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General Linear Hypothesis

We assume the data vector YYY =(Y1, . . . ,YN)′ consists of independent Yi∼N (µi,σ
2)

random variables, for i = 1, . . . ,N.

We also have a data model hypothesis, namely that the mean vector µµµ can be any

point in a given s-dimensional linear subspace ΠΩ ⊂ RN , where s < N.

Many statistical problem can be formulated as follows:

we identify a linear subspace Πω of ΠΩ of dimension s− r, with 0 < r ≤ s, and

we test the hypothesis

H0 : µµµ ∈Πω against the alternative H1 : µµµ ∈ΠΩ−Πω .

To distinguish Πω from ΠΩ we may want to call Πω the test hypothesis.
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The Two-Sample Example

Let Y1, . . . ,Ym ∼N (ξ,σ2) and Ym+1, . . . ,Ym+n ∼N (η,σ2)

be independent samples.

Here N = m+n and the data model below specifies or reflects two samples with

common variance σ2 and possibly different means ξ and η.

ΠΩ is 2-dimensional (s = 2) consisting of all vectors of the form

µµµ = (µ1, . . . ,µN)′ = ξ(
m 1’s︷ ︸︸ ︷

1, . . . ,1,

n 0’s︷ ︸︸ ︷
0, . . . ,0)′︸ ︷︷ ︸

aaa1

+η(
m 0’s︷ ︸︸ ︷

0, . . . ,0,

n 1’s︷ ︸︸ ︷
1, . . . ,1)′︸ ︷︷ ︸

aaa2

= ξaaa1 +ηaaa2

The orthogonal vectors aaa1 and aaa2 span ΠΩ.

Here we want to test the hypothesis H0 : ξ = η, i.e., µµµ = (µ1, . . . ,µN)′= ξ(aaa1 +aaa2)

and Πω is the linear subspace spanned by 111 = aaa1 +aaa2 = (
N 1’s︷ ︸︸ ︷

1, . . . ,1)′,

i.e., r = 1 or s− r = 1.
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The k-Sample Example

Let Yi,1, . . . ,Yi,ni ∼N (ξi,σ
2), i = 1, . . . ,k be independent samples.

Here N = n1 + . . .+nk and we have used the traditional double indexing on the

Y ’s, but we could equally well have used a more awkward single index i = 1, . . . ,N.

The data model below specifies or reflects k samples with

common variance σ2 and possibly different means ξ1, . . . ,ξk.

ΠΩ is k-dimensional (s = k) consisting of all vectors of the form

µµµ = (µ1,1 + . . .+µk,nk)
′ = ξ1 (

n1 1’s︷ ︸︸ ︷
1, . . . ,1,

(N−n1) 0’s︷ ︸︸ ︷
0, . . . ,0 )′︸ ︷︷ ︸

aaa1

+ . . .+ξk (
(N−nk) 0’s︷ ︸︸ ︷
0, . . . ,0 ,

nk 1’s︷ ︸︸ ︷
1, . . . ,1)′︸ ︷︷ ︸

aaak

= ξ1aaa1 + . . .+ξkaaak The orthogonal vectors aaa1, . . . ,aaak span ΠΩ.

The vector aaai has 1’s in positions (i,1), . . . ,(i,ni) and 0’s in the remaining positions.
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H0 : ξ1 = . . . = ξk

Here we want to test the hypothesis H0 : ξ1 = . . . = ξk, i.e.,

µµµ = (µ1,1 + . . .+µk,nk)
′ = ξ1aaa1 + . . .+ξkaaak = ξ1(aaa1 + . . .+aaak)

and Πω is the (s− r) dimensional linear subspace spanned by

111 = aaa1 + . . .+aaak = (
N 1’s︷ ︸︸ ︷

1, . . . ,1)′ ,

i.e., s− r = k− r = 1, or r = k−1.
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Least Squares Estimates (LSE’s)

The ΠΩ-least squares estimate µ̂µµ = µ̂µµ(YYY ) of µµµ is the value µµµ which minimizes

|YYY −µµµ|2 =
N

∑
i=1

(Yi−µi)2 over µµµ ∈ΠΩ .

