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One-Factor ANOVA

ANOVA is an acronym for Analysis of Variance.

The primary focus is the difference in means of several populations or

the difference in mean response under several treatments

The reference to variance in ANOVA alludes to the analysis technique.

It is the overall data variation that is decomposed into several components.

How much of that variation is due to changing the sampled population

or changing the treatment?

How much variation cannot not be attributed to such systematic changes?
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ANOVA Illustrated
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The Notion of Factor in One-Factor ANOVA
It is difficult to explain the notion of

2-dimensional space to someone who has lived only in 1-dimensional space,

or 3-dimensional space to someone who lives in flatland

or 4-dimensional space to us in the “real” 3-dimensional world.

The term Factor similarly alludes to different possible directions/dimensions in which

changes can take place in populations or in treatments.

Example: In soldering circuit boards we could have several types of flux (say 3)

and also several methods of cleaning the boards (say 4).

Combining each with each, we thus could have 3×4 = 12 distinct treatments.

However, it is more enlightening to view the effects of flux and cleaning method

separately. Each would be called a factor, the flux factor and the cleaning factor.

We can then ask which factor is responsible for changes in the mean response.
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More Than 2 Treatments or Populations

Again we deal with circuit boards. Now we investigate 3 types of fluxes: X, Y, Z.

We have 18 circuit boards, randomly assign each flux to 6 boards.

In principle, this gives us the randomization reference distribution and

thus a logical basis for a test of the hypothesis H0 : no flux differences.

Randomize the order of soldering/cleaning, coating, and humidity chamber slots.

These randomizations avoid unintended biases from hidden factors (dimensions).

There are
(18

6
)
×
(12

6
)
×
(6

6
)

= 18,564×924×1 = 17,153,136 flux allocations.

Note the growth in the number of splits when dividing 18 into 3 groups of 6.

The full randomization reference distribution may be pushing the computing limits

=⇒ simulated reference distribution.
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The Flux3 Data
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Differences in the Fluxes?

To examine whether the fluxes are in some way different in their effects we could

again focus on differences between the means of the SIR responses.

We denote these means by µ1 = µX , µ2 = µY , and µ3 = µZ.

Mathematically, X ≡ Y and Y ≡ Z =⇒ X ≡ Z.

It would seem that testing H0,XY : X ≡ Y and H0,Y Z : Y ≡ Z might suffice.

Statistically, X ≈ Y and Y ≈ Z allows for the possibility

that X and Z are sufficiently different.

To guard against this we could perform all 3 possible two-sample tests

for the following respective hypothesis testing problems:

H0,XY : X ≡ Y vs. H1,XY : µX 6= µY , H0,Y Z : Y ≡ Z vs. H1,Y Z : µY 6= µZ

H0,XZ : X ≡ Z vs. H1,XZ : µX 6= µZ
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Probability of Overall Type I Error?

If we do each such test at level α, what is our chance of getting a rejection by

at least one of these tests when in fact all 3 fluxes are equivalent?

(2 versus 4 engines on aircraft, controversy between Boeing and Airbus)

If we assume that these 3 tests are independent of each other we would have

P0(Overall Type I Error) = P0(reject at least one of the hypotheses)

= 1−P0(accept all of the hypotheses)

= 1−P0( accept H0,XY ∩ accept H0,XZ ∩ accept H0,Y Z)

by independence = 1− (1−α)3 = 0.142625 for α = .05 .

P0 indicates that all 3 fluxes are the same and that we are dealing with the null or

randomization reference distribution.
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Engine Failure

If pF = probability of shutdown for a given engine ( pF ≈ 1 in 10000 flights)

the chance of at least one shutdown on a flight with k engines is

P(at least one shutdown) = 1−P(no shutdown) = 1− (1− pF)k ≈ k× pF .

k 1− (1− pF)k k× pF
2 .00019999 .0002
4 .00039994 .0004

(1− pF)k assumes that engine (non-)shutdowns are independent events.

This independence is the goal of ETOPS

(Extended-range Twin-engine Operational Performance Standards)
http://en.wikipedia.org/wiki/ETOPS

For example, different engines are serviced by different mechanics.
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The Multiple Comparison Issue

If you expose yourself to multiple rare opportunities of making a wrong decision,

the chance of making a wrong decision at least once (the overall type I error) is

much higher than planned for in the individual tests.

