . ,zn) = f (z1)×·· ·× f (zn) note f1 = . . . = fn = f .

Z1, . . . ,Zn is then also referred to as a random sample from f .

We also express this as Z1, . . . ,Zn
i.i.d.∼ f .

Here i.i.d. = independent and identically distributed.
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Rules of Expectations & Variances (Review)

For any set of random variables X1, . . . ,Xn and constants a0,a1, . . . ,an we have

E (a0 +a1×X1 + . . .+an×Xn) = a0 +a1×E(X1)+ . . .+an×E(Xn)

provided the expectations E(X1), . . . ,E(Xn) exist and are finite.

This holds whether X1, . . . ,Xn are independent or not.

For any set of independent random variables X1, . . . ,Xn and constants a0,a1, . . . ,an

we have

var(a0 +a1×X1 + . . .+an×Xn) = a2
1×var(X1)+ . . .+a2

n×var(Xn)

provided the variances var(X1), . . . ,var(Xn) exist and are finite. var(a0) = 0.

This is also true under the weaker (than independence) condition cov(Xi,X j) =

E(XiX j)−E(Xi)E(X j) = 0 for i 6= j. In that case X1, . . . ,Xn are uncorrelated.
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Rules for Averages

E (X̄) = E

(
1
n

n

∑
i=1

Xi

)
=

1
n

E

(
n

∑
i=1

Xi

)
=

1
n

n

∑
i=1

E(Xi) =
1
n

n

∑
i=1

µi = µ̄

whether X1, . . . ,Xn are independent or not.

If µ1 = . . . = µn = µ then E(X̄) = µ.

If X1, . . . ,Xn are independent (or uncorrelated) we also have

var(X̄) = var

(
1
n

n

∑
i=1

Xi

)
=

1
n2var

(
n

∑
i=1

Xi

)
=

1
n2

n

∑
i=1

var(Xi) =
1
n2

n

∑
i=1

σ
2
i =

1
n

σ̄
2
n

where σ̄
2
n =

1
n

n

∑
i=1

σ
2
i . σ̄

2
n = σ

2 when σ
2
1 = . . . = σ

2
n = σ

2 .

σ̄
2
n/n↘ 0 as n→ ∞ , provided σ̄2

n stays bounded, e.g., σ̄2
n = σ2.
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A Normal Random Sample

X1, . . . ,Xn is called a normal random sample when the common density of the Xi is

a normal density of the following form:

f (x) =
1√
2πσ

exp

(
−(x−µ)2

2σ2

)
we also write Xi ∼N (µ,σ2) .

This density or its associated population has mean µ and standard deviation σ.

When µ = 0 and σ = 1, it is called the standard normal density

ϕ(x) =
1√
2π

exp

(
−x2

2

)
with CDF Φ(x) =

Z x

−∞

ϕ(z) dz .

If X ∼N (µ,σ2) then Z = (X−µ)/σ∼N (0,1), the standard normal distribution

⇒ P(X ≤ x) = P((X−µ)/σ≤ (x−µ)/σ) = Φ((x−µ)/σ).
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The CLT & the Normal Population Model

The normal population model is motivated by the Central Limit Theorem (CLT).

This comes about because many physical or natural measured phenomena can be

viewed as the addition of several independent source inputs or contributors.

Y = X1 + . . .+Xk or Y = a0 +a1X1 + . . .+akXk

for independent random variables X1, . . . ,Xk and constants a0,a1, . . . ,ak.

Or in a 1-term Taylor expansion

Y = f (X1, . . . ,Xk) ≈ f (µ1, . . . ,µk)+
k

∑
i=1

(Xi−µi)
∂ f (µ1, . . . ,µk)

∂µi
= a0 +a1X1 + . . .+akXk

provided the linearization is sufficiently good, i.e., the deviations Xi−µi are small

compared to the curvature of f (small σi).
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Central Limit Theorem (CLT) I

• Suppose we randomly and independently draw random variables X1, . . . ,Xn

from n possibly different populations with respective means µ1, . . . ,µn

and standard deviations σ1, . . . ,σn

• Suppose further that the following variance ratio property holds

max
i=1,...,n

(
σ2

i
σ2

1 + . . .+σ2
n

)
→ 0 , as n→ ∞

i.e., none of the variances dominates among all variances, obviously the case

when σ1 = . . . = σn and n→ ∞.

• Then Y =Yn = X1+ . . .+Xn has an approximate normal distribution with mean

and variance given by

µY = µ1 + . . .+µn and σ
2
Y = σ

2
1 + . . .+σ

2
n .
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Central Limit Theorem (CLT) II

The next few slides illustrate how well the CLT performs and when it falls short.

In the following CLT illustrations the superimposed normal density corresponds to

µ = µ1 + . . .+µn and σ2 = σ2
1 + . . .+σ2

n.

First we show 4 (5) distributions from which the X1, . . . ,X4 are sampled,

respectively. These distributions cover a wide spectrum of shapes.

We only sample 4, illustrating that n = 4 can be sufficiently close to ∞

in order for the CLT to become reasonably effective.

Note the slight deterioration in the normal appearance when we exchange the

normal distribution with a skewed distribution, i.e. when generating X2 + . . .+X5

instead of X1 + . . .+X4. (=⇒ slide 30 (VI))
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Central Limit Theorem (CLT) III
standard normal population
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Central Limit Theorem (CLT) IV
Central Limit Theorem at Work
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Central Limit Theorem (CLT) V
standard normal population
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Central Limit Theorem (CLT) VI
Central Limit Theorem at Work
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Central Limit Theorem (CLT) VII
standard normal population
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Central Limit Theorem (CLT) VIII
Central Limit Theorem at Work (not so good)
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Central Limit Theorem (CLT) IX
standard normal population
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Central Limit Theorem (CLT) X
Central Limit Theorem at Work (not so good)
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Central Limit Theorem (CLT) XI

The last 4 slides illustrate the result when the condition

none of the variances dominates is violated.

First we scaled up the log-normal distribution by a factor of 10 and the resulting

distribution of X1 + . . .+X4 looks skewed to the right and looks in shape very much

like the dominating log-normal variation source.

In the second such example we instead scaled up the uniform distribution by a

factor of 20. The resulting distribution of X1 + . . .+X4 looks almost like a uniform

distribution with somewhat smoothed shoulders.

In both cases the distribution with the dominating variability imprints its

character on the resulting distribution of X1 + . . .+X4.
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Central Limit Theorem (CLT) XII

What would happen if instead we increased the spread in X1 by a factor of 10?
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Central Limit Theorem (CLT) XIII

What would happen if instead we increased the spread in X1 by a factor of 10?

The distribution of X1 + . . .+X4 would look normal,

like the dominating X1 distribution.
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Derived Distributions from Normal Model

Other than working with randomization reference distributions we otherwise

generally assume normal distributions as the sources of our data

Thus it is worthwhile to characterize some sampling distributions that are derived

from the normal distribution. They will play a significant role later on.

The chi-square distribution, the Student t-distribution, and the F-distribution.

These distributions come about as sampling distributions of certain test statistics

based on normal random samples.

Much of what is covered in this course could also be dealt with in the context of

other sampling population models. We will not get into that.
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Properties of Normal Random Variables

Assume that X1, . . . ,Xn are independent normal random variables with respective

means and variances given by: µ1, . . . ,µn and σ2
1, . . . ,σ

2
n. Then

Y = X1+. . .+Xn∼N (µ1+. . .+µn,σ
2
1+. . .+σ

2
n) Geometric proof in Appendix A

Here ∼ means “ exactly distributed as”

If X ∼N (µ,σ2) then a+bX ∼N (a+bµ,b2σ2)

X−µ
σ
∼N (0,1) with b = 1/σ and a =−µ/σ

Caution: Some people write X ∼N (µ,σ) when others (and I) write X ∼N (µ,σ2).