µ̂µµ = µ̂µµ(YYY ) is the projection of YYY onto ΠΩ, or the point in ΠΩ closest to YYY .

The Πω-least squares estimate ˆ̂µµµ = ˆ̂µµµ(YYY ) of µµµ is the value µµµ which minimizes

|YYY −µµµ|2 =
N

∑
i=1

(Yi−µi)2 over µµµ ∈Πω .

ˆ̂µµµ = ˆ̂µµµ(YYY ) is the projection of YYY onto Πω, or the point in Πω closest to YYY .
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General Linear Model Schematic Diagram
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Comments on the Previous Diagram

µ̂µµ ∈ΠΩ is the orthogonal projection of the data vector YYY onto ΠΩ,

i.e., it is the best explanation of YYY in terms of ΠΩ (Least Squares Distance).

The orthogonal complement eee = YYY − µ̂µµ is the residual error vector,

i.e., that part of YYY not explained by µ̂µµ ∈ΠΩ. YYY = µ̂µµ+(YYY − µ̂µµ) = µ̂µµ
⊥
+ eee.

ˆ̂µµµ is the orthogonal projection of the data vector YYY onto Πω,

i.e., it is the best explanation of YYY in terms of Πω (Least Squares Distance).

ˆ̂µµµ is also the orthogonal projection of µ̂µµ onto Πω,

i.e., it is the best explanation of µ̂µµ in terms of Πω. µ̂µµ = ˆ̂µµµ
⊥
+ (µ̂µµ− ˆ̂µµµ).

The orthogonal complement µ̂µµ− ˆ̂µµµ is that part of µ̂µµ that cannot be explained by Πω.

It expresses the estimated discrepancy of the unknown µµµ from Πω.
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Orthogonal Decomposition

We can view YYY as the orthogonal sum of the following three component vectors

YYY = ˆ̂µµµ
⊥
+ (µ̂µµ− ˆ̂µµµ)

⊥
+ (YYY − µ̂µµ) = ˆ̂µµµ

⊥
+ (µ̂µµ− ˆ̂µµµ)

⊥
+ eee

Orthogonality =⇒ these three components are independent of each other.

Pythagoras × 4

|YYY |2 = |µ̂µµ|2 + |YYY − µ̂µµ|2 = |µ̂µµ|2 + |eee|2

|YYY |2 = | ˆ̂µµµ|2 + |YYY − ˆ̂µµµ|2

|µ̂µµ|2 = | ˆ̂µµµ|2 + |µ̂µµ− ˆ̂µµµ|2

|YYY − ˆ̂µµµ|2 = |µ̂µµ− ˆ̂µµµ|2 + |YYY − µ̂µµ|2 = |µ̂µµ− ˆ̂µµµ|2 + |eee|2

|YYY |2 = | ˆ̂µµµ|2 +

|YYY− ˆ̂µµµ|2︷ ︸︸ ︷
|µ̂µµ− ˆ̂µµµ|2 + |eee|2 double Pythagoras
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LSE’s = MLE’s (Maximum Likelihood Estimates

Under the normal distribution model for the Yi the LSE’s are also the

maximum likelihood estimates (MLE’s) of µµµ w.r.t. to the respective

model constraints µµµ ∈ΠΩ and µµµ ∈Πω.

This follows immediately from the likelihood function for the observed

YYY = yyy = (y1, . . . ,yN)′

L(µµµ,σ) = fµµµ,σ(y1, . . . ,yN) =
(

1
σ
√

2π

)N
exp

(
−

∑
N
i=1(yi−µi)2

2σ2

)

which is maximized over ΠΩ (Πω) by minimizing ∑
N
i=1(yi−µi)2 w.r.t. µµµ ∈ΠΩ(Πω)

and by taking σ̂2 = ∑
N
i=1(yi− µ̂i)2/N and ˆ̂σ

2
= ∑

N
i=1(yi− ˆ̂µi)

2/N, respectively.
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General Linear Model Theorem (Proof Appendix A)