This problem is referred to as the multiple comparison issue.

How much higher is it? The calculation based on independence is not quite correct.

The same sample is involved in any two such comparisons =⇒ dependence.

An upper bound on the overall type I error probability by Boole’s inequality:

P0(Overall Type I Error ) = P0(reject H0,XY ∪ reject H0,XZ ∪ reject H0,Y Z)

≤ P0(reject H0,XY )+P0(reject H0,XZ)+P0(reject H0,Y Z)

= 3α = .15 when α = .05 .

How much smaller than this upper bound is the true P0(Overall Type I Error )?
9



Overall Type I Error Probability
We will evaluate it based on the randomization reference distribution.

Get the randomization reference distribution of X̄−Ȳ for splits of the 18 SIR values

into 3 groups of 6 and taking the difference of averages for the first two groups.

Do this by simulation: Nsim0 = 10000 times.

For α = .05 get the .95-quantile tcrit of this simulated |X̄− Ȳ | reference

distribution. It serves equally well for tests based on |X̄− Z̄| or |Ȳ − Z̄|. Why?

Then simulate another Nsim1 = 10000 such splits, computing |X̄− Ȳ |, |X̄− Z̄|,
and |Ȳ − Z̄| each time, and tally the proportions of each individually exceeding

tcrit and the proportion of at least one of them exceeding tcrit.

The resulting proportions are: 0.0451 0.0460 0.0491 for the individual tests

(≈ the targeted α = .05) and 0.1186 for the overall type I error rate.

The code for running this, typeIerror.rateRand, is posted on web.
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A Global Testing View

Rather than doing all 3 possible pairwise tests based on separate discrepancy

statistics |X̄−Ȳ |, |X̄− Z̄|, and |Ȳ − Z̄|, we will address this in a global way, using a

single discrepancy statistic. For now we will focus on the population view.

In the context of a 3 population model we will test the hypothesis

H0 : µ1 = µ2 = µ3 (common value unspecified =⇒ composite hypothesis)

against the alternative H1 : µi 6= µ j for some i 6= j.

More generally we may have t treatments

and ni observations Yi,1, . . . ,Yi,ni for the ith treatment, i = 1, . . . , t.

Test H0 : µ1 = . . . = µt against H1 : µi 6= µ j for some i 6= j.

For the Flux3 data we have: t = 3 and n1 = n2 = n3 = 6, a balanced design.

When the ni are not all the same we have an unbalanced design.
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Useful Models for Treatment Variation

We have measurements Yi j, the jth response under the ith treatment,

j = 1, . . . ,ni and i = 1, . . . , t. A total of N = n1 + . . .+nt measurements.

Treatment Means Model: Yi j = µi + εi j with E(εi j) = 0 and var(εi j) = σ2.

View εi j (i.i.d.) as response variation/error/noise that occurs within treatment

or after the treatment mean µi is subtracted from the response Yi j.

Treatment Effects Model: Yi j = µ+τi+εi j with E(εi j) = 0 and var(εi j) = σ2.

µ = µ̄ = ∑i j µi/N = ∑i niµi/N = grand mean (or ni/N-weighted average of the µi)

The grand mean is the average of the means for all the observations.

τi = µi−µ = µi− µ̄ is the ith treatment effect and

εi j (i.i.d.) is the within treatment variation with E(εi j) = 0 and var(εi j) = σ2.

Note that the τi satisfy the constraint: ∑i j τi = ∑i niτi = 0.
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The Reduced Model

In contrast to the full model with varying treatment means, as discussed on the

previous slide, we assume in the reduced model a single mean for all observations:

Yi j = µ+ εi j with E(εi j) = 0 with var(εi j) = σ
2 ,

i.e., there is no variation or change due to treatments.

The reduced model corresponds to our previously stated hypothesis

H0 : µ1 = . . . = µt or equivalently H0 : τ1 = . . . = τt = 0

which is a special case of our previous full population model.