For example, in R we have dnorm(x,µ,σ), pnorm(x,µ,σ),qnorm(p,µ,σ),and

rnorm(n,µ,σ), which respectively give the density, CDF, quantile of N (µ,σ2)

and random samples from N (µ,σ2).
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The Chi-Square Distribution
When Z1, . . . ,Z f

i.i.d.∼ N (0,1) we say that

C f =
f

∑
i=1

Z2
i has a chi-square distribution with f degrees of freedom

Memorize this definition! We also write C f ∼ χ2
f . The density of C f is

h(x) =
1

2 f /2Γ(n/2)
x f /2−1 exp(−x/2) for x > 0 not to memorize

with mean = f and variance = 2 f , worth memorizing.

Density, CDF, quantiles of, and random samples from the chi-square distribution

can be obtained in R via: dchisq(x,f), pchisq(x,f), qchisq(p,f), rchisq(N,f).

If C f1 ∼ χ2
f1

and C f2 ∼ χ2
f2

are independent then C f1 +C f2 ∼ χ2
f1+ f2

since Z2
1 +. . .+Z2

f1 +Z̃2
1 +. . .+Z̃2

f2∼ χ
2
f1+ f2 with Zi, Z̃ j independent ∼N (0,1).
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χ2 Densities
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The Noncentral χ2
f Distribution

Suppose X1 ∼N (d1,1), . . . ,X f ∼N (d f ,1) are independent. Then we say that

C = X2
1 + . . .+X2

f ∼ χ
2
f ,λ

has a noncentral χ2 distribution with f degrees of freedom

and noncentrality parameter λ = ∑
f
i=1 d2

i . (memorize definition!)

E(C) = f +λ and var(C) = 2 f +4λ.

(d1, . . . ,d f ) = (0, . . . ,0) =⇒ previously defined (central) χ2
f distribution.

The distribution of C depends on (d1, . . . ,d f ) only through λ = ∑
f
i=1 d2

i !

See geometric explanation on next slide.

What does R give us?

For the noncentral χ2 we have: dchisq(x, df, ncp=0),

pchisq(q, df, ncp=0), qchisq(p, df, ncp=0), rchisq(n, df, ncp=0)
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Dependence on d2
1 +d2

2 = λ Only

x1

x 2
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2 ++ X2

2 ≤≤ r2))  , does not change

as density center rotates on the red circle around the origin,
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Noncentral χ2 Densities
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The Student t-Distribution
When Z ∼N (0,1) is independent of C f ∼ χ2

f we say that

t =
Z√

C f / f
memorize this definition!

has a Student t-distribution with f degrees of freedom. We also write t ∼ t f .
Its density is

g f (x) =
Γ(( f +1)/2)√

f π Γ( f /2)

[
x2/ f +1

]−( f +1)/2
for −∞ < x < ∞ not to memorize

It has mean 0 (for f > 1) and variance f /( f −2) if f > 2.

g f (x)→ ϕ(x) (standard normal density) as f →∞. This follows either directly from

the density using (1+ x2/ f )− f /2→ exp(−x2/2), or the definition of t because

C f / f → 1 which follows from E(C f / f ) = 1 & var(C f / f ) = 2 f / f 2→ 0.

Density, CDF, quantiles of, and random samples from the Student t-distribution

can be obtained in R via: dt(x,f), pt(x,f), qt(p,f), and rt(N,f) respectively.
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Densities of the Student t-Distribution
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The Noncentral Student t-Distribution

When X ∼N (δ,1) is independent of C f ∼ χ2
f we say that

t =
X√

C f / f
memorize this definition!

has a noncentral Student t-distribution with f degrees of freedom and noncentrality

parameter ncp =δ. We also write t ∼ t f ,δ.

R gives us:

dt(x,f,ncp), pt(q,f,ncp), qt(p,f,ncp) , and rt(n,f,ncp) respectively.

As before one can argue that this distribution converges to N (δ,1) as f → ∞.
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Densities of the Noncentral Student t-Distribution
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Densities of the Noncentral Student t-Distribution
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The F-Distribution

When C f1 ∼ χ2
f1

and C f2 ∼ χ2
f2

are independent χ2 random variables with f1 and

f2 degrees of freedom, respectively, we say that

F =
C f1/ f1
C f2/ f2

memorize this definition!

has an F distribution with f1 and f2 degrees of freedom. We also write F ∼ Ff1, f2.
Its density is

g(x) =
Γ(( f1 + f2)/2)( f1/ f2) f1/2 x( f1/2)−1

Γ( f1/x)Γ( f2/2)[( f1/ f2) x+1]( f1+ f2)/2
not to memorize

Density, CDF, quantiles of,and random samples from the Ff1, f2-distribution can be
obtained in R via: df(x,f1,f2), pf(x,f1,f2), qf(p,f1,f2), rf(N,f1,f2),
respectively.

t ∼ t f =⇒ t2 ∼ F1, f . Why? Also, F ∼ Ff1, f2 =⇒ 1/F ∼ Ff2, f1. Why?
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F Densities
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The Noncentral F-Distribution

Let C1 ∼ χ f1,λ be a noncentral χ2 random variable

and let C2 ∼ χ2
f2

be a (central) χ2 random variable which is independent of C1,

then we say that

F =
C1/ f1
C2/ f2

∼ Ff1, f2,λ

has a noncentral F-distribution with f1 and f2 degrees of freedom

and with noncentrality parameter λ. (memorize definition!)

What does R give us?

For the noncentral F we have: df(x, df1, df2, ncp),

pf(q, df1, df2, ncp), qf(p, df1, df2, ncp), rf(n, df1, df2, ncp)
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Noncentral F Densities
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Decomposition of the Sum of Squares (SS)

We illustrate here an early example of the SS-decomposition.

n

∑
i=1

X2
i =

n

∑
i=1

(Xi− X̄ + X̄)2 =
n

∑
i=1

[
(Xi− X̄)2 +2(Xi− X̄)X̄ + X̄2

]
=

n

∑
i=1

(Xi− X̄)2 +2
n

∑
i=1

(Xi− X̄)X̄ +
n

∑
i=1

X̄2

=
n

∑
i=1

(Xi− X̄)2 +
n

∑
i=1

X̄2 =
n

∑
i=1

(Xi− X̄)2 +nX̄2 .

since ∑(Xi−X̄)=∑Xi−nX̄ =∑Xi−n∑Xi/n = 0 i.e., the residuals sum to zero.

Such decompositions are the intrinsic and recurring theme in the

Analysis of Variance (ANOVA) to be addressed at length later.
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Sampling Distribution of X̄ and ∑
n
i=1(Xi− X̄)2

When X1, . . . ,Xn are a random sample from N (µ,σ2) the joint distribution of X̄ and

∑
n
i=1(Xi− X̄)2 can be described as follows, as is shown in Appendix B.

• X̄ and ∑
n
i=1(Xi− X̄)2 are statistically independent

• X̄ ∼N (µ,σ2/n) or (X̄−µ)/(σ/
√

n) =
√

n(X̄−µ)/σ∼N (0,1)

• ∑
n
i=1(Xi− X̄)2/σ2 ∼ χ2

n−1 or ∑
n
i=1(Xi− X̄)2 ∼ σ2χ2

n−1 (ambiguously)

Only n−1 of the terms Xi− X̄ can vary ”independently,” since ∑(Xi− X̄) = 0.

The above independence seems perplexing, given that X̄ also appears within the

expression ∑
n
i=1(Xi− X̄)2. It is a peculiar property of normal distribution samples.

This independence will not occur for other sampled distributions.
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X̄ and S2 Dependence (500 Samples of Size n = 10)
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Comments

It appears that for symmetric sampled distribution (normal, uniform, and t) the least

squares line, fitting S2 as linear function of X̄ , is roughly horizontal, indicating zero

correlation, but not necessarily independence.

For uniform samples a high values of S2 seem to be associated with an X̄ near .5.

For t-samples large S2 values seem to indicate outliers which also affect X̄ .

When the sampled distribution is skewed (Chi-Square, Weibull, Poisson) the least

squares line shows a definite slope, i.e., we have correlation and definitely

dependence.
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X̄ and S2 Dependence (500 Samples of Size n = 10)
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Comments

The sampled beta density over the interval (0,1) is shown on the left.

It gives higher density near 0 or 1 than in the middle.

