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Factorial Design

So far we have looked at 1-sample, 2-sample, and t-sample problems.

In the latter we dealt with a treatment at t levels or with t treatments.

A treatment with t levels could also be viewed as a factor.

Now we will address experiments where several factors come into play.

First we will do this for two such factors.

How should we go about this?

1



Insecticide Data
> poison=read.csv("poison.csv",header=T)
> poison

y type delivery
1 3.1 I A
2 4.5 I A
3 4.6 I A
4 4.3 I A
5 3.6 II A
6 2.9 II A
7 4.0 II A
8 2.3 II A
9 2.2 III A
.....
44 3.8 II D
45 3.0 III D
46 3.6 III D
47 3.1 III D
48 3.3 III D
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Insecticide Example
We have 3 types of insecticides (I, II, and III) and

4 methods (A,B,C,D) of delivering the insecticide.

(I, II, and III) and (A,B,C,D) are the levels of the respective factors

type of insecticide and insecticide delivery method.

The response Y is the time to death in minutes.

We want to find the best insecticide and the best delivery method.

We have 48 experimental insects to experiment with.

Randomly divide the 48 insects into 12 = 3×4 groups of 4 insects each,

assigning the respective groups to the 12 treatment combinations

(I,A), (I,B), (I,C), (I,D), . . . , (III,C), (III,D).

Randomize the order of all 48 runs to eliminate order biases.

This is a factorial design, specifically a 3×4 factor design with 4 replications.
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Response Table
It is useful to visualize the responses in relation to the factor levels as follows:

Insecticide
Type

Delivery Method

A B C D

I YI,A YI,B YI,C YI,D

II YII,A YII,B YII,C YII,D

III YIII,A YIII,B YIII,C YIII,D

where YI,A stands short for (YI,A,1, . . . ,YI,A,4) (replication depth), and so on.

More generically we would denote the kth response under level i from factor 1 and

under level j from factor 2 by Yi jk.

This triplet notation (i, j,k) is more useful than a single index ` = 1,2, . . . ,48.

Useful in Σ summation notation and also for identifying the factor

levels, i.e., the factor level/replication coordinates.
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First Look at Insecticide Boxplots
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First Impressions and Questions

Insecticide type III and delivery method A seem to give the best combination.

Is combination the right word here?

Are the effects of delivery consistent across types, i.e., is the delivery effectiveness

order (in terms of faster response time) the same from one insecticide type to

another?

It could be that delivery type A is not the fastest acting among all four when

applied to insecticide type III.

Delivery method C could actually be better in combination with III.
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Insecticide Responses by Delivery Method
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Full Comparison of Insecticide Responses
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Comments

Insecticide type III seems to have lowest response with all 4 delivery methods.

The mean levels for each (III, delivery method) combination are ≈ consistent.

The scatter within each (III, delivery method) combination is quite tight.

Delivery appears to have an effect on the response under type I and II,

both in absolute terms and relative to each other.

It appears that scatter↗ as mean↗ across all combinations.

=⇒ variance stabilizing transformation. Deal with that first.
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Linear Fit log(si) = a× log(µ̂i)+b
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Reciprocal Transform
According to our guidelines this suggests α = 2 or λ = 1−α =−1,

i.e., Ỹi jk = Y−1
i jk = 1/Yi jk a reciprocal transform for our response times.

A rationalization attempt:

Suppose the absorption rate R = d/t (of dose d over time t) under any given

combination is the most variable process aspect from insect to insect.

Assume that this absorption variability (ingestion variability from insect to insect)

is constant across all (insecticide type, delivery method) combinations.

Assume further, that the lethal dose D is ≈ constant for each type for all insects.

Then the time to reach lethal dose is T = D/R. If we took 1/T = R/D as

transformed response we would have constant variability in 1/T .

Linearizing by a 1-term Taylor expansion around µR and treating D as a constant

T =
D
R
≈ D

µR
− (R−µR)

1
µ2

R
⇒ µT ≈

D
µR

, var(T )≈
σ2

R
µ4

R
⇒ σT ∝ µ2

T
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Reciprocal Time Boxplots
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Reciprocal Time by Delivery Method
re

ci
pr

oc
al

 ti
m

e 
to

 d
ea

th
 (

1/
m

in
ut

es
)

delivery method A

I II III

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●●
●

●

●

●

●
●
●

●

●

re
ci

pr
oc

al
 ti

m
e 

to
 d

ea
th

 (
1/

m
in

ut
es

)

delivery method B

I II III

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●
●
●

●

●

●

●

●

●●

●

re
ci

pr
oc

al
 ti

m
e 

to
 d

ea
th

 (
1/

m
in

ut
es

)

delivery method C

I II III

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●●

●

●

●

●

●

●

●

●
●

●

re
ci

pr
oc

al
 ti

m
e 

to
 d

ea
th

 (
1/

m
in

ut
es

)

delivery method D

I II III

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●●
●

●

●

●

●

●

●

●
●

13



Full Comparison of Reciprocal Times
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Note the consistent variability across all 12 treatment combinations!
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log(si) = a× log(µ̂i)+b for Reciprocal Times
No Strong Linearity Remains
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ANOVA of Reciprocal Times vs Type

Assuming recip.time, type, delivery are variables in the workspace.

type and delivery are factors or write as.factor(type) in place of type!

> anova(lm(recip.time ∼ type)) or

> anova(lm(recip.time ∼ type,data=poison))

Analysis of Variance Table

Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)

type 2 0.34877 0.17439 25.621 3.728e-08 ***

Residuals 45 0.30628 0.00681

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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ANOVA of Reciprocal Times vs Delivery

> anova(lm(recip.time ∼ delivery)) or

> anova(lm(recip.time ∼ delivery,data=poison))

Analysis of Variance Table

Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)

delivery 3 0.20414 0.06805 6.6401 0.0008496 ***

Residuals 44 0.45091 0.01025
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ANOVA for Reciprocal Times
vs All Type:Delivery Combinations

> anova(lm(recip.time ∼ type:delivery)) or

> anova(lm(recip.time ∼ type:delivery,data=poison))

Analysis of Variance Table

Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)

type:delivery 11 0.56862 0.05169 21.531 1.289e-12 ***

Residuals 36 0.08643 0.00240

This is like a one-way ANOVA with 12 treatments. Legitimate but not enlightening.
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All Three ANOVAs for Reciprocal Times

$ANOVA.type Analysis of Variance Table
Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)
type 2 0.34877 0.17439 25.621 3.728e-08 ***
Residuals 45 0.30628 0.00681

$ANOVA.delivery Analysis of Variance Table
Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)
delivery 3 0.20414 0.06805 6.6401 0.0008496 ***
Residuals 44 0.45091 0.01025

$ANOVA.type.delivery Analysis of Variance Table
Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)
type:delivery 11 0.56862 0.05169 21.531 1.289e-12 ***
Residuals 36 0.08643 0.00240
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Are these Analyses Appropriate?

What does MSE represent in the first two ANOVAs?

Compare these values to MSE in the third ANOVA.

The MSE in the first two ANOVAs are inflated because mean variation in the

ignored factor is absorbed as part of the error variation.

On slide 14 note how the variation within each of the 4 delivery groups also reflects

the response variation due to poison type (color).

Similarly, the variation within each of the three colors (poison type) reflects the

variation due to delivery method.

Note that the p-value in the third ANOVA is very much smaller than in the

other two ANOVAs. Due to appropriately smaller MSE here.
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The Third ANOVA

The third ANOVA is technically correct in stating that the means change

across factor level combinations.

We view the 3×4 = 12 combinations as t = 12 treatments or 12 samples.

Does the third ANOVA give any insight on the separate contributions

of the type factor and the delivery factor? No! Hence it is insufficient.

It is easy to conceive of situations where the 1st and 2nd ANOVA produce

insignificant F-values but the 3rd ANOVA produces a highly significant F-value.

This could come about when the MSE in the first two ANOVAs are unduly inflated

compared to a correct MSE in the third ANOVA.

The next 5 slides illustrate this by doctoring the data appropriately.
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View by Type
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The delivery variation is a good part of the “error” variation within type.
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View by Delivery
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View by Type
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(III,A) lowered by .4,  (I,D) raised by .15

The 3 type data sets seem well meshed when ignoring the 4 delivery methods.
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View by Delivery
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The 4 delivery methods seem well meshed when ignoring the 3 poison types.
25



Three ANOVAs for Modified Data

$ANOVA.type Analysis of Variance Table
Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)
type 2 0.03592 0.01796 1.5582 0.2217
Residuals 45 0.51868 0.01153

$ANOVA.delivery Analysis of Variance Table
Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)
delivery 3 0.08425 0.02808 2.6271 0.06208 .
Residuals 44 0.47035 0.01069

$ANOVA.type.delivery Analysis of Variance Table
Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)
type:delivery 11 0.46817 0.04256 17.727 2.294e-11 ***
Residuals 36 0.08643 0.00240
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Three ANOVAs for Modified Data

The first two ANOVAs confirm that neither factor alone (type or delivery) shows

a significant effect (p-value ≤ α = .05).

This confirms the meshing comments made below the last two plots.