Test this hypothesis by fitting the full model and the reduced model to the data

and compare the quality of fits relative to each other via some discrepancy metric.
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Full Model Fitting by Least Squares

The method of Least Squares originated with Gauss and Legendre.

Minimize the Sum of Squares criterion

SS(µ1, . . . ,µt) =
t

∑
i=1

ni

∑
j=1

(Yi j−µi)2 over µ = (µ1, . . . ,µt) .

Using the notation Ȳi. = ∑
ni
j=1Yi j/ni and the fact ∑

ni
j=1(Yi j− Ȳi.) = 0:

SS(µ1, . . . ,µt)=
t

∑
i=1

ni

∑
j=1

(Yi j−Ȳi.+Ȳi.−µi)2 (a+b)2 = a2+b2+2ab

=
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2 +
t

∑
i=1

ni

∑
j=1

(Ȳi.−µi)2 +2
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)(Ȳi.−µi)

=
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2 +
t

∑
i=1

ni

∑
j=1

(Ȳi.−µi)2 ≥
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2 = SS(µ̂1, . . . , µ̂t)

=⇒ the least squares estimates (LSE) µ̂i = Ȳi. minimize SS(µ1, . . . ,µt).
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The Dot Notation

If a1, . . . ,an are n numbers then

a. =
n

∑
i=1

ai and ā. =
n

∑
i=1

ai/n .

For an array of numbers ai j, i = 1, . . . ,m, j = 1, . . . ,n, we write

a. j =
m

∑
i=1

ai j ā. j =
m

∑
i=1

ai j/m ai. =
m

∑
j=1

ai j āi. =
m

∑
j=1

ai j/n

a.. =
m

∑
i=1

n

∑
j=1

ai j and ā.. =
m

∑
i=1

n

∑
j=1

ai j/(mn)

Similarly for higher dimensional arrays ai jk, i = 1, . . . ,m, j = 1, . . . ,n, k = 1, . . . , `

ai j. =
`

∑
k=1

ai jk and āi j. =
`

∑
k=1

ai jk/` and so on.
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Reduced Model Fitting by Least Squares

Minimize the sum of squares criterion SS(µ) = ∑
t
i=1 ∑

ni
j=1(Yi j−µ)2

With Ȳ..= ∑i ∑ jYi j/∑i ni = ∑i ∑ jYi j/N = ∑i(ni/N)Ȳi. and ∑i ∑ j(Yi j−Ȳ..) = 0

=⇒ SS(µ) =
t

∑
i=1

ni

∑
j=1

(Yi j−µ)2 =
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳ..+ Ȳ..−µ)2

=
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳ..)2 +
t

∑
i=1

ni

∑
j=1

(Ȳ..−µ)2+2
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳ..)(Ȳ..−µ)

=
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳ..)2 +
t

∑
i=1

ni

∑
j=1

(Ȳ..−µ)2 ≥
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳ..)2 = SS(µ̂)

=⇒ the least squares estimate (LSE) µ̂ = Ȳ.. minimizes SS(µ)
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Means and Variances of Least Squares Estimates

E(Ȳi.) = E

(
1
ni

ni

∑
j=1

Yi j

)
=

1
ni

ni

∑
j=1

E(Yi j) =
1
ni

ni

∑
j=1

µi = µi

var(Ȳi.) = var

(
1
ni

ni

∑
j=1

Yi j

)
=

1
n2

i

ni

∑
j=1

var(Yi j) =
1
n2

i

ni

∑
j=1

σ
2 =

σ2

ni

E(Ȳ..) = E

(
1
N

t

∑
i=1

ni

∑
j=1

Yi j

)
= E

(
t

∑
i=1

ni
N

Ȳi.
)

=
t

∑
i=1

ni
N

E(Ȳi.) =
t

∑
i=1

ni
N

µi = µ̄

var(Ȳ..) = var

(
t

∑
i=1

ni
N

Ȳi.
)

=
t

∑
i=1

(ni
N

)2
var(Ȳi.) =

t

∑
i=1

(ni
N

)2 σ2

ni
=

t

∑
i=1

ni
N2σ

2 =
σ2

N

var(Ȳ..) = var

(
1
N

t

∑
i=1

ni

∑
j=1

Yi j

)
=

1
N2

t

∑
i=1

ni

∑
j=1

var(Yi j) =
1

N2

t

∑
i=1

ni

∑
j=1

σ
2 =

σ2

N
.
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Sum of Squares (SS) Decomposition

Using ∑
ni
j=1(Yi j− Ȳi.) = 0 we have the following sum of squares decomposition

SST =
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳ..)2 =
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.+ Ȳi.− Ȳ..)2

=
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2 +
t

∑
i=1

ni

∑
j=1

(Ȳi.− Ȳ..)2

+2
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)(Ȳi.− Ȳ..)