The (X̄ ,S2) scatter shows a definite wedge pattern of high values of S2 being

associated with more central values of X̄ .

Values of X̄ near 0 or 1 are associated with low values of S2.

These associations make sense. For example, a value of X̄ near 1 can only come

about when most observations are on the right side of .5, leading to a smaller S2.

We clearly see dependence in spite of zero correlation patterns.
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One-Sample t-Test

Assume that X = (X1, . . . ,Xn)
i.i.d.∼ N (µ,σ2).

We want to test the hypothesis H0 : µ = µ0 against the alternatives H1 : µ 6= µ0.

σ is left unspecified and is unknown. H0 is a composite hypothesis.

X̄ is a good indicator for µ since its mean is µ and its variance is σ2(X̄) = σ2/n.

Thus a reasonable test statistic may be X̄−µ0 ∼N (µ−µ0,σ
2/n) = N (0,σ2/n)

The last = holds when H0 is true. Unfortunately we do not know σ.

√
n(X̄−µ0)/σ = (X̄−µ0)/(σ/

√
n)∼N (0,1) suggests replacing the unknown σ

by suitable estimate to get a single reference distribution under H0.

From the previous slide: =⇒ s2 = ∑
n
i=1(Xi− X̄)2/(n−1)∼ σ2Cn−1/(n−1)

s2 is independent of X̄ . Note E(s2) = σ2, i.e., s2 is an unbiased estimate of σ2.
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One-Sample t-Statistic
Replacing σ by s in the standardization

√
n(X̄−µ0)/σ =⇒ one-sample t-statistic

t(X) =
(X̄−µ0)

s/
√

n
=
√

n(X̄−µ0)/σ√
s2/σ2

=
√

n(X̄−µ0)/σ√
Cn−1/(n−1)

=
Z√

Cn−1/(n−1)
∼ tn−1

since under H0 we have that Z =
√

n(X̄−µ0)/σ∼N (0,1) and Cn−1 ∼ χ2
n−1,

both independent of each other. We thus satisfy the definition of the t-distribution.

Hence we can use t(X) in conjunction with the single known reference distribution
tn−1 under the composite hypothesis H0 and reject H0 for large values of |t(X)|.

The 2-sided level α test has critical value

tcrit = tn−1,1−α/2 = qt(1−α/2,n−1) = t.crit.

We reject H0 when |t(X)| ≥ tcrit.

The 2-sided p-value for the observed t-statistic tobs(x) = t.obs is

P(|tn−1| ≥ |tobs(x)|) = 2P(tn−1 ≤−|tobs(x)|) = 2∗pt(−abs(t.obs),n−1).
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The t.test in R

R has a function, t.test, that performs 1- and 2-sample t-tests.

See ?t.test for documentation. We focus here on the 1-sample test.

> t.test(rnorm(20)+.4)

One Sample t-test

data: rnorm(20) + 0.4

t = 2.2076, df = 19, p-value = 0.03976

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.02248992 0.84390488

sample estimates:

mean of x

0.4331974
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Calculation of the Power Function of the Two-Sided t-Test

The power function of this two-sided t-test is given by

β(µ,σ)= P(|t| ≥ tcrit)= P(t ≤−tcrit)+P(t ≥ tcrit)= P(t ≤−tcrit)+1−P(t < tcrit)

t = t(X) =
√

n(X̄−µ0)
s

=
√

n(X̄−µ+(µ−µ0))/σ

s/σ

=
√

n(X̄−µ)/σ+
√

n(µ−µ0)/σ

s/σ
=

Z +δ√
Cn−1/(n−1)

∼ tn−1,δ

noncentral t-distribution with noncentrality parameter δ =
√

n(µ−µ0)/σ = delta.

Thus the power function depends on µ and σ only through δ and we write

β(δ) = P(tn−1,δ ≤−tcrit)+1−P(tn−1,δ < tcrit)

= pt(−t.crit,n−1,delta)+1−pt(t.crit,n−1,delta)

The power function also depends on n.
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Power Function of Two-Sided t-Test
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How to Use the Power Function

For the level α = .05 test in the previous plot we can read off

β(δ)≈ .6 for δ =±
√

n(µ0−µ)/σ≈ 2.5 or |µ0−µ| ≈ 2.5σ/
√

n.

The smaller the natural variability σ the smaller the difference |µ0−µ|
that we can detect with probability .6.

Similarly, the larger the sample size n the smaller the difference |µ0−µ|
we can detect with probability .6, note however the square root effect in

√
n.

Both of these conclusions are intuitive because σ(X̄) = σ/
√

n.

Given a required detection difference |µ−µ0| and with some upper bound

knowledge σu ≥ σ we can plan the appropriate minimum sample size n to achieve

the desired power β = .6: 2.5×σ/|µ−µ0| ≤ 2.5×σu/|µ−µ0|=
√

n.

For power 6= .6 replace 2.5 by the appropriate value from the previous plot.
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Where is the Flaw in Previous Argument?

We tacitly assumed that the power curve plot would not change with n, i.e.,

we consider the effect of n only via δ =
√

n |µ−µ0|/σ on the plot abscissa.

Both tcrit = qt(1−α/2,n−1) and P(tn−1,δ ≤±tcrit) depend on n,

as does δ =
√

n |µ−µ0|/σ. See the next 3 plots.

Thus it does not suffice to consider the n in δ alone.

However, typically the sample size requirements will ask for large values of n.

In that case tcrit ≈ qnorm(1−α/2) and tn−1,δ ≈N (δ,1) stabilize (for fixed δ).

Compare n = 100 and n = 1000 in the next few plots. For large n, most of

the benefit from increasing n comes via increasing δ =
√

n |µ−µ0|/σ.

We will provide a function that gets us out of this dilemma.
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Power Function of Two-Sided t-Test
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Power Function of Two-Sided t-Test

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

δδ == n((µµ −− µµ0)) σσ

ββ((
δδ))

sample size n = 30

αα == 0.05

αα == 0.01

68



Power Function of Two-Sided t-Test
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Power Function of Two-Sided t-Test

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

δδ == n((µµ −− µµ0)) σσ

ββ((
δδ))

sample size n = 1000

αα == 0.05
αα == 0.01

70



Some Discussion of the Impact of n

The previous slides showed that the impact of n on the power function curve shapes

can be substantial for small n (see n = 3 =⇒ n = 30).

However, for larger n the power functions only change their shape slightly,

see the small change as n = 30→ n = 100→ n = 1000.

In those (larger n) cases the main impact of n on power is through the noncentrality

parameter δ =
√

n(µ−µ0)/σ.
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Sample Size Function (2-sided)

sample.size2 = function(delta0=1,nrange=10:100,alpha=.05){
power=NULL
for(n in nrange){

tcrit=qt(1-alpha/2,n-1)
power=c(power,1-pt(tcrit,n-1,sqrt(n)*delta0)+

pt(-tcrit,n-1,sqrt(n)*delta0))
}
plot(nrange,power,type="l",xlab="sample size n")
abline(h=seq(.01,.99,.01),col="grey")
abline(v=nrange,col="grey")
title(substitute((mu-mu[0])/sigma[u]==delta0,list(delta0=delta0))) }

Here delta0 = (µ−µ0)/σu is the point at which we want to achieve a given

power. σu is a known (conservative) upper bound on σ.

nrange gives a vector of sample sizes at which the power function is computed for

delta0 and significance level alpha.
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Power of Two-Sided t-Test for Various n
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Power of Two-Sided t-Test for Various n ( refined view)
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The Blessings of (µ−µ0)/σ

The power function depends on µ−µ0 only in relation to σ units.

This is a sensible benefit.

If σ is large, only very large differences between µ and µ0 would matter.

Smaller differences µ−µ0 would get swamped or appear irrelevant

when compared with the population variation, i.e., σ.
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One-Sided One-Sample Testing Problem

Again assume X = (X1, . . . ,Xn)
i.i.d.∼ N (µ,σ2).

In some situations we may want to test H ′0 : µ = µ0 against H1 : µ > µ0.

