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Circuit Board Solder Flux Experiment (Courtesy Denis Janky)

Flux is material used to facilitate soldering on circuit boards.
http://en.wikipedia.org/wiki/Flux_(metallurgy)

Moisture condensing on the boards can interact with soldering contaminants

(usually residual solder flux) and result in thin filaments (dendrites) on the surface.

The dendrites can carry current and disrupt the circuits or short circuit the board.

Measure Surface Insulation Resistance (SIR) between two electrically isolated sites.

Electrical problems on aircraft could occur during flight, possibly intermittent.

Troubled circuit boards would be yanked, sometimes without findings.

Cleaning soldering contaminants is a leading contaminator of the ozone layer.

Some fluxes are easier to clean than others. We have 2 flux candidates.
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Treatments and Controls

Here the experimental situation was laid out in terms of two different

and competing flux treatments.

It could be that one of the treatments is what has been used in the past.

It is the familiar treatment and often it would then be called the control.

The other treatment would be the newer treatment. Why should we change?

Some possible reasons:

1. the promise of better results

2. equal results with a cheaper or cleaner process

3. treatment flexibility, spreading the risk of treatment availability
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The Experimental Process
18 boards are available for the experiment,

not necessarily a random sample from all boards.

Test flux brands X and Y: randomly assign 9 boards each to X & Y (FLUX)

The boards are soldered and cleaned. Order randomized. (SC.ORDER)

Then the boards are coated and cured to avoid handling contamination.

Order randomized. (CT.ORDER)

Then the boards are placed in a humidity chamber and measured for SIR.

Position in chamber randomized. (SLOT)

The randomization at the various process steps avoids unknown biases.

When in doubt on the effect of any process step, randomize!

The randomization of flux assignments gives us a mathematical basis for

judging flux differences with respect to the response SIR (to become clear later).
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DOE Steps Recapitulated

1. Goal of the experiment. Answer question: Is Flux X different from Flux Y?
If not, we can use them interchangeably. One may be cheaper than the other.
Test null hypothesis H0: No difference in fluxes.

2. Understand the experimental units:
Boards.

3. Define the appropriate response variable to be measured: SIR

4. Define potential sources of response variation
a) factors of interest: flux type
b) nuisance factors: boards, various processing steps, testing.

5. Decide on treatment and blocking variables.
Treatment = flux type, no blocking.
With 2 humidity chambers we might have wanted to block on those,
since variation from chamber to chamber may be substantial.

6. Define clearly the experimental process and what is randomized.
Treatments and all nuisance factors are randomized.
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Why Are Treatments and Nuisance Factors Randomized?

The treatments are randomized among boards to avoid confounding and to provide

a mathematical basis for inference concerning treatment effects.

We don’t want any board peculiarities all ganging up on one treatment.

This would make it difficult to distinguish treatment from board effect.

The nuisance factors all come into play after the flux treatments are applied.

If not, such nuisance factor effects could be lumped with the board peculiarities.

Any effect that they have could align with the treatments, i.e., the 9 highest nuisance

factor effects could be aligned with flux X. Randomization makes that unlikely.

Randomizing over all nuisance factors separately and independently makes any

combined confounding effects extremely unlikely. It reduces variability

since + and − effects cancel out to a large extent.

5



Flux Data

BOARD FLUX SC.ORDER CT.ORDER SLOT SIR
1 Y 13 14 5 8.6
2 Y 16 8 6 7.5
3 X 18 9 15 11.5
4 Y 11 11 11 10.6
5 X 15 18 9 11.6
6 X 9 15 18 10.3
7 X 6 1 16 10.1
8 Y 17 12 17 8.2
9 Y 5 10 13 10.0
10 Y 10 13 14 9.3
11 Y 14 5 10 11.5
12 X 12 17 12 9.0
13 X 4 7 3 10.7
14 X 8 6 1 9.9
15 Y 3 2 4 7.7
16 X 7 3 2 9.7
17 Y 1 16 8 8.8
18 X 2 4 7 12.6

see Flux.csv

or flux

Note the 4 levels

of randomization
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Flux Experiment: First Box Plot Look at SIR Data
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What Does a Box Plot Show?
In the box plot (Tukey 1977) the upper and lower quartiles, Q(.75) and Q(.25),

of the sample are portrayed by the top and bottom edges of a rectangle, and

the median, Q(.5), is portrayed by the horizontal line segment within the rectangle.

Dashed lines extend from the ends of the box to the adjacent values, defined below.

Compute the interquartile range IQR = Q(.75)−Q(.25).

The upper adjacent value is the largest observation ≤ Q(.75)+1.5× IQR.

The lower adjacent value is the smallest observation ≥ Q(.25)−1.5× IQR.

Any observations beyond the adjacent values are shown individually.

For a normal population ≈ .35% of the values fall beyond each adjacent value.

The dots shown superimposed on our SIR box plots are just the added data values.

Sample quantiles, Q(p), determined by one of many possible schemes,

see ?quantile in R.
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The Utility of Box Plots

Succinct description of data sets, showing median, upper and lower quartiles.

This avoids looking at too many data points that may be hard to distinguish.

Median ≈ center of the box =⇒ the middle 50% of the data appear symmetric.

If in addition adjacent values ≈ symmetric relative to the box

=⇒ this symmetry appears to extend to the tails, otherwise data are skewed.

Any values beyond the adjacent values are singled out as potential outliers.