Theorem: Under the general linear model assumption we have:

| ˆ̂µµµ− µ̂µµ|2 =
N

∑
i=1

( ˆ̂µi− µ̂i)2 = |YYY− ˆ̂µµµ|2−|YYY− µ̂µµ|2 =
N

∑
i=1

(Yi− ˆ̂µi)2−
N

∑
i=1

(Yi− µ̂i)2∼σ
2
χ

2
r,λ

is independent of SSE = |YYY − µ̂µµ|2 =
N

∑
i=1

(Yi− µ̂i)2 ∼ σ
2
χ

2
N−s

and thus F =
| ˆ̂µµµ− µ̂µµ|2/r

|YYY − µ̂µµ|2/(N− s)
∼ Fr,N−s,λ ,

The noncentrality parameter is

λ = | ˆ̂µµµ(µµµ)− µ̂µµ(µµµ)|2/σ
2 = | ˆ̂µµµ(µµµ)−µµµ|2/σ

2 ,

where ˆ̂µµµ(µµµ) is to be viewed as Πω-LSE when YYY = µµµ and µ̂µµ(µµµ) is to be viewed as

ΠΩ-LSE when YYY = µµµ. Of course, µ̂µµ(µµµ) = µµµ since µµµ ∈ΠΩ.
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General Linear Model Theorem (2-Sample Case)

Here the ΠΩ-LSE of µµµ minimizes

N

∑
i=1

(Yi−µi)2 =
m

∑
i=1

(Yi−ξ)2 +
m+n

∑
i=m+1

(Yi−η)2

⇒ µ̂µµ =(ξ̂, . . . , ξ̂, η̂, . . . , η̂)′= ξ̂aaa1+η̂aaa2 with ξ̂ = Ȳ1 =
m

∑
i=1

Yi/m and η̂ =
m+n

∑
i=m+1

Yi/n.

and the Πω-LSE of µµµ minimizes

N

∑
i=1

(Yi−µi)2 =
N

∑
i=1

(Yi−µ)2 ⇒ ˆ̂µµµ = (µ̂, . . . , µ̂)′= ˆ̂µ111 with ˆ̂µ = Ȳ =
N

∑
i=1

Yi/N .

Ȳ = (mȲ1 +nȲ2)/N ⇒ | ˆ̂µµµ− µ̂µµ|2 = m(Ȳ1− Ȳ )2 +n(Ȳ2− Ȳ )2 =
mn
N

(Ȳ1− Ȳ2)
2

Thus F =
| ˆ̂µµµ− µ̂µµ|2/r

|YYY − µ̂µµ|2/(N− s)
=

([Ȳ1− Ȳ2]/
√

1/m+1/n)2/1

∑
m+n
i=1 (Yi− Ȳ )2/(m+n−2)

∼ F1,N−2,λ

the square of the 2-sample t-statistic. F-test ⇐⇒ two-sided t-test.
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Noncentrality Parameter in the 2-Sample Case

To find the noncentrality parameter λ we replace YYY by µµµ = (ξ, . . . ,ξ,η, . . . ,η)′ in

| ˆ̂µµµ(YYY )− µ̂µµ(YYY )|2 =
mn
N

(Ȳ1− Ȳ2)
2

=⇒ | ˆ̂µµµ(µµµ)− µ̂µµ(µµµ)|2 =
mn
N

(ξ−η)2 =

(
(ξ−η)√
1/m+1/n

)2

Thus the noncentrality parameter is

λ =

(
[ξ−η]/

√
1/m+1/n

)2

σ2 = δ
2

where δ is the noncentrality parameter in the two-sample t-test, namely

δ =
ξ−η

σ
√

1/m+1/n
.
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General Linear Model Theorem (k-Sample Case)
Here the ΠΩ-LSE of µµµ minimizes

N

∑
i=1

(Yi−µi)2 =
k

∑
i=1

ni

∑
j=1

(Yi, j−ξi)2

⇒ µ̂µµ =(ξ̂1, . . . , ξ̂1, . . . , ξ̂k . . . , ξ̂k)
′= ξ̂1 aaa1+. . .+ ξ̂kaaak with ξ̂i = Ȳi.=

ni

∑
j=1

Yi, j/ni.