More broadly, we may want to test H0 : µ≤ µ0 against H1 : µ > µ0.

Clearly, large values of X̄−µ0 speak for H1 and against H ′0 or H0.

Large negative values of X̄−µ0 may also speak against H ′0 but not against H0.

Thus we should be very clear as to the hypotheses being tested,

and whether it should be a one-sided or two-sided alternative.
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One-Sided One-Sample t-Test

Based on the discussion for the 2-sided testing problem it is natural to consider

t = t(X) =
X̄−µ0
s/
√

n

as our test statistic and reject H0 in favor of H1 when t is too large.

What is the reference distribution of t under H0 : µ≤ µ0?

Recall that t ∼ tn−1,δ, the noncentral t-distribution with noncentrality parameter

δ =
√

n(µ−µ0)/σ.

Note that µ≤ µ0 ⇐⇒ δ =
√

n(µ−µ0)/σ≤ 0.

Thus we have many different reference distributions under H0 : δ≤ 0.
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Power Function of the One-Sided One-Sample t-Test

Suppose we reject H0 when t ≥ tcrit for some chosen critical value tcrit.

Then the power function again depends only on δ and n and is given by

β(δ) = P(tn−1,δ ≥ tcrit) = 1−pt(tcrit,n−1,δ).

β(δ) is strictly increasing in δ since

P

(
Z +δ√

Cn−1/(n−1)
≥ tcrit

)
= P

(
Z ≥ tcrit

√
Cn−1/(n−1)−δ

)
↗ as δ↗ .

Thus β(δ)≤ β(0) for δ≤ 0 and we have maxδ≤0 { β(δ) }= β(0).

Thus choose tcrit = t.crit such that β(0) = α, i.e,

α = β(0) = P(tn−1,0 ≥ tcrit) = P(tn−1 ≥ tcrit) or t.crit = qt(1−α,n−1) .

78



Using t.test

> t.test(rnorm(20)+.4,alternative="greater")

One Sample t-test

data: rnorm(20) + 0.4

t = 2.4646, df = 19, p-value = 0.01171

alternative hypothesis: true mean is greater than 0

95 percent confidence interval:

0.1429615 Inf

sample estimates: mean of x 0.4790822
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Power Function of One-Sided t-Test
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Power Function of One-Sided t-Test
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Power Function of One-Sided t-Test
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Power Function of One-Sided t-Test
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Sample Size Function (1-sided)

sample.size1 = function(delta0=1,nrange=10:100,alpha=.05){
power=NULL
for(n in nrange){
tcrit=qt(1-alpha,n-1)
power=c(power,1-pt(tcrit,n-1,sqrt(n)*delta0)) }

plot(nrange,power,type="l",xlab="sample size n")
abline(h=seq(.01,.99,.01),col="grey")
abline(v=nrange,col="grey")
title(substitute((mu-mu[0])/sigma[u]==delta0˜
","˜alpha==alpha0,list(delta0=delta0,alpha0=alpha)))
lines(nrange,power,col="red") }

Here delta0= (µ−µ0)/σu is the point at which we want to achieve a given power.

σu is a known (or assumed conservative) upper bound on σ.

nrange gives a vector of sample sizes at which the power function is computed

for delta0 and significance level alpha.
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Power of One-Sided t-Test for Various n
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Power of One-Sided t-Test for Various n ( refined view)
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Hypothesis Tests & Confidence Intervals

For testing H0 : µ = µ0 we accept H0 with the two-sided t-test whenever∣∣∣∣X̄−µ0
s/
√

n

∣∣∣∣< tn−1,1−α/2 ⇐⇒ µ0 ∈ X̄± tn−1,1−α/2×
s√
n

Thus the interval X̄± tn−1,1−α/2× s/
√

n consists of all acceptable µ0,

i.e., all µ0 for which one would accept H0 : µ = µ0 at level α.

Furthermore, since under H0 our acceptance probability is 1−α we have

Pµ0

(
X̄− tn−1,1−α/2×

s√
n

< µ0 < X̄ + tn−1,1−α/2×
s√
n

)
= 1−α

Here the subscript µ0 on P indicates the assumed true value of the mean µ. Since

this holds for any value µ0 we may as well drop the subscript 0 on µ0 and write

Pµ

(
X̄− tn−1,1−α/2×

s√
n

< µ < X̄ + tn−1,1−α/2×
s√
n

)
= 1−α

The choice of < or ≤ is immaterial. The case “=” has probability zero!
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The Nature of Confidence Intervals

[
X̄− tn−1,1−α/2×

s√
n

, X̄ + tn−1,1−α/2×
s√
n

]

is called a 100× (1−α)% confidence interval for the unknown mean µ.

It is a random interval which has probability 1−α of covering µ.

This is not a statement about µ being random due to being unknown or uncertain.

µ does not “fall” into that interval with probability 1−α. µ is fixed but unknown.

Without knowing µ we will not know whether the interval covers µ or not.

“Statistics means never having to say you’re certain.” (Myles Hollander)

⇐= “Love means never having to say you’re sorry,” Love Story by Eric Segal
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50 Confidence Intervals
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50 Confidence Intervals
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50 Confidence Intervals
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Using Confidence Intervals to Test Hypotheses

Not only do confidence intervals provide a more informative way of estimating

parameters, as opposed to just stating the interval midpoint X̄ as estimate for µ,

they can also be used to directly test hypotheses.

No surprise: Confidence intervals were introduced via acceptable hypotheses.

Thus we reject H : µ = µ0 at level α whenever the 100(1−α)% confidence interval

does not cover µ0.

If the coverage probability is at least 1−α, then the probability of missing

the true target (rejecting falsely) is at most α
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What about One-Sided Hypotheses?

Testing H : µ≤ µ0 against H1 : µ > µ0 we reject when
√

n(X̄−µ0)/s≥ tn−1,1−α,
or accept whenever

√
n(X̄−µ0)/s < tn−1,1−α ⇐⇒ µ0 > X̄− tn−1,1−α× s/

√
n ,

i.e., X̄− tn−1,1−α× s/
√

n is a 100(1−α)% lower confidence bound for µ0.

We could also state it in open ended interval form: (X̄− tn−1,1−α× s/
√

n,∞).

Clearly, we would reject H0 whenever this interval shows no overlap

with the interval (−∞, µ0] as given by H0 : µ≤ µ0.

Testing H0 : µ≥ µ0 vs. H1 : µ < µ0, reject when
√

n(X̄−µ0)/s≤ tn−1,α

or when the corresponding 100(1−α)% upper confidence bound interval

(−∞, X̄− tn−1,α× s/
√

n) does not overlap the hypothesis interval [µ0, ∞).
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Return to Two-Sample Tests
Here we revisit the 2-sample problem, this time from a population perspective.

Assume X1, . . . ,Xm
i.i.d.∼ N (µX ,σ2) is independent of Y1, . . . ,Yn

i.i.d.∼ N (µY ,σ2).

Note the assumptions of normality and equal variances (will be checked later).

The respective independence assumptions are more or less a judgment issue.

We want to test H0 : µX = µY vs. H1 : µX 6= µY , with σ unknown and unspecified.

Clearly Ȳ−X̄ ∼N

(
µY −µX ,

σ2

n
+

σ2

m

)
or under H0

Ȳ − X̄

σ
√

1/m+1/n
∼N (0,1)

is a good indicator of H0 : µY −µX = 0 being true or not.

Under H0 the sampling distribution of Ȳ−X̄ ∼N
(

0, σ2
n + σ2

m

)
is unknown because

of the unknown σ.
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Estimating σ2

Have two estimates of σ2: s2
X =

1
m−1

m

∑
i=1

(Xi−X̄)2 and s2
Y =

1
n−1

n

∑
j=1

(Y j−Ȳ )2

How to combine or pool them? (s2
X + s2

Y )/2? or any other λs2
X +(1−λ)s2

Y ?

s2
X ∼ σ2χ2

m−1/(m−1) =⇒ var(s2
X) = σ4×2(m−1)/(m−1)2 = 2σ4/(m−1).