Box plots are especially effective for comparing (large) data sets.
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Detour on Taxiway Deviations

T

d1

d2

wing span  W2

wing span  W1

taxiway centerline

taxiway centerline

Risk of collision and running off taxiway, getting stuck in the mud.
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Two Lasers Measure Distances to Nose & Main Gears
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747 Taxiway Deviations

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 5 10 15 20

−
1

0
−

5
0

5
1

0
Eastbound Traffic

time of day

N
o

se
 G

e
a

r 
D

e
vi

a
tio

n
 f

ro
m

 T
a

xi
w

a
y 

C
e

n
te

rl
in

e
 (

ft
)

12



Box Plots for 747 Taxiway Deviations
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747 Taxiway Deviations
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Box Plots for 747 Taxiway Deviations
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Some Comments

Notice that the first set of box plots (Eastbound Traffic) hinted at a preponderance

of medians on one side of the taxiway centerline.

The second set (Westbound Traffic) made the same point very clearly because of

the much larger traffic volume in that direction.

The consistent direction of the bias suggests that it is not due to pilot position

relative to aircraft centerline (parallax effect).

Bias size in the Eastbound Traffic seems less than that in the Westbound Traffic.

This suggests two bias components, one switching direction with traffic direction

(parallax effect), the other does not.
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Taxiway Centerline and Centerlights

Pilots avoid hitting the bumps =⇒ consistent bias (in same direction)

in addition to pilot parallax bias which changes with direction of travel.
17



Three Studies on Taxiway Deviations

http://www.airporttech.tc.faa.gov/Design/Downloads/anc.report.091003.pdf

http://www.airporttech.tc.faa.gov/Design/Downloads/jfk.report.pdf

http://www.airtech.tc.faa.gov/Design/Downloads/separation%20new.pdf
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Returning to the Flux Experiment: QQ-Plot of SIR Data
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What is a QQ-Plot?

A QQ-plot is a another convenient way of comparing two data sets visually.

It is easiest to construct when both samples have the same size m = n, in which

case you plot the ordered values of one sample against the corresponding ordered

values of the other sample.

For m > n you linearly interpolate n values from the sorted larger sample and use

those values to plot against the sorted smaller sample.

out=qqplot(x,y) will do this for two sample vectors x and y.

The out= is optional. out is a list with plotting positions out$x and out$y.

The command abline(lsfit(out$x,out$y)) will fit a line to the QQ-plot.

See the function body of qqplot and ?approx for the interpolation scheme.
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What Can a QQ-Plot Tell You?

If the points scatter around the main diagonal

=⇒ samples appear to come from the same distribution.

An ≈ linear point pattern =⇒ the two samples differ at most in location and scale.

An ≈ linear point pattern parallel to the main diagonal

=⇒ the two samples differ mainly in location (not scale).

If the point pattern is ≈ linear and crosses the diagonal near the middle of the

point pattern, then the two samples differ mainly in scale (not location).

If the point pattern does not look ≈ linear, then the samples differ in aspects

other than location and scale. For this there are many possibilities.

Location is captured by mean or median, scale by standard deviation or IQR.

Judgment is subjective and takes experience. Simulation is one way to get it.

21



QQ-Plot of SIR Data (Higher Perspective?)
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Here the same point pattern looks more linear and closer to the main diagonal.
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Some QQ-Plots from N(0,1) Samples (m=9, n=9)
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What Do the 20 Simulated QQ-Plots Tell Us?

Very few patterns seem to vary along the main diagonal, the “expected” situation.

We say “expected” because both samples come from the same population/distribution.

Clear linear patterns are also rare. This is due to the small sample size.

12 patterns out of 20 have points on both sides of the main diagonal.

Some patterns are clearly offset from the main diagonal.

Thus one should be rather forgiving when judging with small sample sizes.

The next slide illustrates how matters improve when both samples are of size 30.
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Some QQ-Plots from N(0,1) Samples (m=30, n=30)
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Is the Difference Ȳ − X̄ =−1.467 Significant?

In comparing SIR for the two fluxes let us focus on the difference of means

FLUXY −FLUXX = Ȳ − X̄ .

If the use of flux X or flux Y made no difference (H0), then we should have seen

the same results for these 18 boards, no matter which got flux X or Y.

X or Y is just an artificial “distinguishing” label with no consequence.

For other random assignments of fluxes, or random splitting of 18 boards, the 18

values would remain unchanged, but due to the different splitting into two groups of

9 & 9, we would see other differences of means.

There are
(18

9
)

= 48620 = choose(18,9) such possible splits.

For each split we could obtain Ȳ − X̄ .

Was our observed difference of −1.467 from an unusual random split?

Need the randomization or reference distribution of Ȳ − X̄ for all possible splits.
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Some Randomization Examples of Ȳ − X̄
8.6 8.6 8.6 8.6 8.6 8.6 8.6
7.5 7.5 7.5 7.5 7.5 7.5 7.5

11.5 11.5 11.5 11.5 11.5 11.5 11.5
10.6 10.6 10.6 10.6 10.6 10.6 10.6
11.6 11.6 11.6 11.6 11.6 11.6 11.6
10.3 10.3 10.3 10.3 10.3 10.3 10.3
10.1 10.1 10.1 10.1 10.1 10.1 10.1
8.2 8.2 8.2 8.2 8.2 8.2 8.2

10.0 10.0 10.0 10.0 10.0 10.0 10.0
9.3 9.3 9.3 9.3 9.3 9.3 9.3

11.5 11.5 11.5 11.5 11.5 11.5 11.5
9.0 9.0 9.0 9.0 9.0 9.0 9.0

10.7 10.7 10.7 10.7 10.7 10.7 10.7
9.9 9.9 9.9 9.9 9.9 9.9 9.9
7.7 7.7 7.7 7.7 7.7 7.7 7.7
9.7 9.7 9.7 9.7 9.7 9.7 9.7
8.8 8.8 8.8 8.8 8.8 8.8 8.8

12.6 12.6 12.6 12.6 12.6 12.6 12.6

Ȳ−X̄ Ȳ−X̄ Ȳ−X̄ Ȳ−X̄ Ȳ−X̄ Ȳ−X̄ Ȳ−X̄
1.1778 0.4222 -0.0889 -0.4000 0.5778 0.7778 0.2000

27



The Range of Ȳ − X̄
What is the most extreme difference Ȳ − X̄ possible?