By the data changes we aligned the means of all compared data sets more closely,

but the variation from the ignored factor still inflates the MSE, leading to

non-significant results.

The third ANOVA shows a highly significant effect of type:delivery combination.

This is effected by the much reduced MSE here

(0.08643 as compared to 0.51868 or 0.47035).
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Additive Effects Model

We will deal only with the balanced model, same number n of replications

per factor level combination. Unbalanced cases can get quite messy.∗

Additive Effects Model:

Yi jk = µ+ai +b j + εi jk , i = 1, . . . , t1 , j = 1, . . . , t2 , k = 1, . . . ,n .

with the error terms εi jk , i = 1, . . . , t1 , j = 1, . . . , t2 , k = 1, . . . ,n

assumed to be independent with mean zero and common variance σ2.

∗And extensive treatment of the unbalanced case can be found in
S.R. Searle (1987), Linear Models for Unbalanced Data, John Wiley & Sons, New York
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Dealing with Identifiability Issues

As it is, the model parameters, µ, a1, . . . ,at1, and b1, . . . ,bt2, are unidentifiable,

since adding a constant c to µ and subtracting it from the ai (or the b j) would give

the same means µi j = E(Yi jk) for all factor level combinations (i, j).

As in the 1-way ANOVA we only need t1−1 parameters to distinguish between t1

row levels, and similarly t2−1 parameters to distinguish between t2 column levels.

There are two customary ways of imposing side conditions that deal with this, i.e.,

to render all parameters as identifiable.

1) Require: ∑i ai = 0 and ∑ j b j = 0 sum-to-zero side conditions,

2) Require: a1 = 0 and b1 = 0 set-to-zero side conditions.
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Sum-to-zero Side Conditions

Assume µi j = µ+ai +b j with ∑i ai = ∑ j b j = 0 or ā. = b̄. = 0.

Here we identify µ with the average mean over all level combinations,

because µ̄.. = µ+ ā.+ b̄.= µ.

Since µ̄ i.= µ+ai+ b̄.= µ+ai we can interpret ai = µ̄ i.−µ = µ̄ i.− µ̄.. as

the average change from µ = µ̄.. due to level i of factor one when averaged

over all levels of factor two. Similarly, b j = µ̄. j−µ = µ̄. j− µ̄...

The parameters µ,ai,b j with ā. = b̄. = 0 define the means µi j with the above

additive structure and in turn are uniquely identified via the µi j, as shown above.

Changes in both levels are additive µi j = µ+ai +b j
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Set-to-zero Side Conditions
Assume µi j = µ? +a?

i +b?
j with a?

1 = b?
1 = 0.

Here we identify the parameter µ? with the mean under the factor level combination

(1,1), i.e. with level 1 for each factor, since µ11 = µ? +a?
1 +b?

1 = µ?.

We express each change from µ? due to other levels (6= 1) in factor one via a?
i ,

i.e., µi1 = µ? +a?
i +b?

1 = µ? +a?
i and thus a?

i = µi1−µ? = µi1−µ11.

Similarly, each change from µ? due to other levels (6= 1) in factor two is expressed

via b?
j , i.e., µ1 j = µ?+a?

1 +b?
j = µ?+b?

j and thus b?
j = µ1 j−µ? = µ1 j−µ11.

The parameters µ?,a?
i ,b

?
j with a?

1 = b?
1 = 0 define the means µi j with the above

additive structure and in turn are uniquely identified via the µi j, as shown above.

Changes in both levels are additive µi j = µ? +a?
i +b?

j
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How to Create Such Mean Structures

If you were to simulate such data, how would you create such mean structures?

Pick any t1−1+ t2−1+1 = t1 + t2−1 numbers a2, . . . ,at1, b2, . . . ,bt2, and µ.

In the sum-to-zero case take

a1 =−
t1
∑
i=2

ai and b1 =−
t2
∑
j=2

b j =⇒
t1
∑
i=1

ai =
t2
∑
j=1

b j = 0

In the set-to-zero case take a1 = 0 and b1 = 0

In either case define

µi j = µ+ai +b j

32



Additive Model as Reduced Model

The additive model is a reduced model since in the full model each factor level

combination (i, j) has its own mean µi j. There are t1× t2 such means µi j

which can vary freely.

In the additive model with identifiability restrictions we only have

1+(t1−1)+(t2−1) = t1 + t2−1 free parameters (see previous slide).

Note that t1× t2− [t1 + t2−1] = (t1−1)× (t2−1) can be substantially greater

than zero. We get zero only when one of the factors has just one level.

In that case we are back in the 1-way (1-factor) ANOVA situation, because then

the second factor only has one level, i.e., does not change.
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A Tabular View of the Additive Model
t1× t2 = 3×4 Factorial Design

Factor 2

b1 b2 b3 b4

a3 µ+a3 +b1 µ+a3 +b2 µ+a3 +b3 µ+a3 +b4

Factor 1 a2 µ+a2 +b1 µ+a2 +b2 µ+a2 +b3 µ+a2 +b4

a1 µ+a1 +b1 µ+a1 +b2 µ+a1 +b3 µ+a1 +b4

Rows i and i′ differ by ai−ai′ = µi j−µi′ j = a?
i −a?

i′ across all columns.

Columns j and j′ differ by b j−b j′ = µi, j−µi j′ = b?
j−b?

j′ across all rows.

Such differences are meaningful regardless of additive model parametrization,

i.e., regardless of constraints (sum-to-zero or set-to-zero).
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Additivity in Factor 1⇐⇒ Additivity in Factor 2

If we take 5 numbers, say 5, 7, 9, 2, 3 in a row, and create four new rows by adding
2, or 4, or 5 we get the following tableau

5 7 9 2 3

a?
2 = 2 7 9 11 4 5

a?
3 = 4 9 11 13 6 7

a?
4 = 5 10 12 14 7 8

b?
2 = 2 b?

3 = 4 b?
4 =−3 b?

5 =−2

The columns differ automatically by constant amounts b?
j ⇒ additivity in factor 2.

The column differences are set in the first row and are not affected by translating

that first row to various levels via the a?
i (additivity in factor 1).
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Additive Model Decomposition

Yi jk = Ȳ...+(Ȳi..− Ȳ...)+(Ȳ. j.− Ȳ...)+(Yi jk− Ȳ...− [Ȳi..− Ȳ...]− [Ȳ. j.− Ȳ...])
= Ȳ...+(Ȳi..− Ȳ...)+(Ȳ. j.− Ȳ...)+(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)
= µ̂ + âi + b̂ j + ε̂i jk

Note that

∑
i

âi = t1
1
t1

∑
i
(Ȳi..− Ȳ...) = t1(Ȳ...− Ȳ...) = 0 sum to zero

∑
j

b̂ j = t2
1
t2

∑
j
(Ȳ. j.− Ȳ...) = t2(Ȳ...− Ȳ...) = 0 sum to zero

∑
ik

ε̂i jk = nt1
1

nt1
∑
ik

(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...) = nt1(Ȳ. j.− Ȳ...− Ȳ. j.+ Ȳ...) = 0

∑
jk

ε̂i jk = nt2
1

nt2
∑
jk

(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...) = nt2(Ȳi..− Ȳi..− Ȳ...+ Ȳ...) = 0

∑
i jk

ε̂i jk = 0 all residuals sum to zero.
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Least Squares Estimates
µ̂ = Ȳ..., âi = Ȳi..−Ȳ..., and b̂ j = Ȳ. j.−Ȳ... are the least squares estimates

of µ, ai, and b j subject to the conditions ∑i ai = 0 and ∑ j b j = 0.

Using the above decomposition identity this follows without calculus from

Q(µ,a1, . . . ,at1,b1, . . . ,bt2)=∑
i jk

(Yi jk−µ−ai−b j)2 =

∑
i jk

{
Ȳ...−µ+[(Ȳi..− Ȳ...)−ai]+ [(Ȳ. j.− Ȳ...)−b j]+ (Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)

}2 =

∑
i jk

{
(Ȳ...−µ)2 +[(Ȳi..− Ȳ...)−ai]2 +[(Ȳ. j.− Ȳ...)−b j]2 +(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)2

}
.

All cross product terms disappear (see next slide). It is now obvious that the

minimization of Q(µ,a1, . . . ,at1,b1, . . . ,bt2) is accomplished by taking µ = µ̂ = Ȳ...,

ai = âi = Ȳi..− Ȳ... and b j = b̂ j = Ȳ. j.− Ȳ... .