Similarly var(s2
Y ) = 2σ4/(n−1) and independence of s2

X and s2
Y give us

var
(

λs2
X +(1−λ)s2

Y

)
= λ

2 2σ4

m−1
+(1−λ)2 2σ4

n−1
a quadratic in λ with clear minimum (calculus exercise) at λ = (m−1)/(m+n−2).

This suggests s2 =
(m−1)s2

X
m+n−2

+
(n−1)s2

Y
m+n−2

=
∑

m
i=1(Xi− X̄)2 +∑

n
j=1(Y j− Ȳ )2

m+n−2

as “best” pooled variance estimate for σ2.
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s2 ∼ σ2χ2
m+n−2/(m+n−2) Is Independent of Ȳ − X̄

X1, . . . ,Xm
i.i.d.∼ N (µX ,σ2) =⇒ X̄ and s2

X are independent.

Y1, . . . ,Yn
i.i.d.∼ N (µY ,σ2) =⇒ Ȳ and s2

Y are independent.

X1, . . . ,Xm and Y1, . . . ,Yn independent =⇒ X̄ , s2
X and Ȳ , s2

Y are all independent.

=⇒ Ȳ − X̄ and s2 =
(m−1)s2

X
m+n−2

+
(n−1)s2

Y
m+n−2

are independent.

(m+n−2)s2 ∼ σ2χ2
m+n−2 since (m−1)s2

X ∼ σ2χ2
m−1 and

(n−1)s2
Y ∼ σ2χ2

n−1, see slide 40 (sum of independent χ2 random variables).
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Two-Sample t-Statistic

Thus

t(X,Y) =
Ȳ − X̄

s
√

1/m+1/n
=

(Ȳ − X̄)
/[

σ
√

1/m+1/n
]

s/σ

=
Z√

Cm+n−2/(m+n−2)
∼ tm+n−2

gives us the desired 2-sample t-statistic with known null distribution under H0.

Reject H0 : µY −µX = 0 at significance level α when

|t(X,Y)| ≥ tm+n−2,1−α/2 = tcrit .

The 2-sided p-value of the observed t(x,y) is

P(|tm+n−2| ≥ |t(x,y|) = 2∗ (1−pt(abs(t(x,y)),m+n−2))
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Other Hypotheses

We may also want to test H∆ : µY −µX = ∆ or H∆ : µY −µX −∆ = 0

for a specified value ∆.

The natural change is to subtract ∆ from Ȳ − X̄ and note that

t(X,Y−∆) =
Ȳ − X̄−∆

s
√

1/m+1/n
=

(Ȳ − X̄−∆)
/[

σ
√

1/m+1/n
]

s/σ
∼ tm+n−2

when H∆ is true.

We reject H∆ whenever |t(X,Y−∆)| ≥ tm+n−2,1−α/2 at significance level α.

As in the case of the 1-sample test we can derive (exercise)

a 100(1−α)% confidence interval for ∆ as

Ȳ − X̄ ± tm+n−2,1−α/2× s×
√

1/m+1/n
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Two-Sample t.test in R

> t.test(flux$SIR[flux$FLUX=="Y"],flux$SIR[flux$FLUX=="X"],var.equal=T)

Two Sample t-test

data: flux$SIR[flux$FLUX == "Y"] and flux$SIR[flux$FLUX == "X"]

t = -2.5122, df = 16, p-value = 0.0231

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.7042872 -0.2290462

sample estimates:

mean of x mean of y

9.133333 10.600000
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Power Function of the Two-Sample t-Test

The power function of the 2-sided 2-sample t-test is given by

β(µX ,µY ,σ) = P(|t(X,Y)| ≥ tcrit)

= P(t(X,Y)≤−tcrit)+1−P(t(X,Y) < tcrit)

t(X,Y) =
Ȳ − X̄

s
√

1/m+1/n

=

Ȳ−X̄−(µY−µX)
σ
√

1/m+1/n
+ µY−µX

σ
√

1/m+1/n

s/σ
=

Z +δ√
Cm+n−2
m+n−2

∼ tm+n−2,δ

with noncentrality parameter δ = (µY −µX)/[σ
√

1/m+1/n].

Thus β depends on µX ,µY ,σ only through δ and we have

β(δ) = pt(−tcrit,m+n−2,δ)+1−pt(tcrit,m+n−2,δ)
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Allocation of Sample Sizes

Previously we saw that such power functions are increasing in |δ|.

If we can allocate m and n subject to the restriction m+n = N being fixed at some

even number, we maximize |δ| for fixed |µY −µx|/σ by minimizing

1
m

+
1
n

=
1
m

+
1

N−m
over m.

Calculus or algebra =⇒ m = n = N/2 gives us the minimum and thus the

sample size allocation with highest power potential against any fixed |µY −µx|/σ.
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Sample Size Planning Tools

It is a simple matter to adapt the previous sample size functions sample.size2

and sample.size1 for the 1-sample t-test to the 2-sample situations,

i.e., for 2-sided tests and 1-sided tests.

Since tcrit = tm+n−2,1−α/2 and tm+n−2,δ (aside from δ) depend on m and n only

through N = m+n and since the previous slide made the case for m = n = N/2,

we just need to express the corresponding sample size function in terms of N

and use δ = (µY −µx)/
(

σ

(√
2/N +2/N

))
=
√

N/4× (µY −µx)/σ.

Of course, we would then also need to take m = n.

See Homework!
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Reflection on Treatments of Two-Sample Problem

Randomization test: No population assumptions. Under the hypothesis of no flux

difference the SIR results for the 18 boards would be the same under all

flux assignments. The flux assignments are then irrelevant!

Test is based on random assignment of fluxes giving us the randomization

reference distribution for calculation of p-values or critical values.

Using t(X,Y), a good approximation to the null distribution often is tm+n−2.

Generalization to other boards only by judgment or assumptions.

Normal 2-sample test: Assumes 2 independent samples from normal populations

with common variance and possibly different means. We generalize upfront.

The t-test makes inferences concerning these two (conceptual) populations.
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Check σ2
X = σ2

Y

Test the hypothesis H0 : σ2
X/σ2

Y = 1 vs. the alternative H1 : σ2
X/σ2

Y 6= 1

A good indicator for σ2
X/σ2

Y is the ratio of sample variances F = s2
X/s2

Y .

Note that

F =
s2
X

s2
Y

=
s2
X/σ2

X
s2
Y/σ2

Y
×

σ2
X

σ2
Y
∼

σ2
X

σ2
Y
×Fm−1,n−1 ⇒ F =

s2
X

s2
Y
∼Fm−1,n−1 under H0 .

Thus reject H0 when s2
X/s2

Y is ≤ Fm−1,n−1,α/2 or ≥ Fm−1,n−1,1−α/2.

We denote by Fm−1,n−1,p the p-quantile of Fm−1,n−1.

Unfortunately this test is very sensitive to deviations from normality

(will return to this later).
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F-Distribution & Critical Values for α = .05

F−Ratio
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Confidence Interval for σ2
X/σ2

Y

From

s2
X/σ2

X
s2
Y/σ2

Y
=

s2
X/s2

Y
σ2

X/σ2
Y
∼ Fm−1,n−1

we get

1−α = P

(
Fm−1,n−1,α/2 ≤

s2
X/s2

Y
σ2

X/σ2
Y
≤ Fm−1,n−1,1−α/2

)

= P

(
s2
X/s2

Y
Fm−1,n−1,1−α/2

≤
σ2

X
σ2

Y
≤

s2
X/s2

Y
Fm−1,n−1,α/2

)

i.e.,
[
(s2

X/s2
Y )/Fm−1,n−1,1−α/2, (s2

X/s2
Y )/Fm−1,n−1,α/2

]
is a 100(1−α)% confidence interval for σ2

X/σ2
Y .
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t?-Test when σ2
X 6= σ2

Y ?

When σ2
X 6= σ2

Y we could emulate (Ȳ − X̄)/
√

σ2
X/m+σ2

Y/n∼N (0,1)

by using t?(X,Y) = (Ȳ − X̄)/
√

s2
X/m+ s2

Y/n as test statistic.