and the Πω-LSE of µµµ minimizes

N

∑
i=1

(Yi−µi)2 =
k

∑
i=1

ni

∑
j=1

(Yi, j−µ)2 ⇒ ˆ̂µµµ = (µ̂, . . . , µ̂)′ = ˆ̂µ111

with ˆ̂µ = Ȳ..=
k

∑
i=1

ni

∑
j=1

Yi, j/N = Ȳ..=
k

∑
i=1

Ȳi.ni/N ⇒ |µ̂µµ− ˆ̂µµµ|2 =
k

∑
i=1

ni

∑
j=1

(Ȳi.−Ȳ..)2

Thus F =
| ˆ̂µµµ− µ̂µµ|2/r

|YYY − µ̂µµ|2/(N− s)
=

∑
k
i=1 ∑

ni
j=1(Ȳi.− Ȳ..)2/(k−1)

∑
k
i=1 ∑

ni
j=1(Yi, j− Ȳ..)2/(N− k)

∼ Fk−1,N−k,λ
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Noncentrality Parameter in the k-Sample Case

To get the noncentrality parameter λ we replace YYY by µµµ =(ξ1, . . . ,ξ1, . . . ,ξk, . . . ,ξk)′

in

| ˆ̂µµµ(YYY )− µ̂µµ(YYY )|2 =
k

∑
i=1

ni

∑
j=1

(Ȳi.− Ȳ..)2

=⇒ | ˆ̂µµµ(µµµ)− µ̂µµ(µµµ)|2 =
k

∑
i=1

ni

∑
j=1

(ξi− ξ̄)2 =
k

∑
i=1

ni(ξi− ξ̄)2

with ξ̄ =
k

∑
i=1

ni

∑
j=1

µi, j/N =
k

∑
i=1

ξini/N

Thus the noncentrality parameter is

λ =
∑

k
i=1 ni(ξi− ξ̄)2

σ2 .
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Appendix A: General Linear Model Theorem Proof

The proof is essentially that given in Testing Statistical Hypotheses, 3rd Edition,

chapter 7, by E.L. Lehmann and J.P. Romano (2005)

There it is presented in the context of certain optimality properties and followed by
many explicit examples.

The proof is first given in a case of special linear subspaces Π̃Ω and Π̃ω ⊂ Π̃Ω,

where the statement of the theorem is immediate from the definitions of

χ2
f , χ2

g,λ
and Ff ,g,λ.

Then it is argued that the general case can always be orthonormally transformed

to the special case and that this does not change the meaning of LSE, i.e., LSE’s

in one framework rotate to LSE’s in the other framework.

Distances and independence don’t change under orthonormal tranforms.
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General Linear Model Theorem: Special Case

Ui ∼N (νi,σ
2), i = 1, . . . ,N with model hypothesis νs+1 = . . . = νN = 0.

This describes an s-dimensional linear subspace Π̃Ω of RN .

Test H0 : ν1 = . . . = νr = 0 (in addition to the model hypothesis).

This describes an (s− r)-dimensional subspace Π̃ω ⊂ Π̃Ω.

=⇒
N

∑
i=s+1

U2
i /σ

2 ∼ χ
2
N−s and

r

∑
i=1

U2
i /σ

2 ∼ χ
2
r,λ

are independent and with noncentrality parameter λ = ∑
r
i=1 ν2

i /σ2

The natural test rejects H0 when the corresponding F-statistic is too large, where

F =
∑

r
i=1U2

i /r

∑
N
i=s+1U2

i /(N− s)
∼ Fr,N−s,λ .
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LSE View in Special Case
The Π̃Ω-LSE ν̂νν minimizes

|UUU−ννν|2 =
N

∑
i=1

(Ui−νi)2 =
s

∑
i=1

(Ui−νi)2 +
N

∑
i=s+1

U2
i over ννν ∈ Π̃Ω

i.e., ν̂i = Ui for i = 1, . . . ,s and ν̂i = 0 for i = s+1, . . . ,N.

Similarly, the Π̃ω-LSE ˆ̂ννν minimizes

|UUU−ννν|2 =
N

∑
i=1

(Ui−νi)2 =
r

∑
i=1

U2
i +

s

∑
i=r+1

(Ui−νi)2 +
N

∑
i=s+1

U2
i over ννν ∈ Π̃ω

i.e., ˆ̂νi = Ui for i = r +1, . . . ,s and ν̂i = 0 for i = 1, . . . ,r,s+1, . . . ,N.