Note that ∑i âi = ∑ j b̂ j = 0, i.e., the solutions satisfy the constraints.
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Cross Product Terms = 0

∑
i jk

(Ȳ...−µ)[(Ȳi..− Ȳ...)−ai] = (Ȳ...−µ)t2n

{
∑
i
(Ȳi..− Ȳ...)−∑

i
ai

}
= 0

∑
i jk

(Ȳ...−µ)[(Ȳ. j.− Ȳ...)−b j] = (Ȳ...−µ)t1n

{
∑

j
(Ȳ. j.− Ȳ...)−∑

j
b j

}
= 0

∑
i jk

(Ȳ...−µ)(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...) = (Ȳ...−µ)∑
i jk

ε̂i jk = 0

∑
i jk

[(Ȳi..− Ȳ...)−ai][(Ȳ. j.− Ȳ...)−b j] = n∑
i
[âi−ai]∑

j
[b̂ j−b j] = 0

∑
i jk

[(Ȳi..− Ȳ...)−ai](Yi jk− Ȳi..− Ȳ. j.+ Ȳ...) = ∑
i

[(Ȳi..− Ȳ...)−ai]∑
jk

ε̂i jk

= 0

∑
i jk

[(Ȳ. j.− Ȳ...)−b j](Yi jk− Ȳi..− Ȳ. j.+ Ȳ...) = ∑
j

{
[(Ȳ. j.− Ȳ...)−b j]∑

ik
ε̂i jk

}
= 0
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Estimates: Sum-to-Zero −→ Set-to-Zero

As sum-to-zero estimates we have: µ̂ = Ȳ..., âi = Ȳi..−Ȳ..., and b̂ j = Ȳ. j.−Ȳ...,

=⇒ µ̂i j = µ̂+ âi + b̂ j.

These sum-to-zero estimates are converted to their set-to-zero counterparts via

µ̂? = µ̂11 = µ̂+ â1 + b̂1, â?
i = µ̂i1− µ̂11 = âi− â1, b̂?

j = µ̂1 j− µ̂11 = b̂ j− b̂1

Note that â?
1 = b̂?

1 = 0.

Furthermore, µ̂i j = µ̂? + â?
i + b̂?

j = µ̂+ âi + b̂ j and

µ̂? = Ȳ1..+ Ȳ.1.− Ȳ..., â?
i = Ȳi..− Ȳ1.., b̂?

j = Ȳ. j.− Ȳ.1.
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Estimates: Set-to-Zero −→ Sum-to-Zero

We can go from the set-to-zero estimates µ̂?, â?
i , b̂?

j with â?
1 = 0 and b̂?

1 = 0,

which define µ̂i j = µ̂? + â?
i + b̂?

j ,

to the sum-to-zero equivalent representation

µ̂ = µ̂.. = µ̂? + â?. + b̂?. , âi = µ̂i.− µ̂.. = â?
i − â?. , b̂ j = µ̂. j− µ̂.. = b̂?

j− b̂?.

=⇒ µ̂i j = µ̂? + â?
i + b̂?

j = µ̂+ âi + b̂ j

=⇒ µ̂ = Ȳ..., âi = Ȳi..− Ȳ..., and b̂ j = Ȳ. j.− Ȳ...

Set-to-zero is what lm in R gives as coefficients, see example later.
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Fitted Models

The fitted mean per treatment combination under either parametrization

(sum-to-zero or set-to-zero) are the same, i.e.,

µ̂i j = µ̂+ âi + b̂ j = µ̂? + â?
i + b̂?

j

Only the components of these fitted values have different interpretations.

This is completely analogous to the previous parameter version

µi j = µ+ai +b j = µ? +a?
i +b?

j .

Explicitly, in terms of the data

µ̂i j = Ȳ...+(Ȳi..− Ȳ...)+(Ȳ. j.− Ȳ...) = Ȳi..+ Ȳ. j.− Ȳ... .

Note

ε̂i jk = Yi jk− Ȳi..− Ȳ. j.+ Ȳ... = Yi jk− µ̂i j .
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Orthogonal Decomposition of the Data Vector

Y =



Y111
...

Y11n
...

Y1t21
...

Y1t2n
...
...

Yt111
...

Yt11n
...

Yt1t21
...

Yt1t2n



=



µ̂
...
µ̂
...
µ̂
...
µ̂
...
...
µ̂
...
µ̂
...
µ̂
...
µ̂



⊥
+



â1
...

â1
...

â1
...

â1
...
...

ât1...
ât1...
ât1...
ât1



⊥
+



b̂1
...

b̂1
...

b̂t2...
b̂t2...
...

b̂1
...

b̂1
...

b̂t2...
b̂t2



⊥
+



ε̂111
...

ε̂11n
...

ε̂1t21
...

ε̂1t2n
...
...

ε̂t111
...

ε̂t11n
...

ε̂t1t21
...

ε̂t1t2n



= µ̂1+ â+ b̂+ ε̂
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Orthogonalities

∑
i jk

µ̂ âi = µ̂ t2n∑
i

âi = 0

∑
i jk

µ̂ b̂ j = µ̂ t1n∑
j

b̂ j = 0

∑
i jk

µ̂ ε̂i jk = µ̂ ∑
i jk

ε̂i jk = 0

∑
i jk

âi b̂ j = n∑
i

âi∑
j

b̂ j = 0

∑
i jk

âi ε̂i jk = ∑
i
(âi∑

jk
ε̂i jk) = 0

∑
i jk

b̂ j ε̂i jk = ∑
j
(b̂ j ∑

ik
ε̂i jk) = 0

43



Sum of Squares (SS) Decomposition
From this orthogonality obtain the following SS decomposition (Pythagoras again)

∑
i jk

Y 2
i jk = ∑

i jk
Ȳ 2...+∑

i jk
(Ȳi..− Ȳ...)2 +∑

i jk
(Ȳ. j.− Ȳ...)2 +∑

i jk
(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)2

= ∑
i jk

µ̂2 + ∑
i jk

â2
i + ∑

i jk
b̂2

j + ∑
i jk

ε̂
2
i jk

=⇒ ∑
i jk

(Yi jk− Ȳ...)2 = ∑
i jk

Y 2
i jk−∑

i jk
Ȳ 2... = ∑

i jk
Y 2

i jk−∑
i jk

µ̂2

= ∑
i jk

â2
i + ∑

i jk
b̂2

j + ∑
i jk

ε̂
2
i jk

= ∑
i jk

(Ȳi..− Ȳ...)2 +∑
i jk

(Ȳ. j.− Ȳ...)2 +∑
i jk

(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)2

SST = SSA + SSB + SSE
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Interpretation of SS Decomposition

SST = SSA + SSB + SSE

SST = ∑i jk(Yi jk− Ȳ...)2: Total variation of data around the grand or overall mean

SSA = ∑i jk(Ȳi..− Ȳ...)2: Variation of means around the grand mean
(by factor 1 level, averaged over the levels of factor 2)

SSB = ∑i jk(Ȳ. j.− Ȳ...)2:Variation of means around the grand mean
(by factor 2 level, averaged over the levels of factor 1)

SSE = ∑i jk(Yi jk− µ̂i j)2: Variation of data around the fitted additive model value.

SSE = ∑
i jk

(Yi jk−
µ̂i j︷ ︸︸ ︷

[Ȳ...+(Ȳi..− Ȳ...)+(Ȳ. j.− Ȳ...)])2

= ∑
i jk

(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)2 = ∑
i jk

ε̂
2
i jk

45



Degrees of Freedom

In Y = µ̂1+ â+ b̂+ ε̂ the component vectors are orthogonal to each other.

There is 1 degree of freedom in µ̂1 and thus there are are N−1 = t1t2n−1 degrees

of freedom (df) in Y− µ̂1⊥ µ̂1 and thus in SST.

Although the vector â contains t1 distinct values, only t1−1 can vary freely,

due to the sum-to-zero or set-to-zero constraints.

There are t1−1 df in that vector and thus in SSA.

Similarly, there are t2−1 df in the second factor vector b̂ and thus in SSB.

By orthogonal complement there are

t1t2n−1− (t1−1)− (t2−1) = (t1−1)(t2−1)+ t1t2(n−1) = dfE

df in the residual error vector ε̂.
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ANOVA Table for the Additive Model

Source SS df MS F

A SSA t1−1 MSA = SSA/(t1−1) MSA/MSE

B SSB t2−1 MSB = SSB/(t2−1) MSB/MSE

Error SSE dfE MSE = SSE/dfE

Total SST t1t2n−1

where

dfE = t1t2n−1− (t1−1)− (t2−1) = (t1−1)(t2−1)+ t1t2(n−1)

Here view (t1−1)(t2−1) = t1t2− [1+(t1−1)+(t2−1)]

as the number of means µi j possibly left unexplained by the additive model

and t1t2(n−1) as the degrees of freedom of within cell variation (n−1 per cell)

totaled over all t1t2 cells.
47



lm on Reciprocal Time to Death

out=lm(recip.time ˜ type + delivery)

out$coef

Coefficients:

(Intercept) typeII typeIII deliveryB deliveryC deliveryD

0.26977 0.04686 0.19964 -0.16574 -0.05721 -0.13583

µ̂? â?
2 â?

3 b̂?
2 b̂?

3 b̂?
4

Note the implicit set-to-zero form of the parameter estimates in out$coef!

intercept = µ̂? with â?
1 = b̂?

1 = 0.

µ̂? represents the mean under the treatment combination (typeI,deliveryA)

and â?
i , b̂?

j represent additive mean deviation effects from this baseline µ̂?.
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Sum-to-Zero Estimates

Below are the sum-to-zero estimates corresponding to the previous slide,

using the conversion formulas from slide 40.