But what is its reference distribution under H0 : µX = µY ? It is unknown.

This is referred to as the Behrens-Fisher problem.

Approximate the distribution of s2
X/m+ s2

Y/n by that of a×χ2
f / f , where a and f

are chosen to match mean and variance of approximand and approximation.

E
(

a×χ
2
f / f
)

= a and var
(

a×χ
2
f / f
)

=
a2×2 f

f 2 =
2a2

f
.

E

(
s2
X
m

+
s2
Y
n

)
=

σ2
X

m
+

σ2
Y
n

= a & var

(
s2
X
m

+
s2
Y
n

)
=

2(m−1)σ4
X

m2(m−1)2 +
2(n−1)σ4

Y
n2(n−1)2 =

2a2

f
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The Satterthwaite Approximation

=⇒ f =
a2

σ4
X

m2(m−1)
+ σ4

Y
n2(n−1)

=

(
σ2

X/m+σ2
Y/n

)2

(σ2
X/m)2

m−1 + (σ2
Y /n)2

n−1

Replace the unknown σ2
X and σ2

Y by s2
X and s2

Y and use instead f̂ , where

f̂ =

(
s2
X/m+ s2

Y/n
)2

(s2
X/m)2

m−1 + (s2
Y /n)2

n−1

and approximate
s2
X/m+ s2

Y/n

σ2
X/m+σ2

Y/n
≈ χ

2
f̂ / f̂

=⇒ t?(X,Y) =
(Ȳ − X̄)/

√
σ2

X
m + σ2

Y
n√(

s2
X
m + s2

Y
n

)/(
σ2

X
m + σ2

Y
n

) =
Z√

χ2
f̂
/ f̂
≈ t f̂

Reject H0 : µX = µY when |t?(X,Y)| is too large and

compute p-values from the t f̂ distribution.
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Which Test to Use: t or t??

When m = n one easily sees that t(X,Y) = t?(X,Y), but their null distributions

are only the same when s2
X = s2

Y in which case f̂ = 2(m−1).

However, s2
X = s2

Y is an unlikely occurrence. To show only takes some algebra.

What happens when m = n but σX 6= σY and we use t(X,Y) anyway?

What happens when m 6= n and σX 6= σY and we use t(X,Y) anyway?

How is the probability of type I error affected?

Such questions can easily be examined using simulation in R.

When m = n or σX ≈ σY it seems that using t(X,Y)is relatively safe,

otherwise use t?(X,Y) (see following slides).
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Simulating the Null-Distribution of t(X,Y)

Recall

t(X,Y) =
Ȳ − X̄

s
√

1/n+1/m
with s2 =

(m−1)s2
X +(n−1)s2

Y
m+n−2

and under H0 : µX = µY with independent

Ȳ − X̄ ∼N (0,σ2
Y/n+σ

2
X/m) , (m−1)s2

X ∼ σ
2
Xχ

2
m−1 and (n−1)s2

Y ∼ σ
2
Y χ

2
n−1

This leads to the first 3 command lines in the R function t.sig.diff, i.e.:

Dbar=rnorm(Nsim,0,sqrt(sigXˆ2/m+sigYˆ2/n))

s2=(rchisq(Nsim,m-1)*sigXˆ2+rchisq(Nsim,n-1)*sigYˆ2)/(m+n-2)

t.stat=Dbar/sqrt(s2*(1/m+1/n))
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R Function Examining P(Type I Error) for t(X,Y)-Test

t.sig.diff = function (m=10,n=5,sigX=1,sigY=1,Nsim=10000)

{

Dbar=rnorm(Nsim,0,sqrt(sigXˆ2/m+sigYˆ2/n))

s2=(rchisq(Nsim,m-1)*sigXˆ2+rchisq(Nsim,n-1)*sigYˆ2)/(m+n-2)

t.stat=Dbar/sqrt(s2*(1/m+1/n))

x=seq(-5,5,.01)

y=dt(x,m+n-2)

hist(t.stat,nclass=101,probability=T,main="",

xlab="conventional 2-sample t-statistic")

title(substitute(sigma[X]==sigX˜", "˜

sigma[Y]==sigY˜", "˜n[X]==nX˜", "˜n[Y]==nY,

list(sigX=sigX,sigY=sigY,nX=m,nY=n)))

lines(x,y,col="blue")

}
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Inflated P(Type I Error)

conventional 2−sample t−statistic
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Deflated P(Type I Error)

conventional 2−sample t−statistic
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Heuristic Explanation of Opposite Effects

Recall that

s2 =
(nX −1)s2

X +(nY −1)s2
Y

nX +nY −2
=

9
13

s2
X +

4
13

s2
Y

Thus when σX = 1 and σY = 2 we have

E(s2) =
9
13

σ
2
X +

4
13

σ
2
Y =

9
13

12 +
4

13
22 =

25
13

= 1.923

and when σX = 2 and σY = 1 we have

E(s2) =
9
13

σ
2
X +

4
13

σ
2
Y =

9
13

22 +
4

13
12 =

40
13

= 3.077

while for σX = σY = 1.5 we have (correct t-distribution)

E(s2) =
9
13

σ
2
X +

4
13

σ
2
Y =

9
13

1.52 +
4

13
1.52 = 2.25

We can clearly link the effect of E(s2) on the simulated distributions.

s2 tends to be too small when σX = 1,σY = 2 and too large when σX = 2,σY = 2,

leading to inflated (deflated) values of |t(X,Y)|, respectively.
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P(Type I Error) Hardly Affected

conventional 2−sample t−statistic
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P(Type I Error) Mildly Affected

conventional 2−sample t−statistic
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P(Type I Error) Mildly Affected

conventional 2−sample t−statistic
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Checking Normality of a Sample

The p-quantile of N (µ,σ2) is xp = µ+σzp, zp is the standard normal p-quantile.

Sort the sample X1, . . . ,Xn in increasing order X(1)≤ . . .≤X(n) assigning fractional

ranks pi ∈ (0,1) to these order statistics in one of several ways for i = 1, . . . ,n:

pi =
i− .5

n
or pi =

i
n+1

or pi =
i− .375
n+ .25

.

Plot X(i) against the standard normal pi-quantile zpi = qnorm(pi) for i = 1, . . . ,n.

We would expect X(i) ≈ xpi = µ+σzpi, i.e., X(i) should look ≈ linear against zpi

with intercept ≈ µ and slope ≈ σ. Judging approximate linearity takes practice.

The third choice for pi is used by R in qqnorm(x) for a given sample vector x.

qqline(x) fits a line to the middle half of the data.
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Normal QQ-Plot: n = 16
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Normal QQ-Plot: n = 64
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Normal QQ-Plot: n = 256
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EDF-Based Tests of Fit

Judgment?? We can also carry out formal EDF-based tests of fit for normality.

Assume X1, . . . ,Xn ∼ G. Test H0 : G(x) = Φ((x−µ)/σ) for some µ and σ

with µ and σ unspecified and unknown (a composite hypothesis).

The empirical distribution function (EDF) F̂n(x) is defined as

F̂n(x)=
1
n

n

∑
i=1

I(−∞, x](Xi) with Bi(x)= I(−∞, x](Xi)= 1 or 0 as Xi≤ x or x < Xi .

F̂n(x) = proportion of sample values X1, . . . ,Xn that are ≤ x (≡ success).

Here B1(x), . . . ,Bn(x) is an i.i.d. sequence of Bernoulli random variables

with success probability p = p(x) = P(Xi ≤ x) = G(x).

Law of Large Numbers (LLN) =⇒ B̄(x) = F̂n(x)−→G(x) as n→∞, for all x.
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Empirical CDF for n = 30
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Empirical CDF for n = 100
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Compare the EDF with What?

The previous two slides compared the EDF with the CDF G(x) = Φ((x−µ)/σ)

from which the data were sampled.

This was done to illustrate the validity of the LLN. However, we don’t know µ and σ.

We can estimate G(x) using Ĝn(x) = Φ((x− X̄)/s) ≈ G(x) for large n.

This approximation is reasonable not only for normal samples but also as long as

X̄ → µ and s→ σ for large n.