We get it by sorting all 18 SIR values and taking the highest 9 as one sample and

the lowest 9 as the other.
7.5 7.7 8.2 8.6 8.8 9.0 9.3 9.7 9.9

10.0 10.1 10.3 10.6 10.7 11.5 11.5 11.6 12.6

Then Ȳ = 8.744444 and X̄ = 10.98889. Thus Ȳ − X̄ =−2.244446 would be the

lowest possible value for Ȳ − X̄ among all splits. Chance 1/48620 = 2.1 ·10−5

Correspondingly, Ȳ − X̄ = 2.244446 would be the highest possible value.

Just interchange the X and Y choices, Y ′ = X and X ′ = Y , and we get

Ȳ ′− X̄ ′ = X̄− Ȳ =−(Ȳ − X̄) =−(−2.244446) = 2.244446.

This interchange works because m = n = 9. For m 6= n it would not work.

Where does the observed −1.467 fall relative to these extremes ±2.244446

and the vast majority of splits for Ȳ − X̄? =⇒ reference distribution of Ȳ − X̄ .
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Reference Distribution of Ȳ − X̄

Compute Ȳ − X̄ for each of the 48620 possible splits and determine how unusual

the observed difference of −1.467 is. This seems like a lot of computing work.

Here it takes just a few seconds in R using the function combn,

but the computing work can grow rapidly, since
(m+n

m
)

gets large in a hurry.

For example
(26

13
)

= 10400600 (10 million+).

Let SIR be the vector of all 18 SIR values in your work space (in any order).

In your work space define the following function of the 2 arguments ind and y

mean.diff.fun = function(ind,y){mean(y[ind])-mean(y[-ind])}

Then the command

randomization.ref.dist=combn(1:18,9,FUN=mean.diff.fun,y=SIR)

gives the vector of all 48620 such differences of averages.
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What does combn Do?

The function combn goes through all combinations of 9 indices taken from 1:18.

Each such combination is fed as the value for the first argument ind to the function

mean.diff.fun. Note that ind is not explicitly named in combn(...).

Instead of ind any other unused variable name could be used, e.g., IndianaJones.

The second argument y to the function mean.diff.fun is explicitly named in the

assignment y=SIR in combn(1:18,9,FUN=mean.diff.fun,y=SIR).

For each combination ind and assigned vector SIR = (X1, . . . ,X9,Y1, . . . ,Y9) =
(Z1, . . . ,Z18) the function mean.diff.fun(ind,y) is evaluated.

For example,

ind=c(3,5,7,9,10,12,14,17,18) −→ mean(y[ind]) - mean(y[-ind])

= (Z3 +Z5 +Z7 + . . .+Z17 +Z18)/9− (Z1 +Z2 +Z4 + . . .+Z15 +Z16)/9.

30



Using IndianaJones

Using

mean.diff.fun = function(IndianaJones,y){mean(y[IndianaJones])-
mean(y[-IndianaJones])}

and

randomization.ref.dist=combn(1:18,9,FUN=mean.diff.fun,y=SIR)

would have produced the same output vector mean.diff.fun.

If mean.diff.fun = function(z,y1,y2) we would need to explicitly indicate

the sources for the two variables y1 and y2 in combn(...,y1=...,y2=...).
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combn

The default function call (with no FUN specification)

combn(x, m, FUN = NULL, simplify = TRUE, ...)

or just combn(x, m) results in a matrix with columns representing all possible

combinations of m elements taken from the vector x.

Don’t use x= in ... since x is already implied as first argument.

Here is an example with x=1:5=c(1,2,3,4,5) and m=3

> combn(1:5,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 1 2 2 2 3

[2,] 2 2 2 3 3 4 3 3 4 4

[3,] 3 4 5 4 5 5 4 5 5 5

Note
(5

3
)

=
(5

2
)

= 5!/(3!2!) = 5 ·4/(1 ·2) = 10.
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Reference Distribution of Ȳ − X̄ (continued)

This vector, randomization.ref.dist, gives the reference distribution of Ȳ − X̄ .

We find a (two-sided) p-value of p.val=.02587 for our observed Ȳ − X̄ =−1.467

via p.val = mean(abs(randomization.ref.dist)>= 1.46666) =

proportion of T or 1 in the logic vector abs(randomization.ref.dist)>= 1.46666.

The (two-sided) p-value is the probability of seeing an |Ȳ − X̄ |-value as extreme

as or more extreme than the actually observed |ȳ− x̄|= 1.467, when in fact the

hypothesis H0 holds true, i.e., under the randomization reference distribution.

The upfront randomization of fluxes and the assumption of H0 make this a valid

probability statement! Without that randomization we cannot speak of chance.

With upfront randomization and assuming H0 to be true, we can view the observed

difference as having arisen as a result of one of 48620 equally likely splits.
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Randomization Reference Distribution of Ȳ − X̄
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Symmetry of Ȳ − X̄ Reference Distribution?

Why is this reference distribution symmetric around zero? (=⇒ slide 28)

Would this still hold if m 6= n with m+n = 18? Look at m = 1 and n = 17!

Ȳ − X̄ =
1
17

17

∑
i=1

Yi−X1 =
1
17

(
18

∑
i=1

Zi−X1

)
−X1 =

18
17

Z̄− 18
17

X1 =
18
17

(Z̄−X1)

Z̄ will stay fixed under all splits of Z1, . . . ,Z18 into groups of 17 and 1,

while X1 will take on any value Zi with equal chance 1/18 (why 1/18?).