$mu.hat

0.2622376
µ̂

$a.hat

typeI typeII typeIII

-0.08216887 -0.03530475 0.11747362
â1 â2 â3

$b.hat

deliveryA deliveryB deliveryC deliveryD

0.08969690 -0.07604334 0.03248336 -0.04613693
b̂1 b̂2 b̂3 b̂4
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anova(lm(recip.time ∼ type + delivery))

Analysis of Variance Table

Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)

type 2 0.34877 0.17439 71.708 2.865e-14 ***

delivery 3 0.20414 0.06805 27.982 4.192e-10 ***

Residuals 42 0.10214 0.00243

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Distributional Facts
Obviously the previous ANOVA table states p-values based on certain null-distributions.

These are based on the following facts derived from the normality assumptions:

SSA, SSB and SSE are independent due to orthogonality of component vectors.

Under the additive model SSE ∼ σ2χ2
dfE

and E(MSE) = E(SSE/dfE) = σ2.

SSA∼σ2χ2
t1−1,λ1

with ncp λ1 = ∑i jk(µ̄ i.− µ̄..)2/σ2 = ∑i jk a2
i /σ2 = n t2 ∑i a2

i /σ2.

E(MSA) = E(SSA/(t1−1)) = σ2 +σ2λ1/(t1−1) = σ2 +n t2 ∑i a2
i /(t1−1).

SSB∼σ2χ2
t2−1,λ2

with ncp λ2 = ∑i jk(µ̄. j− µ̄..)2/σ2 = ∑i jk b2
j/σ2 = n t1 ∑ j b2

j/σ2.

E(MSB) = E(SSB/(t2−1)) = σ2 +σ2λ2/(t2−1) = σ2 +n t1 ∑ j b2
j/(t2−1).

Note how n t2 and n t1 act as multipliers in the noncentrality parameters!

Looking at both factors jointly, we benefit from the common σ2 assumption.
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Distributional Facts (continued)

Under HA : a1 = . . . = at1 = 0 we have λ1 = 0 and thus

FA = MSA/MSE ∼ Ft1−1,dfE.

Under HB : b1 = . . . = bt2 = 0 we have λ2 = 0 and thus

FB = MSB/MSE ∼ Ft2−1,dfE.

These F-distributions are the basis for the p-values in the previous ANOVA table.

These p-values correspond to testing HA and HB, respectively.
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How Well Does the Additive Model Fit?

In the additive model we have: µi j = µ+ai +b j

We could compare the natural full model estimate of µi j, namely the average

Ȳi j. over all n observations under the factor level combination (i, j),

with the additive model fitted value for that same cell (i, j), i.e., with

µ̂i j = µ̂+ âi + b̂ j = Ȳ...+(Ȳi..− Ȳ...)+(Ȳ. j.− Ȳ...) = Ȳi..+ Ȳ. j.− Ȳ... .

Ȳi j. depends only on data from cell (i, j), averaging only over n values.

Note that µ̂i j depends on data from cells other than cell (i, j)

and is more strongly averaged:

ith row average + jth column average− grand average = Ȳi..+Ȳ. j.−Ȳ...
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Full Model Representation

The full model Yi jk = µi j + εi jk can be written in the following equivalent form:

Yi jk = µ+ai +b j +(ab)i j + εi jk = µ+ai +b j + ci j + εi jk

Here it is assumed that εi jk
i.i.d.∼ N (0,σ2).

The equivalent full model form decomposes the mean structure in µi j into two

components, namely the previously considered additive model µ+ai +b j and

the extent ci j = (ab)i j to which this additive model does not explain µi j,

i.e., ci j = µi j− (µ+ai +b j).

These parameters ci j = (ab)i j are also referred to as interaction terms.

The use of the notational device (ab) is just a mnemonic to indicate the inseparable

or joint action of the factors A and B, i.e., their interaction.
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Identifiability Issues

While there are t1× t2 mean parameters µi j there are 1+ t1 + t2 + t1× t2

parameters µ,a1, . . . ,at1,b1, . . . ,bt2,c11, . . . ,ct1t2 in the alternate parametrization.

To make these latter parameters identifiable we need to impose again certain

side conditions. There are two customary ways which parallel the previous

identifiability resolution in the case of the additive model.

1) a1 = b1 = c1 j = ci1 = 0 for all i, j set-to-zero side condition lm output in R

2) ∑i ai = ∑ j b j = ∑i ci j = ∑ j ci j = 0 for all i, j sum-to-zero side condition
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µi j =⇒ Sum-to-Zero Parametrization

Define

µ = µ̄.. =
1

t1t2
∑
i

∑
j

µi j, µ̄i. =
1
t2

∑
j

µi j, µ̄.j =
1
t1

∑
i

µi j

and then all parameters µ,ai,b j,ci j are determined from the µi j via

ai = µ̄i.− µ̄.., b j = µ̄.j− µ̄..
ci j = µi j− µ̄i.− µ̄.j + µ̄..

= µi j− (µ̄i.− µ̄..)− (µ̄.j− µ̄..)− µ̄.. = µi j−ai−b j−µ .

=⇒ µi j = µ+ai +b j + ci j with ∑
i

ai = ∑
j

b j = ∑
i

ci j = ∑
j

ci j = 0

satisfying the sum-to-zero side conditions.

56



µi j =⇒ Set-to-Zero Parametrization

Define all parameters µ?,a?
i ,b

?
j ,c

?
i j from the µi j via

µ? = µ11, a?
i = µi1−µ11 = µi1−µ?, b?

j = µ1 j−µ11 = µ1 j−µ?,

c?
i j = µi j−µi1−µ1 j +µ11

= µi j− (µi1−µ11)− (µ1 j−µ11)−µ11

= µi j−a?
i −b?

j−µ? .

=⇒ µi j = µ?+a?
i +b?

j +c?
i j with a?

1 = 0, b?
1 = 0, c?

i1 = c?
1 j = 0 ∀i, j

satisfying the set-to-zero side conditions.

Whatever the parametrization, we can easily go from one to the other via the

previous definitions in terms of the µi j.
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Decomposition and Least Squares Estimation

We extend our decomposition as follows (again with orthogonal components)

Yi jk = Ȳ...+(Ȳi..− Ȳ...)+(Ȳ. j.− Ȳ...)+(Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...)+(Yi jk− Ȳi j.)
= µ̂ + âi + b̂ j + ĉi j + ε̂i jk

∑
i jk

(Yi jk−µ−ai−b j−ci j)2

= ∑
i jk

[(Ȳ...−µ)+(Ȳi..− Ȳ...−ai)+(Ȳ. j.− Ȳ...−b j)

+(Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...− ci j)+(Yi jk− Ȳi j.)]2

= ∑
i jk

[
(Ȳ...−µ)2 +(Ȳi..− Ȳ...−ai)2 +(Ȳ. j.− Ȳ...−b j)2

+ (Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...− ci j)2 +(Yi jk− Ȳi j.)2
]
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Full Model Least Squares Estimates (LSEs)

The cross product terms in the previous quadratic expansion again are zero

because of the component orthogonality in the decomposition.

One sees directly that the least squares estimates (LSEs, in sum-to-zero form) are

µ̂ = Ȳ... , âi = Ȳi..− Ȳ... , b̂ j = Ȳ. j.− Ȳ... , ĉi j = Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...
with E(µ̂) = µ, E(âi) = ai, E(b̂ j) = b j and E(ĉi j) = ci j, i.e., the LSEs are unbiased.

The fitted values for the µi j are

ˆ̂µi j = µ̂+ âi + b̂ j + ĉi j = µ̂i j + ĉi j

= Ȳ...+(Ȳi..− Ȳ...)+(Ȳ. j.− Ȳ...)+(Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...)
= Ȳi j. i.e., the cell means.

with residuals ε̂i jk = Yi jk− Ȳi j..
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Sum of Squares Decomposition

Using the previous least squares decomposition with µ = ai = b j = ci j = 0 we get

∑
i jk

Y 2
i jk =∑

i jk

[
Ȳ 2...+(Ȳi..− Ȳ...)2 +(Ȳ. j.− Ȳ...)2 +(Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...)2 +(Yi jk− Ȳi j.)2

]
or

∑
i jk

(Yi jk−Ȳ...)2 =∑
i jk

[
(Ȳi..− Ȳ...)2 +(Ȳ. j.− Ȳ...)2 +(Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...)2 +(Yi jk− Ȳi j.)2

]

or SST = SSA +SSB +SSAB +SSE with SST = ∑i jk(Yi jk− Ȳ...)2

SSA = ∑
i jk

(Ȳi..− Ȳ...)2 = ∑
i jk

â2
i , SSB = ∑

i jk
(Ȳ. j.− Ȳ...)2 = ∑

i jk
b̂2

j

SSAB =∑
i jk

(Ȳi j.−Ȳi..−Ȳ. j.+Ȳ...)2 =∑
i jk

ĉ2
i j and SSE =∑

i jk
(Yi jk−Ȳi j.)2 =∑

i jk
ε̂

2
i jk
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ANOVA Table for the Full Model

Source SS df MS F

A SSA t1−1 MSA = SSA/(t1−1) MSA/MSE

B SSB t2−1 MSB = SSB/(t2−1) MSB/MSE

AB SSAB (t1−1)(t2−1) MSAB = SSAB/[(t1−1)(t2−1)] MSAB/MSE

Error SSE t1t2(n−1) MSE = SSE/[t1t2(n−1)]

Total SST t1t2n−1
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Distributional Facts for the Full Model

SSA
σ2 ∼ χ

2
t1−1,λA

with λA =
∑i jk a2

i
σ2 and

SSB
σ2 ∼ χ

2
t2−1,λB

with λB =
∑i jk b2

j

σ2

SSAB
σ2 ∼ χ

2
(t1−1)(t2−1),λAB

with λAB =
∑i jk c2

i j

σ2 and
SSE
σ2 ∼ χ

2
t1t2(n−1)

SSA, SSB, SSAB, and SSE are statistically independent (orthogonality).