Compare F̂n(x) with Ĝn(x) as proxy for comparing F̂n(x) with G(x).

Compare them via some discrepancy metric D(F̂n, Ĝn).

We reject H0 whenever D(F̂n, Ĝn) is too large, using the null distribution of D(F̂n, Ĝn)

to find critical values or p-values.
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Empirical CDF for n = 30 with Estimated CDF
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Empirical CDF for n = 100 with Estimated CDF
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µµ
))

σσ
))

● ● ● ● ● ●●● ●● ●●● ● ● ●● ● ● ●● ●● ●● ● ●●● ● ●● ●● ● ● ● ● ●● ● ●●●● ●●●●● ●● ● ● ●●● ● ● ●● ● ● ●●● ●● ●● ●● ●●●●●●● ● ● ● ●● ● ●●● ●●● ● ● ● ● ● ●● ● ●

µµ == 50  ,   σσ == 5

n == 100

sampled normal distribution
estimated normal distribution
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Some Discrepancy Metrics

Note the generally closer fit Ĝn(x) ≈ F̂n(x), as compared to G(x) ≈ F̂n(x).

F̂n(x) represents the sample and Ĝn(x) is fitted to the sample.

DKS(F̂n, Ĝn) = sup
x
|F̂n(x)− Ĝn(x)| Kolmogorov-Smirnov criterion

DCvM(F̂n, Ĝn) = n
Z

∞

−∞

(
F̂n(x)− Ĝn(x)

)2 ĝn(x) dx Cramér-von Mises criterion

DAD(F̂n, Ĝn) = n
Z

∞

−∞

(
F̂n(x)− Ĝn(x)

)2
Ĝn(x)(1− Ĝn(x))

ĝn(x) dx Anderson-Darling criterion

Here ĝn(x) is the density of Ĝn(x), i.e., ĝn(x) = ϕ((x− X̄)/s)/s,

where ϕ(z) is the standard normal density.
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Interpretation of Discrepancy Metrics

DKS captures the local maximum discrepancy (at some x) between Ĝn(x) and F̂n.

DCvM captures an accumulated (integrated) squared and weighted discrepancy

between Ĝn(x) and F̂n, weighting via ĝn(x).

DAD captures an accumulated (integrated) squared discrepancy between Ĝn(x)

and F̂n with especially high weights in the distribution tails in addition to ĝn(x),

i.e., when Ĝn(x) or 1− Ĝn(x) are small.

The squaring of the discrepancies
(
F̂n(x)− Ĝn(x)

)2
was done mainly for

mathematical ease.

The absolute discrepancy |F̂n(x)− Ĝn(x)| is not so easily dealt with.
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Computational Formulas for the Discrepancy Metrics
DKS(F̂n, Ĝn) = max

{
max

i

[
i/n− Ĝn(X(i))

]
, max

i

[
Ĝn(X(i))− (i−1)/n

]}

DCvM(F̂n, Ĝn) =
n

∑
i=1

[
Ĝn(X(i))− (2i−1)/(2n)

]2
+1/(12n)

DAD(F̂n, Ĝn) = −n− (1/n)
n

∑
i=1

(2i−1)
[
log(Ĝn(X(i)))+ log(1− Ĝn(X(i)))

]
Here X(1) ≤ X(2) ≤ . . .≤ X(n) are the order statistics of the sample X1, . . . ,Xn,

i.e., its values in increasing order.

Note that the distribution of Ĝn(X(i)) = Φ((X(i)− X̄)/s) does not depend on the

unknown parameters µ and σ since

X(i)− X̄

s
=

(X(i)−µ)/σ− (X̄−µ)/σ)

s/σ
=

Z(i)− Z̄

sZ
with Z1, . . . ,Zn

i.i.d.∼ N (0,1).
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Null Distributions for DKS, DCvM, and DAD

Approximate null distributions have been developed for all three metrics.

These are based on limiting null distributions (n→ ∞) and substantial simulations

for small and moderate sample sizes.

Goodness-of-Fit Techniques, (1986) ed. by R.B. D’Agostino and M.A. Stephens

See this reference for tabulations of critical values.

With today’s computing power it is relatively easy to simulate p-values for observed

discrepancy metrics.

One could even try other metrics for which limiting distribution results have not yet

been investigated because of their analytical intractability.
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The Package nortest

Fortunately the package nortest provides functions that evaluate each of the

three discrepancy metrics and their corresponding p-values.

Install the package nortest directly from the web or from the zip file

nortest_1.0.zip (available on my class web site) in your working directory.

Do this installation just once for each R installation.

Invoke library(nortest) for each R session during which you want to use it.

The package nortest contains the routines:

lillie.test (DKS), cvm.test (DCvM), and ad.test (DAD)

See documentation: ?lillie.test, ?cvm.test, and ?ad.test.
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Kolmogorov-Smirnov Test for Normality

> lillie.test(rnorm(7)) # testing a normal sample

# of size n=7 for normality

Lilliefors (Kolmogorov-Smirnov) normality test

data: rnorm(7)

D = 0.287, p-value = 0.08424

> lillie.test(runif(137)) # testing a uniform sample

# of size n=137 for normality

Lilliefors (Kolmogorov-Smirnov) normality test

data: runif(137)

D = 0.0877, p-value = 0.01169
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Anderson-Darling Test for Normality

> ad.test(rnorm(10)) # testing a normal sample

# of size n=10 for normality

Anderson-Darling normality test

data: rnorm(10)

A = 0.4216, p-value = 0.2572

> ad.test(runif(30)) # testing a uniform sample

# of size n=30 for normality

Anderson-Darling normality test

data: runif(30)

A = 0.8551, p-value = 0.02452
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General Comments on Goodness-of-Fit (GOF) Tests

Denote by H0 our distributional hypothesis (here normality).

The following comments apply equally well to other distributional hypotheses.

For small sample sizes GOF tests tend to be very forgiving.

We reject only for gross deviations from H0.

Very large samples from real applications most often lead to rejection of H0.

The reason is that such tests are all consistent, i.e., they will reject H0 for any

alternative to H0, provided the sample is large enough.

Such alternatives may look very similar to H0, but not exactly the same.

Should we be concerned about such rejections?

Are tiny deviations from normality relevant? The “curse” of large n?!

GOF tests are most useful for moderate and not too large sample sizes.
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A Simulation Experience

A client wanted to extrapolate very costly simulation results from Nsim = 2000

simulations far out into the distribution tail.

They were plotting these 2000 values on normal probability paper (QQ-plot),

fitting a line, and extrapolating along the line far beyond the data.

For example, they wanted to know the chance of exceeding µ+5σ

( ≈ 3×10−7 for a normal distribution)

Certainly none of the 2000 observed cases would go there.

I questioned normality, asked for an example/sample of 2000 data points.

To my surprise they passed the normality test, which made me suspicious.

Their simulations had an internal switch, that produced normal data

and bypassed the costly simulations.
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Appendix A

The following five slides prove the distribution result concerning the sum of

independent normal random variables.

The proof is purely geometric.
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αZ1 +βZ2 ∼N (0,1) for α2 +β2 = 1

The normal convolution result on the previous slide follows by induction from the

following special case, which allows a simple and elegant proof.

Z1 and Z2 i.i.d. ∼N (0,1) and α2 +β2 = 1 =⇒ αZ1 +βZ2 ∼N (0,1).

The crucial property that makes this proof possible is:

The joint density of (Z1,Z2) has circular symmetry around (0,0)

f (z1,z2) =
1

2π
exp

(
−

z2
1 + z2

2
2

)
,

i.e., points with same distance from (0,0) have the same density.
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Geometric Meaning of αZ1 +βZ2 with α2 +β2 = 1
Z =

(
Z1
Z2

)
= Z1

(
1
0

)
+Z2

(
0
1

)
= Z1 e1 +Z2 e2

e′1 = (1,0) and e′2 = (0,1) are the canonical orthonormal basis vectors in R2.

f′1 = (α,β) and f′2 = c(−β,α) are also orthonormal basis vectors in R2.

f′1f1 = α2 +β2 = 1, f′2f2 = (−β)2 +α2 = 1, f′1f2 = α(−β)+βα = 0

Z = V1 f1 +V2 f2 =⇒ f′1Z = αZ1 +βZ2 = f′1(V1 f1 +V2 f2) = V1

and f′2Z =−βZ1 +αZ2 = f′2(V1 f1 +V2 f2) = V2

Thus V1 = αZ1 +βZ2 is the projection of Z onto the f1 direction

Correspondingly, V2 =−βZ1 +αZ2 is the projection of Z onto the f2 direction.