The distribution of these 18 differences Ȳ − X̄ (under all splits) will look symmetric

only if the distribution of all 18 Zi values is symmetric.
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How to Determine the P-Value

How to obtain the p-value from the reference distributions?

Note the following:

> x=1:10

> x>3

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> sum(x>3)

[1] 7

> mean(x>3) # the proportion of x values > 3

[1] 0.7

Note that x>3 produced a logic vector with same length as x.

In arithmetic expressions or arithmetic functions the logic values FALSE and TRUE

are also interpreted numerically as 0 and 1, respectively, .
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How to Determine the P-Value (continued)

x = randomization.ref.dist is the vector of all the differences of means,

Ȳ − X̄ , obtained for all 48620 possible splits.

mean(x<=-1.46666) and mean(x>=1.46666) give us the respective one-sided

p-values p1 = .01294 and p2 = .01294 for the randomization reference distribution.

Rather than adding these 2 p-values to get a two-sided p-value we can also do

this directly via mean(abs(x)>= 1.46666)=.02587.

Here abs(x) is the vector of absolute values of all components in x.
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Some Computational Issues

Note that in the p-value calculation we switched from 1.467 to 1.46666 in

p.val = mean(abs(randomization.ref.dist)>= 1.46666) Why?

The number −1.467 is obtained by rounding the true ȳ− x̄ =−1.46666.....

Thus the logic vector abs(randomization.ref.dist)>= 1.467

would give an F to all those splits with |Ȳ − X̄ |= 1.46666....

p.val = mean(abs(randomization.ref.dist)>= 1.467)=.02345

would compute the chance of seeing a result for |Ȳ − X̄ | that is more extreme than

the observed |ȳ− x̄|= 1.46666.....

However, the p-value is the chance of seeing a |Ȳ − X̄ | that is as extreme as or

more extreme than the observed |ȳ− x̄|= 1.46666...., i.e., p.val = .02587.
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Interpreting the P-Value

The calculation of the p-value is based on two premises

1. The fluxes were assigned randomly to the 18 units upfront. TRUE!!

2. The hypothesis H0 of no flux effect. TRUE or FALSE.

If the p-value is very small, then we can either believe that we saw a rather rare

result for our test statistic Ȳ − X̄ while H0 is true, or we should be induced to

disbelieve H0 and reject it. When is the p-value sufficiently small?

When p-value ≤ .05 the result is said to be significant at level .05, and we

should reject H0, if .05 is our prearranged cut-off or significance level.

The actual p-value is more informative than stating a significant result at .05 or .01.
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One-Sided or Two-Sided P-Value?

A two-sided p-value is appropriate if we test the hypothesis of no treatment

difference against the alternative that there is a difference, without specifying

in which direction.

Here we may hope for an insignificant result so that we may be able to use both

treatments interchangeably.

A one-sided p-value would be appropriate if we test the hypothesis of no treatment

difference against an alternative that specifies the direction in which the means

may differ, say the newer treatment, flux X, yields higher SIR values than flux Y,

the previous treatment.

However, the test result should not influence the choice of the targeted alternative.
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Randomization Reference Distribution of Ȳ − X̄

Y −− X == SIRY −− SIRX
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How Many Distinct Values in the Reference Distribution?

How many distinct values of Ȳ − X̄ can we have?

We saw previously (from the split below) that the max/min values are ±2.244446.

7.5 7.7 8.2 8.6 8.8 9.0 9.3 9.7 9.9
10.0 10.1 10.3 10.6 10.7 11.5 11.5 11.6 12.6

The smallest non-zero change in Ȳ − X̄ is attained when exchanging a Y j with an

Xi that differ by .1, in which case the change in Ȳ − X̄ is ±.1 ·2/9 =±.02222222.

For example, we could exchange colors among 9.9 and 10.0.

At most 202 = (2.244446− (−2.244446))/(.02222222) such increments fit

between the two extremes ±2.244446.

This means that there are at most 203 distinct values of Ȳ − X̄ (the correct count),

but with widely varying frequencies as shown on the previous slide.
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A Matter of Numerical Accuracy

> length(unique(randomization.ref.dist))

[1] 261

> length(unique(round(randomization.ref.dist,6)))

[1] 203

Numerical inaccuracies can arise from limits on internal representation of numbers

in binary form.

For example,

7.7+10.1+10.0
3

− 7.5+10.3+8.2
3

=
17.8+10.0

3
− 17.8+8.2

3
=

1.8
3

= .6

yet

> mean(c(7.7,10.1,10))-mean(c(7.5,10.3,8.2))-.6

[1] -3.330669e-16
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Which Normal Distribution Do We Use as Approximation?

When taking n values Y1, . . . ,Yn randomly and without replacement from Z1, . . . ,ZN ,

then sampling theory gives the mean and variance of Ȳ = ∑
n
i=1Yi/n as

E(Ȳ ) = Z̄ and var(Ȳ ) =
S2

n

(
1− n

N

)
with S2 =

1
N−1

N

∑
i=1

(Zi− Z̄)2 .

(1−n/N) is called the finite population correction factor. See Appendix A.

Further theory, a version of the Central Limit Theorem (CLT), suggests that Ȳ has

an approximate normal distribution with this mean and variance.

If X̄ is the average of the N−n = m Z-values not contained in the Y -sample, then

Z̄ =
nȲ +mX̄

N
=⇒ Ȳ−Z̄ = Ȳ−nȲ +mX̄

N
=

m
N

(Ȳ−X̄) =⇒ Ȳ−X̄ =
N
m

(Ȳ−Z̄) .