FA = MSA/MSE ∼ Ft1−1, t1t2(n−1),λA
, FB = MSB/MSE ∼ Ft2−1, t1t2(n−1),λB

FAB = MSAB/MSE ∼ F(t1−1)(t2−1), t1t2(n−1),λAB
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Expected MS for the Full Model

E(MSA) = E
(

SSA
t1−1

)
= σ

2 +
∑i jk a2

i
t1−1

= σ
2
(

1+
λA

t1−1

)

E(MSB) = E
(

SSB
t2−1

)
= σ

2 +
∑i jk b2

j

t2−1
= σ

2
(

1+
λB

t2−1

)

E(MSAB) = E
(

SSAB
(t1−1)(t2−1)

)
= σ

2 +
∑i jk c2

i j

(t1−1)(t2−1)

= σ
2
(

1+
λAB

(t1−1)(t2−1)

)

E(MSE) = σ
2.
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F-Tests for Full Model
Reject H0A : a1 = . . . = at1 = 0 whenever FA is too large.

For a level α test reject H0A whenever FA ≥ qf(1−α,t1−1,t1t2(n−1)).

Reject H0B : b1 = . . . = bt2 = 0 whenever FB is too large.

For a level α test reject H0B whenever FB ≥ qf(1−α,t2−1,t1t2(n−1)).

Reject H0AB : ci j = 0 ∀i, j whenever FAB is too large.

For a level α test reject H0AB whenever FAB≥ qf(1−α,(t1−1)(t2−1),t1t2(n−1)).

H0AB : ci j = 0 ∀i, j means that the additive model µi j = µ+ai +b j

is sufficient to explain the mean structure.

Rejecting H0AB =⇒ the additive model will not provide a sufficient explanation.
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Comments on the Full Model ANOVA Table

SSadditive model
E = ∑

i jk
(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)2 6= SSfull model

E = ∑
i jk

(Yi jk− Ȳi j.)2

∑
i jk

(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)2 = ∑
i jk

(Yi jk− Ȳi j.)2 +∑
i jk

(Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...)2

MSadditive model
E =

∑i jk(Yi jk− Ȳi..− Ȳ. j.+ Ȳ...)2

(t1−1)(t2−1)+ t1t2(n−1)
6= MSfull model

E =
∑i jk(Yi jk− Ȳi j.)2

t1t2(n−1)

Fadditive model
A = MSA/MSadditive model

E 6= F full model
A = MSA/MSfull model

E

Fadditive model
B = MSB/MSadditive model

E 6= F full model
B = MSB/MSfull model

E
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Reciprocal Time to Death (Insecticide Data)

> recip.time

[1] 0.32258065 0.22222222 0.21739130 0.23255814 0.27777778 0.34482759

[7] 0.25000000 0.43478261 0.45454545 0.47619048 0.55555556 0.43478261

[13] 0.12195122 0.09090909 0.11363636 0.13888889 0.10869565 0.16393443

[19] 0.20408163 0.08064516 0.33333333 0.27027027 0.26315789 0.34482759

[25] 0.23255814 0.22222222 0.15873016 0.13157895 0.22727273 0.28571429

[31] 0.32258065 0.25000000 0.43478261 0.40000000 0.41666667 0.45454545

[37] 0.22222222 0.14084507 0.15151515 0.16129032 0.17857143 0.09803922

[43] 0.14084507 0.26315789 0.33333333 0.27777778 0.32258065 0.30303030
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Factors of Insecticide Data

> type

[1] I I I I II II II II III III III III

[13] I I I I II II II II III III III III

[25] I I I I II II II II III III III III

[37] I I I I II II II II III III III III

Levels: I II III

> delivery

[1] A A A A A A A A A A A A B B B B B B B B B B B B

[25] C C C C C C C C C C C C D D D D D D D D D D D D

Levels: A B C D

Note that both type and delivery are in factor form. Thus we don’t have to invoke

as.factor(type) and as.factor(delivery) in the call of lm.
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out.lmFULL=lm(recip.time ∼ type*delivery)

recip.time ∼ type*delivery
compare←→ recip.time ∼ type+delivery

> out.lmFULL
Call:
lm(formula = recip.time ˜ type * delivery)

Coefficients:
(Intercept) typeII typeIII

0.248688 0.078159 0.231580
deliveryB deliveryC deliveryD
-0.132342 -0.062416 -0.079720

typeII:deliveryB typeIII:deliveryB typeII:deliveryC
-0.055166 -0.045030 0.006961

typeIII:deliveryC typeII:deliveryD typeIII:deliveryD
0.008646 -0.076974 -0.091368

Note the set-to-zero form of parameter estimates.
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What else is in out.lmFULL?

> names(out.lmFULL)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "contrasts" "xlevels" "call" "terms"

[13] "model"
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Full ANOVA: anova(out.lmFULL)

Analysis of Variance Table

Response: recip.time

Df Sum Sq Mean Sq F value Pr(>F)

type 2 0.34877 0.17439 72.6347 2.310e-13 ***

delivery 3 0.20414 0.06805 28.3431 1.376e-09 ***

type:delivery 6 0.01571 0.00262 1.0904 0.3867

Residuals 36 0.08643 0.00240

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Thus it appears that the additive model is quite acceptable

and that both factors play strongly in the additive model.
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Graphical View of No Interaction Effect
If one view looks parallel so will the other.
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If One View Looks Parallel so Will the Other.
µ11 µ12 µ13 µ14
µ11 +d2 µ12 +d2 µ13 +d2 µ14 +d2
µ11 +d3 µ12 +d3 µ13 +d3 µ14 +d3

Row differences are constant!

=⇒ Column differences are constant as well, i.e.,
∆2 = µ12−µ11 is the difference between column 2 and column 1
∆3 = µ13−µ11 is the difference between column 3 and column 1
∆4 = µ14−µ11 is the difference between column 4 and column 1.

µ11 µ11 +∆2 µ11 +∆3 µ11 +∆4
µ21 µ21 +∆2 µ21 +∆3 µ21 +∆4
µ31 µ31 +∆2 µ31 +∆3 µ31 +∆4

Here we identified µ11 = µ11, µ21 = µ11 +d2, and µ31 = µ11 +d3.

Similarly one argues going the other direction.
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Examining Factor Level Differences

Given that we have strong evidence of factor level differences we may want to

examine them individually to see which differences matter.

A naive approach: Perform a 2-sample t-test or look at the corresponding

confidence intervals, e.g., comparing type I with type II means we get

Two Sample t-test

data: recip.time[type == "I"] and recip.time[type == "II"]
t = -1.6383, df = 30, p-value = 0.1118
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.10528550 0.01155725

sample estimates:
mean of x mean of y
0.1800688 0.2269329
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Comparing Types I and II of Insecticide

reciprocal time to death (1/minute)
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points are jittered vertically & horizontally
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Getting MSE in Types I and II Comparison

> anova(lm(recip.time[type=="I" | type=="II"]˜

+ type[type=="I" | type=="II"]))

Analysis of Variance Table

Response: recip.time[type == "I" | type == "II"]

Df Sum Sq Mean Sq F value Pr(>F)

type[type == "I" | type == "II"] 1 0.017570 0.017570 2.6839 0.1118

Residuals 30 0.196394 0.006546

Note the same p-value 0.1118 as in previous t-test.

We are doing the same test, since t2
f = F1, f .

From this table we get s =
√

MSE =
√

0.006546 = .08091.

This could also have been backed out from previous t-based confidence interval.
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What is Wrong?

In the previous 2-sample t-test/interval we treated the observations as

i.i.d. from two populations.

We completely ignored the known variations due to the delivery method.

When we get the pooled sample standard deviation from these 2 “samples”

we confound variation between delivery method means with variation (σ)

within (delivery,type) combination.

Our “reference distribution” will thus be too dispersed.

Our test will be less discriminating or our confidence interval will be too wide.
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Closer Look in Comparing Types I and II

reciprocal time to death (1/minute)
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Note the reduced variability within same color clusters.
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Correct Approach

According to our (accepted) additive model we have

Y1 jk = µ+a1+b j +ε1 jk and Y2 jk = µ+a2+b j +ε2 jk with εi jk
i.i.d.∼ N (0,σ2)

The difference due to type I and type II is captured by a1−a2.