V1 f1 +V2 f2 = (αZ1 +βZ2)
(

α

β

)
+(−βZ1 +αZ2)

(
−β

α

)
=
(

Z1
Z2

)
= Z
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Two Basis Representations of Z
z2

z1

f1

f2
●a ×× f1

●

●

Z == V1 ×× f1 ++ V2 ×× f2

== Z1 ×× e1 ++ Z2 ×× e2

V1 ×× f1

V2 ×× f2

e1

e2

Z1 ×× e1

Z2 ×× e2

all points  Z  on this side of the red line have  ααZ1 ++ ββZ2 ==   V1 << a

V1 >> a

all points  Z  on this side

of the red line have

140



P(αZ1 +βZ2 ≤ a) = P(Z1 ≤ a)

●

●

P((ααZ1 ++ ββZ2 ≤≤ a))

P((ααZ1 ++ ββZ2 ≥≥ a))

circles represent equal probability density contours

● ●

P((Z1 ≤≤ a))

P((Z1 ≥≥ a))
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=⇒ X1 +X2 ∼N (µ1 +µ2,σ
2
1 +σ2

2)
The final step is

X1 +X2− (µ1 +µ2)√
σ2

1 +σ2
2

=
σ1√

σ2
1 +σ2

2

X1−µ1
σ1

+
σ2√

σ2
1 +σ2

2

X2−µ2
σ2

= αZ1+βZ2 ∼ N (0,1)

since α =
σ1√

σ2
1 +σ2

2

and β =
σ2√

σ2
1 +σ2

2

satisfy α
2 +β

2 = 1

and Z1 =
X1−µ1

σ1
, Z2 =

X2−µ2
σ2

are independent and ∼N (0,1)

=⇒ X1 +X2 ∼N (µ1 +µ2,σ
2
1 +σ

2
2) .

and by induction X1 + . . .+Xn ∼N (µ1 + . . .+µn,σ
2
1 + . . .+σ

2
n)
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Appendix B

The following six slides prove the distributional properties of X̄ and ∑
n
i=1(Xi− X̄)2

when X1, . . . ,Xn is a random sample from N (µ,σ2), namely

• X̄ and ∑
n
i=1(Xi− X̄)2 are statistically independent

• X̄ ∼N (µ,σ2/n)

• ∑
n
i=1(Xi− X̄)2/σ2 ∼ χ2

n−1.
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Rotational Symmetry of (Z1, . . . ,Zn)-Distribution

Assume that (Z1, . . . ,Zn)
i.i.d.∼ N (0,1).

Then (Z1, . . . ,Zn) has joint density

h(z) = h(z1, . . . ,zn) = ϕ(z1)× . . .×ϕ(zn) =
(

1√
2π

)n
× exp

(
−1

2

n

∑
i=1

z2
i

)

Points equidistant from the origin (i.e., with constant ∑z2
i ) have same density.

Note

z =

 z1
...

zn

= z1

 1
...
0

+ . . .+ zn

 0
...
1

= z1e1 + . . .+ znen

z1, . . . ,zn are the coordinates/coefficients with respect to the basis vectors e1, . . . ,en.
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Orthonormal Transformation Preserves i.i.d.N (0,1)

Suppose we have another (rotated) orthonormal basis f1, . . . , fn,

with fi
′fi = 1 and f′if j = 0 for i 6= j.

We reexpress z in terms of this basis, i.e., z = v1f1 + . . .+vnfn with z′fi = vi.

v1, . . . ,vn are the coordinates of the same vector z with respect to f1, . . . , fn.

=⇒ ∑z2
i = (z1e1 + . . .+ znen)′ (z1e1 + . . .+ znen)

= z′z = (v1f1 + . . .+ vnfn)′ (v1f1 + . . .+ vnfn) = ∑v2
i

Associate the density h(z) with v = v(z)

h(z)=
(

1√
2π

)n
exp

(
−1

2 ∑
i

z2
i

)
=
(

1√
2π

)n
exp

(
−1

2 ∑
i

v2
i

)
= h(v(z))= h(v)

thus V1, . . . ,Vn
i.i.d.∼ N (0,1).
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Two Basis Representations of z
z2

z1

f1

f2

●

●

z == v1 ×× f1 ++ v2 ×× f2

== z1 ×× e1 ++ z2 ×× e2 with density

h((z)) ==



1

2ππ


2

exp((−−((z1
2 ++ z2

2)) 2))

==



1

2ππ


2

exp((−−((v1
2 ++ v2

2)) 2))

== h((v))

v1 ×× f1

v2 ×× f2

e1

e2

z1 ×× e1

z2 ×× e2
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Distribution of Z̄ and ∑(Zi− Z̄)2

Suppose we choose f′1 = (1/
√

n, . . . ,1/
√

n) and choose orthonormal vectors for

the other fi. ⇐= Gram-Schmidt orthogonalization based on the basis f1,e2, . . . ,en.

Then z′f1 = (v1f1 + . . .+ vnfn)′f1 = v1 = ∑zi/
√

n =
√

n z̄.

n

∑
i=1

z2
i =

n

∑
i=1

(zi− z̄)2 +nz̄2 =
n

∑
i=1

(zi− z̄)2 +v2
1 =

n

∑
i=1

v2
i =⇒

n

∑
i=1

(zi− z̄)2 =
n

∑
i=2

v2
i .

=⇒
√

nZ̄ = V1 ∼N (0,1) or Z̄ ∼N (0,1/n)

is independent of
n

∑
i=1

(Zi− Z̄)2 =
n

∑
i=2

V 2
i ∼ χ

2
n−1 .
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Review of Gram-Schmidt orthogonalization

f1,e2, . . . ,en are a basis of Rn, since f1 =(1, . . . ,1)′/
√

n 6= ∑
n
i=2 aiei for any (a2, . . . ,an).

We get orthogonal basis vectors fi successively as follows: f1 = f1 and

f2 = e1−a21f1 =⇒ f′1f2 = f′1e1−a21 = 0 =⇒ a21 = f′1e1

f3 = e2−a31f1−a32f2 =⇒ f′1f3 = f′1e2−a31 = 0 and f′2f3 = f′2e2−a32 = 0

from previously constructed orthogonality f′1f2 = f′2f1 = 0 , thus a3i = f′ie2, i = 1,2.

Next f4 = e3−a41f1−a42f2−a43f3 and multiplying this equation respectively

by f′1, f
′
2, f
′
3 and setting to zero we get

a41 = f′1e3 , a42 = f′2e3 , and a43 = f′3e3 and so on.

fi

/√
f′ifi , i = 1, . . . ,n are then our orthonormal basis vectors.
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Distribution of X̄ and ∑(Xi− X̄)2

Assume that (X1, . . . ,Xn)
i.i.d.∼ N (µ,σ2).

Then (Z1, . . . ,Zn) with Zi = (Xi−µ)/σ are
i.i.d.∼ N (0,1).

From the previous result we have that
√

nZ̄ =
√

n(X̄−µ)/σ∼N (0,1) and thus

X̄ = µ+σZ̄ ∼N (µ,σ2/n) and it is independent of

n

∑
i=1

(Zi− Z̄)2 =
n

∑
i=1

((Xi−µ)/σ− (X̄−µ)/σ)2 =
n

∑
i=1

(Xi− X̄)2/σ
2 ∼ χ

2
n−1

or
n

∑
i=1

(Xi− X̄)2 has the same distribution as σ
2Cn−1 where Cn−1 ∼ χ

2
n−1 .

n

∑
i=1

(Xi− X̄)2 and X̄ are independent .
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