Since Z̄ remains constant during any of this random sampling, it follows that

Ȳ − X̄ is approximately normally distributed with mean and variance given by

E(Ȳ − X̄) = 0 and var(Ȳ − X̄) =
N2

m2
S2

n

(
1− n

N

)
= S2 N

mn
= S2

(
1
m

+
1
n

)
.
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Normal QQ-Plot of Ȳ − X̄ Randomization Reference Distribution
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σσ((Y −− X)) == 0.669
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Construction of the Previous Normal QQ-Plot

Let D1 < D2 < .. . < D203 denote the distinct possible values of Ȳ − X̄ and let ni

be the frequency of Ȳ − X̄ = Di among the M = 48620 possible splits.

The proportion of Ȳ − X̄ ≤Di is pi = (n1 + . . .+ni)/M and one could regard Di as

the pi-quantile of the reference distribution and plot it against the pi-quantile of the

approximating normal distribution with mean zero and standard deviation σ = .669.

Unfortunately p203 = 1 and the 1-quantile of the normal distribution = ∞.

To remedy this and also to treat p1 and p203 in a more symmetric fashion we modify

pi to p̃i = pi ·M/(M +1) and plot Di against the p̃i-quantile of the above normal

distribution. This was done in the previous plot.

Another option, with roughly the same effect, is to use p̃i = (n1 + . . .+ni− .5)/M.

We note that the QQ-plot shows the discrepancy in the normal approximation much

more clearly (in the tails) than the density plot superimposed on the histogram.
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Some Experimenting with Randomization Tests

In the following we will take our SIR data and subtract Ȳ − X̄ from all the Y values,

i.e., obtain Y ′i = Yi− (Ȳ − X̄), i = 1,2, . . . ,9.

This altered Y ′ sample will have as average Ȳ ′ = Ȳ − (Ȳ − X̄) = X̄ ,

i.e., both samples are aligned on their common average.

Then we take Y ′1 and add 9× (Ȳ − X̄), i.e., obtain Y ′′1 = Y ′1 +9× (Ȳ − X̄),

and leave the other Y ′′i = Y ′i , i = 2, . . . ,9 unchanged.

=⇒ 1
9
(
Y ′′1 + . . .+Y ′′9

)
=

1
9
(
Y ′1 + . . .+Y ′9

)
+(Ȳ − X̄) = X̄ +(Ȳ − X̄) = Ȳ

=⇒ Ȳ ′′− X̄ = Ȳ − X̄ same difference as before.

However, we round Y ′′1 , . . . ,Y ′′9 to nearest decimal. This changes Ȳ ′′− X̄ slightly.

What is the effect of this data change on the randomization reference distribution?
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Box Plot View of Altered SIR Data
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Comments and Questions

The two samples seem well aligned when comparing medians.

The Y ′′ sample has an outlier, which does not affect the median.

Ȳ ′′− X̄ =−1.463, which is ≈−1.467, our previous value (rounding).

It seems that there is no difference in Flux, if we disregard the outlier.

The outlier is presumably a defective circuit board or something gone wrong with

this board and is not a treatment effect (otherwise should see more such cases).

What will happen to Ȳ ′′− X̄ as we compute it for all 48620 splits?

Where will −1.463 be positioned relative to the reference distribution?

What is its two-sided p-value?
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Randomization Reference Distribution of Ȳ ′′− X̄
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2−sided p−value

0.5455 reference distribution

0.367 normal approximation
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Comments

The randomization reference distribution does not judge this outlier sample

an unusual split. The randomization test is not fooled by the outlier.

The two-sided p-value of .55 shows no significance and basically reflects the fact

that the outlier has equal chance of being in either the X -sample or the Y -sample

under random splits.

The normal approximation is lousy and should not be used here.

In fact, the randomization reference distribution looks like a (.5, .5) mixture of two

approximately normal distributions, centered at ±1.463, respectively.

The CLT effect still shows in these two constituent distributions, generated as

randomization distributions from samples of 8 and 9 or 9 and 8, respectively.
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Some More Experimenting with Randomization Tests

In the following we will take our SIR data and subtract Ȳ − X̄ from all the Y values,

i.e., obtain Y ′i = Yi− (Ȳ − X̄), i = 1,2, . . . ,9.

This altered Y ′ sample will have average Ȳ ′ = Ȳ − (Ȳ − X̄) = X̄ ,

i.e., both samples are aligned on their common average.

Then we take Y ′1, . . . ,Y
′
4 and add (9/4)× (Ȳ − X̄) to each, i.e., obtain

Y ′′i = Y ′i +(9/4)× (Ȳ − X̄) for i = 1,2,3,4, and leave the other

Y ′′i = Y ′i , i = 5, . . . ,9 unchanged.

=⇒ 1
9
(
Y ′′1 + . . .+Y ′′9

)
=

1
9
(
Y ′1 + . . .+Y ′9

)
+(Ȳ − X̄) = X̄ +(Ȳ − X̄) = Ȳ

=⇒ Ȳ ′′− X̄ = Ȳ − X̄ same difference as before.

Again we will round Y ′′1 , . . . ,Y ′′9 to nearest decimal.

How significant will this be in the randomization reference distribution?
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Box Plot View of Altered SIR Data
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Comments and Questions

The two samples seem not so well aligned when comparing medians.

Three Y values seem to fall apart from the other 6, which results in

Ȳ ′′− X̄ =−1.452 which is ≈−1.467, our previous value.

It seems that there is a difference in Flux, but it shows in a difference

in mean and scale (center and spread).

The three “outliers” could presumably be defective circuit boards

or represent more strongly varying treatment effects (treatment/unit interactions).

What will happen to Ȳ ′′− X̄ as we compute it for all 48620 splits?

Where will −1.452 be positioned relative to the reference distribution?