This can be interpreted as the difference between the mean response under type I

and the mean response under type II:

µ̄1.− µ̄2. =
∑ j µ1 j

4
−

∑ j µ2 j

4
=

∑ j(µ+a1 +b j)−∑ j(µ+a2 +b j)
4

= a1−a2

The effect of type = I vs. type = II can be interpreted as a contrast in cell means.

Think of it as contrasting the effects of interest while canceling out other effects.
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Contrast in Full Model

Even in the full model with interactions the previous contrast in means

stays the same since

µ̄1.− µ̄2. =
∑ j µ1 j

4
−

∑ j µ2 j

4

=
∑ j(µ+a1 +b j + c1 j)−∑ j(µ+a2 +b j + c2 j)

4

= µ+a1 +
∑ j(b j + c1 j)

4
−µ−a2−

∑ j(b j + c2 j)
4

= a1−a2

µ, b j, c1 j and c2 j are canceled out.
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Estimated Contrast

The natural estimate of µ̄1.− µ̄2. = a1−a2 is

µ̂1.− µ̂2. = â1− â2 = (Ȳ1..− Ȳ...)− (Ȳ2..− Ȳ...) = Ȳ1..− Ȳ2..
the same as used in the previous (naive) 2-sample t-test/interval.

This estimate can also be viewed as the contrast of estimated cell averages

â1− â2 = Ȳ1..− Ȳ2.. =
Ȳ11.+ Ȳ12.+ Ȳ13.+ Ȳ14.

4
− Ȳ21.+ Ȳ22.+ Ȳ23.+ Ȳ24.

4

full model =
ˆ̂µ11 + ˆ̂µ12 + ˆ̂µ13 + ˆ̂µ14

4
−

ˆ̂µ21 + ˆ̂µ22 + ˆ̂µ23 + ˆ̂µ24
4

additive model =
µ̂11 + µ̂12 + µ̂13 + µ̂14

4
− µ̂21 + µ̂22 + µ̂23 + µ̂24

4

because ĉi1 + ĉi2 + ĉi3 + ĉi4 = 0 in ∑ j ˆ̂µi j = ∑ j(µ̂i j + ĉi j).
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Correct Approach (continued)

However, var(Ȳ1..−Ȳ2..)= var(Ȳ1..)+var(Ȳ2..)=
σ2

nt2
+

σ2

nt2
=

2σ2

nt2

(Ȳ1..− Ȳ2..− (a1−a2))/
(

σ

√
2

nt2

)
s/σ

=
(Ȳ1..− Ȳ2..− (a1−a2))

s
√

2/(nt2)

=
â1− â2− (a1−a2)

s
√

2/(nt2)
∼ t f .

Here we have two options in choosing s and the corresponding f :

s2 = s2
× = MSfull model

E =
∑i jk(Yi jk− Ȳi j.)2

t1t2(n−1)
and thus f = t1t2(n−1) .

or s2 = s2
+ = MSadditive model

E =
∑i jk(Yi j.− Ȳi..− Ȳ. j.+ Ȳ...)2

t1t2(n−1)+(t1−1)(t2−1)
.

and thus f = t1t2(n−1)+(t1−1)(t2−1) = t1t2n− t1− t2 +1.
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t-Test for H0 : a1 = a2

Reject H0 : a1 = a2 when∣∣∣∣∣ â1− â2√
MSE×2/(nt2)

∣∣∣∣∣ > t1−α/2, f

or

|â1− â2| >
√

MSE×2/(nt2)× t1−α/2, f

or

|â1− â2| > SE(â1− â2)× t1−α/2, f = LSDA ,

where LSDA is the least significant difference against which any estimated

differences âi− âi′ (i 6= i′) in levels of factor A can be compared.

This is in parallel with our previous use of LSD in the ANOVA situation.
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t-Test for H0 : b1 = b2

Reject H0 : b1 = b2 when∣∣∣∣∣ b̂1− b̂2√
MSE×2/(nt1)

∣∣∣∣∣ > t1−α/2, f

or

|b̂1− b̂2| >
√

MSE×2/(nt1)× t1−α/2, f

or

|b̂1− b̂2| > SE(b̂1− b̂2)× t1−α/2, f = LSDB ,

where LSDB is the least significant difference against which any estimated

differences b̂ j− b̂ j′ ( j 6= j′) in levels of factor B can be compared.

Note the change (t2←→ t1) between LSDA and LSDB.
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Factor Level Means

> mean(recip.time[type=="I"])

[1] 0.1800688

> mean(recip.time[type=="II"])

[1] 0.2269329

> mean(recip.time[type=="III"])

[1] 0.3797112

> mean(recip.time[delivery=="A"])

[1] 0.3519345

> mean(recip.time[delivery=="B"])

[1] 0.1861943

> mean(recip.time[delivery=="C"])

[1] 0.294721

> mean(recip.time[delivery=="D"])

[1] 0.2161007
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LSDA and LSDB

For the Type Factor

LSDA = t.975, f ×SE(â1− â2) = 2.028094×
√

.00240× 2
4×4 = 0.03513

for the full model with f = 36.

LSDA = t.975, f ×SE(â1− â2) = 2.018082×
√

.00243× 2
4×4 = 0.03517

for the additive model with f = 42.

For the Delivery Factor

LSDB = t.975, f ×SE(b̂1− b̂2) = 2.028094×
√

.00240× 2
3×4 = 0.04056

for the full model with f = 36.

LSDB = t.975, f ×SE(b̂1− b̂2) = 2.018082×
√

.00243× 2
3×4 = 0.04061

for the additive model with f = 42.
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LSD Groupings

Type

LSDA = .0352

Poison Mean LSD
Type µ̂i. Grouping

I 0.180 1

II 0.227 2

III 0.380 3

Note difference to naive 2-sample t-test.

Delivery

LSDB = .0406

Poison Mean LSD
Delivery µ̂. j Grouping

B 0.186 1

D 0.216 1

C 0.295 2

A 0.352 3
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Looking Back
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interaction.plot

The plots on the previous slide were produced by:

> par(mfrow=c(2,1),mar=c(4,4,1,1)+.1)

> interaction.plot(type,delivery,recip.time,

col=c("green","red","blue","cyan"))

> interaction.plot(delivery,type,recip.time,

col=c("green","red","blue"))

Here mar=c(4,4,1,1)+.1 inside par sets margins around the plots, and

mfrow=c(2,1) sets up plotting for two plots per page, one above the other.
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The Full Model Revisited

The full model is Yi jk = µi j + εi jk and we can reparametrize it as

Yi jk = µ+ai +b j + ci j + εi jk with replications k = 1, . . . ,n where

• µ = ∑i j µi j/(t1t2) = µ̄.. is the grand mean.

• ai = ∑ j(µi j− µ̄..)/t2 = µ̄i.− µ̄.. with ∑i ai = 0.

• b j = ∑i(µi j− µ̄..)/t2 = µ̄. j− µ̄.. with ∑ j b j = 0.

ai and b j are also referred to as main effects.

• ci j = µi j− µ̄i.− µ̄. j + µ̄.. = µi j− (µ+ai +b j) with ∑i ci j = ∑ j ci j = 0.

In the additive model nothing in the above relations of µ,ai,b j relative to the µi j

changes except the last •, which becomes: • ci j = 0 ∀ i, j.
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The Interpretation of ai−ai′

In the additive or main effects model we have

ai−ai′ = µi j−µi′ j = µ+ai +b j− (µ+ai′+b j) ∀ j = 1, . . . , t2 ,

i.e., ai−ai′ represents the difference in mean response between levels i and i′

of factor A, and it is the same for each level j of factor B.

In the full or interaction model we have (since b. = c̄i. = c̄i′. = 0)

ai−ai′ = µi.−µi′. = µ+ai +b.+ c̄i.− (µ+ai′+b.+ c̄i′.) ∀ j = 1, . . . , t2 ,

i.e., ai−ai′ represents the difference in mean response between levels i and i′

of factor A, when averaged over all levels j of factor B.

Corresponding interpretations hold for b j−b j′.
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Understanding Interactions

Main effects ai and b j are called that way because their additive effects on the

mean µi j are easily understood.

Interactions (as distinguished from main effects) can be more complicated

and may need more scrutiny in order to develop some understanding.

We will just give a few example situations that illustrate some distinct

and very different situations. There are certainly many other possibilities.

For simplicity we consider a 2×4 two-factor experiment.
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Interaction Pattern 1
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Observations about Pattern 1

In pattern 1 the differences in means µ1 j−µ2 j appear to increase linearly in j.

Without interactions this difference would be constant.

One could look at orthogonal polynomial contrasts in such differences.

For a contrast vector (d1, . . . ,d4), i.e., d1 + . . .+d4 = 0, consider the contrast

D = d1(µ11−µ21)+d2(µ12−µ22)+d3(µ13−µ23)+d4(µ14−µ24)

Since

c1 j−c2 j = µ1 j− µ̄1.− µ̄. j + µ̄..− (µ2 j− µ̄2.− µ̄. j + µ̄..) = µ1 j−µ2 j− µ̄1.+ µ̄2.
=⇒ D = d1(c11− c21)+d2(c12− c22)+d3(c13− c23)+d4(c14− c24)

is the same contrast in the corresponding interaction differences.