Clearly

|UUU− ν̂νν|2 =
N

∑
i=s+1

U2
i and | ˆ̂ννν− ν̂νν|2 = |UUU− ˆ̂ννν|2−|UUU− ν̂νν|2 =

r

∑
i=1

U2
i

⇒ F =
| ˆ̂ννν− ν̂νν|2/r

|UUU− ν̂νν|2/(N− s)
=

∑
r
i=1U2

i /r

∑
N
i=s+1U2

i /(N− s)
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LSE View of the Noncentrality Parameter

Using UUU = ννν ∈ Π̃Ω in the Π̃ω-LSE derivation of νννω we have

|UUU−νννω|2 = |ννν−νννω|2 =
N

∑
i=1

(νi−νω,i)2

=
r

∑
i=1

ν
2
i +

s

∑
i=r+1

(νi−νω,i)2 +
N

∑
i=s+1

ν
2
i since νννω ∈ Π̃ω ⊂ Π̃Ω

=
r

∑
i=1

ν
2
i +

s

∑
i=r+1

(νi−νω,i)2 since ννν ∈ Π̃Ω

=
r

∑
i=1

ν
2
i after minimizing over Π̃ω, i.e., νω,i = νi, i = r +1, . . . ,s.

=⇒ λ = |UUU−νννω|2/σ
2 =

r

∑
i=1

ν
2
i /σ

2 .
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Orthonormal Transform to the Special Case

The general case can always be orthonormally transformed to the special case.

Let C be an orthonormal matrix, with the first s rows ccc′i, i = 1, . . . ,s, spanning ΠΩ

and ccc′i, i = r +1, . . . ,s, spanning Πω. Such orthonormal basis vectors can always

be constructed via the Gram-Schmidt process.

Transform UUU = CYYY with mean vector ννν = Cµµµ

and U1, . . . ,UN are again independent with common variance σ2. Now note that

µµµ ∈ΠΩ ⇔ µµµ⊥ ccc′i or νi = ccc′iµµµ = 0 for i = s+1, . . . ,N ⇔ ννν ∈ Π̃Ω

and µµµ∈Πω ⇔ µµµ⊥ ccc′i or νi = ccc′iµµµ = 0 for i = 1, . . . ,r,s+1, . . . ,N ⇔ ννν∈ Π̃ω .
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Orthonormal Transform and Independence

Suppose V1, . . . ,VN are i.i.d. ∼N (0,1) then ZZZ = CVVV has components Z1, . . . ,Zn
i.i.d. ∼N (0,1)

f (vvv) =
(

1/
√

2π

)N
exp

(
−

N

∑
i=1

v2
i /2

)
=
(

1/
√

2π

)N
exp
(
− |vvv|2/2

)
has constant density if and only if |vvv| is constant, i.e., the constant level density

contour surfaces consist of points that are equidistant from the origin.

Since orthonormal transformations zzz =Cvvv preserve distances (|vvv|= |zzz|) “it follows”

that the transformed vector ZZZ has the same density, i.e., f (zzz).

The general independence result may be seen as follows

YYY = µµµ+σVVV has independent components Y1, . . . ,YN .

=⇒ UUU =CYYY =Cµµµ+σCVVV = ννν+σZZZ has independent components U1, . . . ,UN .
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Orthonormal Transform and LSE’s

The principle of LSE’s is based on minimizing distances.

Orthonormal transforms don’t change distances. |bbb|2 = bbb′bbb = aaa′C′Caaa = aaa′aaa = |aaa|2.

Thus the LSE’s (w.r.t. ΠΩ or Πω) based on the untransformed YYY simply transform

to the LSE’s w.r.t. to the transformed Π̃Ω or Π̃ω and based on the transformed UUU .

Numerator and denominator of F involve distances, which are unchanged as we

pass from YYY to UUU = CYYY .

The same applies to the characterization of the noncentrality parameter which is

characterized as LSE for a specific value YYY = µµµ or UUU = ννν, respectively.
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