What is its two-sided p-value?
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Randomization Reference Distribution of Ȳ ′′− X̄
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0.1299 reference distribution

0.1208 normal approximation
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Comments

The randomization reference distribution does not judge this more dispersed

and shifted Y -sample a very unusual split.

The randomization test looks only at the difference in averages and not at scale

changes, thus loses some efficacy.

The two-sided p-value of .13 shows no significance.

The normal approximation is reasonable when compared to the previous case,

especially when smoothing over the very local jaggedness,

i.e., using a wider histogram bin width.

A difference in sample dispersion has a negative impact when comparing for means.
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The Effect of Spread

In the following we will take our SIR data and transform them as follows

X ′i = X̄ + .5× (Xi− X̄) and Y ′i = Ȳ + .5× (Yi− Ȳ )

Note that X̄ ′ = X̄ and Ȳ ′ = Ȳ , and thus Ȳ ′− X̄ ′ = Ȳ − X̄ is unchanged.

However, we have reduced the spread in both samples by a factor .5√
∑i(X ′i − X̄ ′)2

m−1
= .5×

√
∑i(Xi− X̄)2

m−1
and similarly for the Y ′i .

Again we will round X ′1, . . . ,X
′
9 and Y ′1, . . . ,Y

′
9 to nearest decimal.

What is the effect of this change on the randomization reference distribution?

57



Box Plot View of Altered SIR Data
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Comments and Questions

The two samples seem to have roughly the same difference in sample means

Ȳ ′− X̄ ′ =−1.433 as opposed to the Ȳ − X̄ =−1.467 in the original data.

The difference comes from the rounding.

It seems that here the difference in flux is more clearly defined,

because each sample is more tightly scattered around its center.

Clearer separation of signal from noise!

Where will −1.433 be positioned relative to the reference distribution?

What is its two-sided p-value?
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Randomization Reference Distribution of Ȳ ′− X̄ ′

Y −− X == SIRY −− SIRX
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Comments and Questions

The two-sided p-value .00045 is much smaller, as one would expect, because

the evidence for a shift seems stronger against the reduced background noise.

The normal approximation seems somewhat reasonable but the resulting two-sided

p-value .0012 is more than twice as large as the p-value .00045 based on the

randomization reference distribution. (Tail discrepancy! Slide 45)

If instead of tightening the spread of each sample by a factor .5 we enlarge the

spread by a factor of 2 what would be the result?

If instead of tightening the spread of each sample by a factor .5 we tighten the

spread by a factor of .5 in only one of the samples, what would be the result?
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Computation Time and Storage Issues

ref.dist2 = function ()
{
SIR=flux$SIR
randomization.ref.dist=combn(1:18,9,FUN=mean.diff.fun,y=SIR)
randomization.ref.dist
}
> system.time(ref.dist2())

user system elapsed
4.23 0.00 5.49

5.49 seconds to compute the
(18

9
)

= 48620 values of the reference distribution.

30 experimental units split into 15 and 15 =⇒
(30

15
)

= 155,117,520 splits

and it would take at least 5.49 ·155117520/48620 = 17515.33 seconds

or 4.9 hours.

Computation times and storage requirements get out of hand in a hurry.

We need an alternative computational approach.
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Approximation to Randomization Reference Distribution

A simple way out of this dilemma of exploding computation times and storage

requirements is to generate a sufficiently large random sample (with replacement),

say K = 10,000, of combinations from this set of all
(m+n

m
)

combinations.

Compute the statistic of interest, Si = S(X i,Y i) = Ȳi− X̄i, i = 1, . . . ,K for each

sampled combination and approximate the randomization reference distribution by

the distribution of the S1, . . . ,SK. In particular, approximate the probability

F(z) = P(S(X ,Y )≤ z) = P(Ȳ − X̄ ≤ z)

by the proportion of simulated sample statistics S1, . . . ,SK that are ≤ z, i.e.,

F(z) = P(S(X ,Y )≤ z)≈ F̂K(z) =
1
K

K

∑
i=1

Bi(z)

with Bi(z) = 1 when Si = S(X i,Y i)≤ z and Bi(z) = 0 else.
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The Law of Large Numbers (LLN)

For any z we have E(Bi(z)) = F(z). Since the Bi(z) are independent and

identically distributed (iid), the Law of Large Numbers (LLN)

=⇒ F̂K(z) =
1
K

K

∑
i=1

Bi(z)−→ F(z) as K→ ∞ .

Similarly, we can approximate p̃(z) = P(|S(X ,Y )| ≥ |z|) = P(|Ȳ − X̄ | ≥ |z|) by

p̂K(z) =
1
K

K

∑
i=1

B̃i(z)

with B̃i(z) = 1 when |Si|= |S(X i,Y i)| ≥ |z| and B̃i(z) = 0 else.

For z = ȳ− x̄, the observed sample mean difference, p̂K(z) gives us a good

approximation for the true two-sided p-value of z.
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Sample Simulation Program

This can be done in a loop using the sample function in R.

simulated.reference.distribution=function(K=10000){

D.star=NULL

for(i in 1:K){

SIR.s=sample(SIR)

D.star[i]=mean(SIR.s[1:9])-mean(SIR.s[10:18])

}

D.star}

The output vector D.star holds the sampled reference distribution of Ȳ − X̄ from

which estimated p-values can be computed for any observed ȳ− x̄.

The following slide shows the QQ-plot comparison with the full randomization

reference distribution, together with the respective p-values.

This approach should suffice for practical purposes.
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QQ-Plot of Ȳ − X̄ for Simulated & Full Randomization Reference Distribution
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The 2-Sample Student t-Test Statistic

When testing the equality of means of two normal populations it is customary and

optimal to compare the respective sample means relative to a measure of the

dispersion in the two samples =⇒ Student’s 2-sample t-statistic

t(X ,Y ) =
(Ȳ − X̄)/

√
1/n+1/m√

[∑n
i=1(Yi− Ȳ )2 +∑

m
j=1(X j− X̄)2]/(m+n−2)

In the presence of substantial inherent variation “small” differences in means could

easily be due to this variation and thus will not appear significant.