(d1,d2,d3,d4) = (−3,−1,1,3) would resonate with a linear trend.
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Interaction Pattern 2
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Interaction Pattern 3
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Comments on Interaction Patterns

Pattern 1 seems to show a linear interaction trend along the levels of factor B.

Furthermore, factor B seems to have no additive or main effect.

Pattern 2 seems to have no additive effect from factor B and almost no additive

effect from factor A. Only when we have level B4 for factor B is there a clear

change in factor A. Hence B4 acts as an interaction switch.

Pattern 3 again shows no additive or main effect due to factor B. If the colors of

the last two boxes were switched we would have a clear additive or main effect due

to factor A (±2.5). This would give a far simpler data explanation and it suggests

the possibility of a labeling error.
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Randomized Complete Block Designs

When we did our ANOVA to examine the effects of a factor A of interest, we saw

that the power of the F-test is an increasing function of the noncentrality parameter

λ = ∑i ni(µi− µ̄)2/σ2.

While we cannot influence the size of treatment effects, |µi− µ̄|, we can influence

the sample sizes ni and possibly σ. Note σ−→ σ/2 ⇐⇒ ni −→ 4×ni !!

How can we influence σ? We need to understand what may affect σ.

Often σ is caused by the variability of hidden or ignored factors.

Consider the delivery factor in our insecticide experiment. It had a definite effect

on the measured response times. Had we ignored it or left it to happenstance which

delivery was used for each experimental unit (insect), we would have confounded

the variability due to delivery with the remaining variability within (delivery,type).

97



Ignoring a Factor

Assuming an additive model (similar reasoning under full model):

Source SS df MS F

A SSA t1−1 SSA/(t1−1) MSA/MSE

B SSB t2−1 SSB/(t2−1) MSB/MSE

Error SSE dfE SSE/dfE

Total SST t1t2n−1

If we ignored factor B, we would treat SS′E = SSB+SSE as our error sum of squares

and df′E = dfE + t2−1 as the corresponding degrees of freedom. SS′E/df′E = MS′E
would be a legitimate estimate of σ2 if b1 = . . . = bt2 = 0.

If not, MS′E would be inflated, it would estimate σ′2 > σ2 ⇒ loss of power.

98



Blocking

Blocking consists of stratifying experimental units into groups that will have more

homogeneous responses within groups, and possibly quite inhomogeneous

responses between groups.

Such grouping/blocking can be accomplished by an appropriately chosen factor,

where the levels of that factor define the different groups.

Blocking will be beneficial if the factor used for blocking causes variation in the

response as the levels of that factor change.

Thus experimental units within a level of that factor (i.e., within a block) will not

experience that change and will thus be more homogeneous in their response.
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Typical Blocking Criteria

• Location: If the experiment is conducted over varying locations and if location
is judged to have an effect on the response.

• Time: If time of day, month, or year are likely to affect response and if the
results of the study are to stand regardless of time.

• Litters: If animals in the same litter are likely to produce more homogeneous
responses. Useful in medical experiments.

• Batches of Material: If variations in the process for creating the experimental
material are likely to show up in the responses.

• Any variation inducing aspect of an experiment (education, income, . . .)

that is not considered a treatment of interest.
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Sir Ronald Aylmer Fisher

The statistician Sir Ronald Aylmer Fisher(1890-1962) developed experimental

design in an agricultural setting at Rothamstead Experimental Station. See

http://www.bookrags.com/Ronald_Fisher

for an account of his great influence as one of the founding fathers of statistics.

To some he is more famous for his work in Genetics. “He bred poultry, mice, snails,
and other creatures and published his findings in several papers that contributed to
scientists’ overall understanding of genetic dominance.”

Apparently he had much to do with the fact that the significance level of .05 is so
entrenched until today, see:

{\tt http://www.tufts.edu/˜gdallal/p05.htm}

Thus it is only fitting to consider an agricultural experiment to illustrate blocking.
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Nitrogen Fertilizer Timing

A nitrogen fertilizer can be administered according to 6 different timing schedules (treatments)

The response is the nitrogen uptake (ppm×10−2)

The experimental material: One irrigated field.

Subdividing the field into different experimental units for use with different treatments

could be affected by soil moisture variation, caused by a sloping field gradient.

It is assumed that this moisture gradient is mainly across the width of the field.

This suggest rows along the field length as blocks.
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Field Moisture Gradient
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The Data

The field was subdivided into 4 rows (or blocks) with 6 plots each.

The 6 treatments were randomly assigned to each row.

Any remaining moisture variability within rows is absorbed into MSE.

row
treatment
response

1
2

40.89
5

37.99
4

37.18
1

34.98
6

34.89
3

42.07

2
1

41.22
3

49.42
4

45.85
6

50.15
5

41.99
2

46.69

3
6

44.57
3

52.68
5

37.61
1

36.94
2

46.65
4

40.23

4
2

41.90
4

39.20
6

43.29
5

40.45
3

42.91
1

39.97

Also available as fertilizerdata.csv on web site.
104



Randomized Complete Block (RCB) Design

1. Experimental units are blocked into presumably more homogeneous groups.

2. The blocks are complete, i.e., each treatment appears in each block.

3. The blocks are balanced

• t1 = 4 observations for each treatment level.

• t2 = 6 treatments for each block level (row).

• n = 1 observation per (block level,treatment level) combination.
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Nitrogen Fertilizer Box Plots
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ANOVA Table

Source SS df MS F

Block SSBlock t1−1 SSBlock/(t1−1) MSBlock/MSE

Treatment SSTreat t2−1 SSTreat/(t2−1) MSTreat/MSE

Error SSE dfE SSE/dfE

Total SST t1t2n−1

Note that here n = 1, thus t1t2n−1 = t1t2−1, and

dfE = (t1−1)(t2−1)+ t1t2(n−1) = (t1−1)(t2−1).

The table is the same as in the additive 2-factor ANOVA situation,

just with relabeling factors A and B to Block and Treatment.
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Nitrogen Fertilizer Results

> fertilizer.analysis() # see class web page

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(row) 3 197.004 65.668 9.1198 0.001116 **

as.factor(treatment) 5 201.316 40.263 5.5917 0.004191 **

Residuals 15 108.008 7.201

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Both treatment and blocking factor are significant at .005.
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Nitrogen Fertilizer Results (Ignoring the Blocking)

> anova(lm(response˜as.factor(treatment),data=fertilizerdata))

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(treatment) 5 201.316 40.263 2.3761 0.08024 .

Residuals 18 305.012 16.945

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Not significant at .05, because we are affected by the extra variation induced by

the wetness gradient. Less discrimination power to see the fertilizer timing effect.
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F-Statistics in the Last Two ANOVAs

It is worthwhile to compare the corresponding F-statistics for the last two ANOVAs.

FTreat =
∑i j(Ȳ. j− Ȳ..)2/5

∑i j(Yi j− Ȳ. j− [Ȳi.− Ȳ..])2/15
and FTreat =

∑i j(Ȳ. j− Ȳ..)2/5

∑i j(Yi j− Ȳ. j)2/18

While in the former F-statistic the variation of the Yi j around Ȳ. j is corrected for the

variation due to Ȳi.− Ȳ.., i.e., the row variation, such a correction is omitted in the

latter F-statistic, i.e., the row variation is ignored and absorbed as part of the MSE:

∑
i j

(Yi j− Ȳ. j)2 = ∑
i j

(Yi j− Ȳ. j− [Ȳi.− Ȳ..])2+∑
i j

(Ȳi.− Ȳ..)2
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The Last Identity

The previous decomposition could use some elaboration:

∑
i j

(Yi j− Ȳ. j− [Ȳi.− Ȳ..])2 = ∑
i j

(Yi j− Ȳ. j)2 +∑
i j

(Ȳi.− Ȳ..)2−2∑
i j

(Yi j− Ȳ. j)(Ȳi.− Ȳ..)

= ∑
i j

(Yi j− Ȳ. j)2 +∑
i j

(Ȳi.− Ȳ..)2−2∑
i j

(Ȳi.− Ȳ..)2

= ∑
i j

(Yi j− Ȳ. j)2−∑
i j

(Ȳi.− Ȳ..)2

=⇒ ∑
i j

(Yi j− Ȳ. j)2 = ∑
i j

(Yi j− Ȳ. j− [Ȳi.− Ȳ..])2 +∑
i j

(Ȳi.− Ȳ..)2
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A Look at the Block Adjustment

Model: Yi j = µ+bi + τ j + εi j with estimated block effect b̂i = Ȳi.− Ȳ..
Consider the block adjusted observations Zi j = Yi j− b̂i = Yi j− (Ȳi.− Ȳ..)

These Zi j, when plotted on separate levels for each block identifier i, will look more

aligned, more like “replicates” (see next 2 slides). Thus it makes sense to look at

the average Z̄. j− Z̄.. over those blocks as estimate for the jth treatment effect.

Note that Z̄. j− Z̄.. = Ȳ. j−0− (Ȳ..−0) = Ȳ. j− Ȳ.. and

Zi j− Z̄. j = Yi j− (Ȳi.− Ȳ..)− (Ȳ. j−0) = Yi j− Ȳi.− Ȳ. j + Ȳ..