Thus one should judge mean differences relative to a measure of this variation.

So far we have not assumed that we sample normal populations.

In fact, we only guaranteed that we sample from a finite population Z1, . . . ,ZN .
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Randomization Distribution of the 2-Sample t-Statistic

The values of t(X ,Y ) are in 1-1 monotone increasing correspondence with those

of Ȳ − X̄ under all splits. See Appendix B.

In fact,

=⇒ t(X ,Y ) =
√

m+n−2√
1/n+1/m

W√
1− mn

N W 2
↗ in W

Here

W = (Ȳ − X̄)/
√

∑(Zk− Z̄)2 .

with ∑(Zk− Z̄)2 staying constant over all splits.

Thus p-values for t(x,y) and ȳ− x̄ will be the same under

each respective randomization reference distribution.
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Student t-Approximation for the t(X ,Y ) Reference Distribution

In regular∗ situations the randomization reference distribution of t(X ,Y ) is very well

approximated by a Student t-distribution with 16 = 18−1−1 degrees of freedom.

This was very useful before computing and simulation were readily available.

All one needs to do is compute t(X ,Y ) for the observed data and calculate its

p-value from the Student t16-distribution. Here t(x,y) =−2.512236.

Reference: G.E.P Box and S.L. Anderson, “Permutation theory in the derivation of
robust criteria and the study of departures from assumptions,”
J. Roy. Stat. Soc., Ser. B, Vol 17 (1955), pp. 1-34.

The test based on t(X ,Y ) and its t-distribution under H0 also shows up

in the normal-model-based approach to this problem. More on this later.

It is the concept of the t(X ,Y ) statistic (not Ȳ − X̄ ) that generalizes to more

complex experimental situations.
∗Our outlier experiment shows what can happen
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t(X ,Y ) Randomization Reference Distribution
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0.023098     t16  −approximation
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t-QQ-Plot of t(X ,Y ) Randomization Reference Distribution
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Randomization Reference Distribution of Ȳ ′′− X̄
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The outlier example shows that the t-distribution is not always a good fit. 72



Critical Value, Significance Level & Type I Error

Any extreme value of |Ȳ − X̄ | or |t(X ,Y )| could either come about due to a rare

chance event (via the randomization) or due to H0 actually being wrong.

We have to make a decision: Reject H0 or not?

We may decide to reject H0 when |Ȳ − X̄ | ≥C or |t(X ,Y )| ≥ C̃, where C or C̃ are

respective critical values.

To determine C or C̃ one usually sets a significance level α which limits the

probability of rejecting H0 when in fact H0 is true (Type I error). The requirement

α = P(reject H0 | H0) = P(|Ȳ − X̄ | ≥C | H0) = P(|t(X ,Y )| ≥ C̃| H0)

then determines C =Cα or C̃ = C̃α. As α↘ we have Cα↗ or C̃α↗.

Here P(. . . |H0) refers to the randomization reference distribution.
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Significance Levels and P-Values

When we reject H0 we would say that the results were significant

at the level α, agreed upon prior to the experiment.

Commonly used values of α are α = .05 or α = .01.

Rejecting at smaller α than these would be even stronger evidence against H0.

For how small an α would we still have rejected?

This leads us to the observed significance level α̂ or p-value of the test for the given

data, i.e., for the observed discrepancy value |ȳ− x̄|

p-value = P(|Ȳ − X̄ | ≥ |ȳ− x̄| | H0) = α̂ i.e., Cα̂ = |ȳ− x̄|

α̂ is the smallest α at which we would have rejected H0 with the observed |ȳ− x̄|.
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How to Determine the Critical Value C.crit for the Level α Test

For α = .05 we want to find C.crit such that mean(abs(x)>=C.crit)=.05.

Here x = randomization.ref.dist is the reference distribution vector.

Equivalently, find the .95-quantile of abs(x) via C.crit=quantile(abs(x),.95).

From the full reference distribution we get C.crit(α = .05) = 1.28889

and C.crit(α = .01) = 1.64444.

From the simulated reference distribution we get C.crit(α = .05) = 1.31111

and C.crit(α = .01) = 1.66667.

Note that we avoided the use of C in place of C.crit because in R the letter C has

a predetermined meaning. =⇒ ?C.

R used to warn you when your chosen object name masks a system object

name. This warning no longer seems to happen.
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What Does the t-Distribution Give Us?

What does the observed t-statistic t(x,y) =−2.5122 give as 2-sided p-value?

P(|t(X ,Y )| ≥ 2.5122)= 2∗ (1−pt(2.5122,16)) = 2∗pt(−2.5122,16) = .02310,

as compared to the .02587 from the full randomization reference distribution.

What are the critical values tcrit(α) for |t(X ,Y )| for level α = .05, .01 tests?

We find tcrit(α = .05) = C̃.05 = qt(.975,16) = 2.1199 and

tcrit(α = .01) = C̃.01 = qt(.995,16) = 2.9208, respectively.

With |t(x,y)|= 2.5122 we would reject H0 at α = .05 since |t(x,y)| ≥ 2.1199

but not at α = .01 since |t(x,y)|< 2.9208.

The same message derives from the p-value: .01 < .02310 < .05.
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Comparing P-Values

The randomization reference distribution gave us a p-value of: .02587

The normal approximation for the Ȳ − X̄ reference distribution gave us: .02828

The t16 approximation for t(X ,Y ) gave us: .02310.

The approximations deviate in opposite directions with roughly the same magnitude

.02828-.02587 = .00241 and .02310-.02587 = -.00277.