Compare the treatment effect dispersion ∑i j(Z̄. j− Z̄..)2 = ∑i j(Ȳ. j− Ȳ..)2

against the within “replication” dispersion:

∑i j(Zi j− Z̄. j)2 = ∑i j(Yi j− Ȳi.− Ȳ. j + Ȳ..)2 which leads back to our

FTreat =
[
∑i j(Ȳ. j− Ȳ..)2/(t2−1)

]/[
∑i j(Yi j− Ȳi.− Ȳ. j + Ȳ..)2/((t1−1)(t2−1))

]
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Visual Block Adjustment 1

8 9 10 11 12

●

block 1

●

block 2

●block 3

●
block 4

response

9.6 9.8 10.0 10.2 10.4

●

block 1

●

block 2

●block 3

●
block 4

response adjusted for block effect
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Visual Block Adjustment 2

8 9 10 11 12

●

block 1

●

block 2

●block 3

●
block 4

response

9.6 9.8 10.0 10.2 10.4

●

block 1

●

block 2

●block 3

●
block 4

response adjusted for block effect
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Comments on the Visual Block Adjustments

Note the clear block effect: variability between blocks←→ variability within block.

After the blocks are shifted to remove the individual block effects

the data sets appear aligned on top of each other.

The relative pattern relationship within each block is undisturbed.

We are just using a magnified scale.

It is easy to discern the differences between the various symbol groups (treatments)

relative to the variation within symbol groups.

It might have been more difficult to see without prior alignment.
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No Replication in Fertilizer Data!

> anova(lm(response˜as.factor(treatment):as.factor(row),

+ data=fertilizerdata))

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(treatment):as.factor(row) 23 506.33 22.01

Residuals 0 0.00

Here we are trying to test for the significance of all (treatment, row) combinations.

Without success, since SSE = 0 because of no replication, dfE = 0.
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No Replication!

> anova(lm(response˜as.factor(treatment)*as.factor(row),

+ data=fertilizerdata))

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(treatment) 5 201.316 40.263

as.factor(row) 3 197.004 65.668

as.factor(treatment):as.factor(row) 15 108.008 7.201

Residuals 0 0.000

Here we are trying to test for the significance of the full interaction model.

Without success, since SSE = 0 because of no replication, dfE = 0.

The difference to the previous analysis is that we express the 24 means µi j

via structure (grand mean, main effects and interactions).
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SS for the No Replication Cases

In the first case, testing all (treatment level,block level) combinations, we have

SST = ∑
i jk

(Yi jk− Ȳ...)2 and SSE = ∑
i jk

(Yi jk− Ȳi j.)2 = 0

since k ≡ 1 and thus Yi jk = Ȳi j., and in the second case (full model)

SST = ∑
i j

(Yi j− Ȳ..)2 = ∑
i j

(Ȳi.− Ȳ..)2 +∑
i j

(Ȳ. j− Ȳ..)2 +∑
i j

(Yi j− Ȳi.− Ȳ. j + Ȳ..)2

= ∑
i jk

(Yi jk− Ȳ...)2 = ∑
i jk

(Ȳi..− Ȳ...)2 +∑
i jk

(Ȳ. j.− Ȳ...)2 +∑
i jk

(Ȳi j.− Ȳi..− Ȳ. j.+ Ȳ...)2

+∑
i jk

(Yi jk− Ȳi j.)2

with

SSE = ∑
i jk

(Yi jk− Ȳi j.)2 = 0

since k ≡ 1 collapses the summation over k, i.e, Yi jk = Yi j1 = Ȳi j. = Yi j ∀i, j.
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With Replication?

With replication we could test for interaction. Would we be interested in interaction

effects between treatment and the blocking factor?

The blocking factor is only used experimentally in order to make treatment effects

stand out more within a block due to anticipated reduced variability within each

block.

In real life use of the treatment we will not manipulate the blocking factor.

It is just a nuisance variation factor that we have to live with.

However, if variation as caused by the uncontrolled blocking factor is

substantial, any benefit of the treatment may become swamped in real life

application. This may be an instance of the old wisdom: Don’t sweat the small stuff.

On the other hand, from a patient’s point of view a small pain reduction may be big.

The patient does not care about the wide variability of pain in others.
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Randomization Tests Revisited

Having assigned the 6 treatments randomly within each row, there are

(6!)4 = 7204 = 268,738,560,000≈ 2.7 ·1011

such assignments. This is roughly 1/10,000 of the number of treatment patterns

had we assigned the 6 treatments in groups of 4 without the row blocking restriction(
24
4

)
×
(

20
4

)
×
(

16
4

)
×
(

12
4

)
×
(

8
4

)
×
(

4
4

)
= 3.246671 ·1015

If the treatment effects were identical, then the treatment assignment would

not have affected the responses. Any other of the 2.7 ·1011 treatment assignments

would have given us the same results Yi j. Test H0 : τ1 = . . . = τ6(= 0)

(no treatment effect) using as our randomization test statistics

FTreat =
∑i j(Ȳ. j− Ȳ..)2/(6−1)

∑i j(Yi j− Ȳi.− Ȳ. j + Ȳ..)2/((6−1)× (4−1))
⇒ reference distribution
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A Large Value of FTreat

According to the premise of no treatment effect, when calculating FTreat for all these

2.7 ·1011 treatment assignments, we get 2.7 ·1011 equally likely values of FTreat,

i.e., the reference distribution of FTreat, by theory ≈ F5,15-distribution.

The value of FTreat observed, namely Fobs
Treat, would then be just one of these equally

likely values.

If the value Fobs
Treat is in the far upper tail of the reference distribution, i.e., the

p-value = P(FTreat ≥ Fobs
Treat) is (very) small (≤ .05 or ≤ .01), then we can either

take the position that we saw something rare by accident in our random assignment

of treatments, or the assumption that treatment does not matter is not true. In the

latter case this would be manifested quite naturally in our large value of Fobs
Treat.
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Randomization Test for Treatment Effect

Randomization Distribution (F−test for Treatment Effect)

randomization F−statistic
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Comparing Results

The randomization reference distribution yielded a p-value of .00127 = 127/100000

while the normal theory test for the same hypothesis and using the same test

statistic came up with a p-value of .004191 from F5,15.

Question: Is this explainable by statistical variation alone? Such statistical variation

would come from the fact that we approximated the true randomization reference

distribution by simulation from Nsim = 100,000 treatment allocations.

A 95% upper confidence bound for the p-value resulting from the full true reference

distribution can be obtained from R via qgamma(.95,127+1)/100000=0.001471603

or via qbeta(.95,127+1,100000-127)=0.001471455.

That still leaves a wide gap to .004191, which is probably due to the possibility

that the F5,15 approximation is not quite a good enough fit out in the far tail.

The superimposed F-density looks mostly like a good fit.
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Randomization Test for Block Effect?

Can we carry out a randomization test for the block effect?

We did not randomize our experimental units (4×6 = 24 plots) over the rows.

After assigning the 6 treatments per row in a random fashion, it is physically not

feasible to take the 4 plots with treatment 5, one in each row, and randomly assign

these 4 plots to one of the 4! = 24 different row permutations.

We cannot transplant a plot from one row to another. This would run counter to our

intent of exploiting the block (row) variation to better see treatment effects.
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What Can We Do?

If in fact the block or row effect does not exist, then it would have been conceptually

OK to transplant any plot to a different location (row).

In that case (of no row effect), transplanting or not transplanting would not affect

our test for a treatment effect.

However, we did not transplant plots in the hope of between block (row) variation.

Thus we can only pretend that our particular arrangement of 24 (treatment, row)

combinations was completely random and formally carry out a randomization test

for the block effect.
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How Do We Get the Randomization Distribution?

Take the data as given, with 6 treatments as assigned to the 6 plots in each row.

Since we assume no row effect we can take the row labels assigned to the 4 cases

with treatment j and permute them in all 24 possible ways. Do this independently

for each j = 1, . . . ,6.

This would give us 246 = 191102976 possible assignments and lead to the full

FBlock reference distribution. By theory it is ≈ F3,15.

Doing this is not very practical and thus we simulate this distribution by computing

FBlock for Nsim = 100,000 randomly chosen row label assignments.

Calculate or estimate the p-value of Fobs
Block as the proportion of simulated

FBlock values ≥ Fobs
Block. The results are shown on the next slide.
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Randomization Test for Block Effect

Randomization Distribution (F−test for Block Effect)

randomization F−statistic
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Comparing Results

The randomization reference distribution yielded a p-value of .00088 = 88/100000

while the normal theory test for the same hypothesis (no row factor effect) and

using the same test statistic came up with a p-value of .001116 from F3,15.

Question: Is the difference explainable by statistical variation alone? Such

statistical variation results from approximating the true randomization reference

distribution by simulating Nsim = 100,000 row label permutations.

A 95% upper confidence bound for the p-value resulting from the full true reference

distribution can be obtained from R via qgamma(.95,88+1)/100000= 0.001050649.

This is not too far off from .001116.

The superimposed F-density looks mostly like a good fit.
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