It is not clear whether the t approximation should be preferred based on

approximation quality.

The t approximation involves a single distribution

while the normal approximation still requires σ(Ȳ − X̄).

t(X ,Y ) will fit better into the larger picture of what lies ahead.
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Critical Values of the Randomization Reference Distribution
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Some Concluding Comments

Critical values and fixed significance levels were motivated by

1. theoretical considerations that allowed the comparison of different level α tests

and to find the best one. Neyman-Pearson optimality theory.

2. the planning of sample sizes to achieve sufficient power to detect

treatment effects of specified size.

3. easy tabulation of critical values for a limited set of α values.

4. the fact that computing was not what it is today.

Statistical tables are following the path of logarithm tables.
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Calculator Simulations in 1980

Back in 1980 I asked colleagues Piet Groeneboom and Ron Pyke to look at the

large sample distribution of a particular statistic Sn (a very difficult problem).

They succeeded in showing that the asymptotic distribution of Sn should be normal

Sn ≈N
(

n log(n),3n2 log(n)
)

for large n.

I simulated the distribution for Sn on my programmable calculator HP-41 CV.

It ran for days, weeks, and the intermediate results did not look normal at all.

Since it was known that Sn ≥ 0, a natural heuristic for decent normality would be

0≤ n log(n)−3×
√

3n2 log(n) =⇒ log(n)≥ 27 or n≥ 5.3×1011 .
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Calculators in My Time
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Appendix A: Sampling Theory Proofs

The following two slides establish the mean and variance of Ȳ when Y1, . . . ,Yn are

randomly drawn without replacement from Z1, . . . ,ZN with N = m+n.

E(Ȳ ) = Z̄

and

var(Ȳ ) =
S2

n

(
1− n

N

)
with S2 =

1
N−1

N

∑
i=1

(Zi− Z̄)2

Note the evident correctness when n = N (m = 0).
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Sampling Theory

Write Ȳ = ∑
N
i=1 IiZi/n , where the random variable Ii = 1 whenever the Y -sample

contains Zi and Ii = 0 otherwise. Then

E(Ii) = P(Ii = 1) =

(1
1
)(N−1

n−1
)(N

n
) =

(N−1)!n!(N−n)!
N!(n−1)!(N−n)!

=
n
N

.

and for i 6= j

E(IiI j) = P(Ii = 1, I j = 1) =

(2
2
)(N−2

n−2
)(N

n
) =

(N−2)!n!(N−n)!
N!(n−2)!(N−n)!

=
n(n−1)
N(N−1)

.

The Z1, . . . ,ZN are the finite population from which we sample.

=⇒ E(Ȳ ) =
1
n

N

∑
i=1

Zi E(Ii) =
1
n

N

∑
i=1

Zi
n
N

=
1
N

N

∑
i=1

Zi = Z̄ .

Further note

Ȳ =
1
n

N

∑
i=1

IiZi =
1
n

N

∑
i=1

Ii(Zi− Z̄)+ Z̄ since
N

∑
i=1

Ii = n .
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var(Ȳ ) = S2
n
(
1− n

N
)

Writing zi = Zi− Z̄ with ∑
N
i=1 zi = 0 and dropping the constant Z̄ in the variance

=⇒ var(Ȳ )= var

(
1
n

N

∑
i=1

Iizi

)
= cov

(
1
n

N

∑
i=1

Iizi,
1
n

N

∑
j=1

I jz j

)
=

1
n2

N

∑
i=1

N

∑
j=1

ziz jcov(Ii, I j)

For i = j we have cov(Ii, I j) = var(Ii) = (n/N)(1−n/N) = nm/N2

and for i 6= j we have

cov(Ii, I j) = E(IiI j)−E(Ii)E(I j) = P(Ii = 1, I j = 1)− n
N

n
N

=
n(n−1)
N(N−1)

− n2

N2

=
n
N

(
n−1
N−1

− n
N

)
=

n
N

N(n−1)− (N−1)n
N(N−1)

=− n
N

N−n
N(N−1)

=− nm
N2(N−1)

var(Ȳ )=
1
n2

N

∑
i=1

z2
i

nm
N2−

1
n2 ∑

i 6= j
ziz j

nm
N2(N−1)

= S2
(

nm(N−1)
n2N2 +

nm
n2N2

)
=

S2

n

(
1− n

N

)
since 0 = ∑i zi ∑ j z j = ∑i ∑ j ziz j = ∑i z2

i +∑i 6= j ziz j, i.e., ∑i 6= j ziz j =−∑i z2
i .
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Appendix B: Monotone Equivalence of Ȳ − X̄ and t(X ,Y )
The values of t(X ,Y ) are in 1-1 monotone increasing correspondence with those

of Ȳ − X̄ under all splits.

∑(Zk− Z̄)2−mn
N

(Ȳ − X̄)2 = ∑Y 2
i +∑X2

j −
1
N

(mX̄ +nȲ )2−mn
N

(Ȳ − X̄)2

= ∑Y 2
i +∑X2

j −nȲ 2−mX̄2 = ∑(Yi− Ȳ )2 +∑(Xi− X̄)2

Note that
t(X ,Y )

√
1/n+1/m√

m+n−2
=

Ȳ − X̄√
∑(Yi− Ȳ )2 +∑(Xi− X̄)2

=
W√

1− mn
N W 2

↗ in W

with W = (Ȳ − X̄)/
√

∑(Zk− Z̄)2, where ∑(Zk− Z̄)2 is constant over all splits.

=⇒ t(X ,Y )=
√

m+n−2√
1/n+1/m

W√
1− mn

N W 2
or W =

t(X ,Y )√
m+n−2

1/n+1/m + mn
N t(X ,Y )2
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