=
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2 +
t

∑
i=1

ni

∑
j=1

(Ȳi.− Ȳ..)2 = SSE +SSTreat

This is the fundamental ANOVA identity: SST = SSE +SSTreat = SSW +SSB.

SS of total variation = error variation+treatment variation

or SS of total variation = variation within samples + variation between samples.
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How to Compare the Model Fits?

How should we compare the two model fits

SSE =
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2 and SST =
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳ..)2 ?

Under H0 (reduced model) both fits should be somewhat comparable, except that

the full model fit gave us more freedom in minimizing the sum of squares.

The previous slide showed

SSTreat +SSE = SST =
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳ..)2 ≥
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2 = SSE

with SST −SSE = SSTreat =
t

∑
i=1

ni

∑
j=1

(Ȳi.− Ȳ..)2 .

To make a fair comparison we should make allowances for this extra freedom.

We need to understand E(SST ) and E(SSE) when H0 is true or false.
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Unbiasedness of s2: E(s2) = σ2

Assume that X1, . . . ,Xn are i.i.d. with mean µ and variance σ2.

If in addition we assume a normal distribution for the Xi we have

E

(
1

n−1

n

∑
i=1

(Xi− X̄)2

)
= E(s2)= σ

2 =⇒ s2 is an unbiased estimate of σ2 .

The normality assumption is not essential. Using E(Y 2) = var(Y )+ [E(Y )]2

=⇒ E((n−1)s2) = E

(
n

∑
i=1

(Xi− X̄)2

)
= E

(
n

∑
i=1

(
X2

i −2XiX̄ + X̄2
))

= E

(
n

∑
i=1

X2
i −nX̄2

)
= n(σ2 +µ2)−n(var(X̄)+ [E(X̄)]2)

= n(σ2 +µ2)−n(σ2/n+µ2) = (n−1)σ2 ⇒ E(s2) = σ
2.
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E(MSE) = σ2

With

s2
i =

ni

∑
j=1

(Yi j− Ȳi.)2/(ni−1) we have
t

∑
i=1

(ni−1)s2
i = SSE

and the result from the previous slide shows

E

(
t

∑
i=1

ni

∑
j=1

(Yi j− Ȳi.)2

)
= E

(
t

∑
i=1

(ni−1)s2
i

)
=

t

∑
i=1

(ni−1)σ2 = (N− t)σ2

or the Mean Square for Error

MSE =
SSE

N− t
=

∑
t
i=1 ∑

ni
j=1(Yi j− Ȳi.)2

N− t
is an unbiased estimate for σ2

This is true whether H0 : µ1 = . . . = µt holds or not (also without normality).
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E(MSTreat) = σ2+?

SSTreat =
t

∑
i=1

ni(Ȳi.− Ȳ..)2 =
t

∑
i=1

ni(Ȳ 2
i.−2Ȳi.Ȳ..+ Ȳ 2..) =

t

∑
i=1

niȲ
2
i.−NȲ 2..

=⇒ E (SSTreat) =
t

∑
i=1

niE(Ȳ 2
i.)−N E(Ȳ 2..) (with or without normality)

=
t

∑
i=1

ni(var(Ȳi.)+ [E(Ȳi.)]2)−N(var(Ȳ..)+ [E(Ȳ..)]2)

=
t

∑
i=1

ni(σ2/ni +µ2
i )−N(σ2/N + µ̄2) = (t−1)σ2 +

t

∑
i=1

ni(µi− µ̄)2

since
t

∑
i=1

ni(µi− µ̄)2 =
t

∑
i=1

niµ
2
i +

t

∑
i=1

niµ̄
2−2

t

∑
i=1

niµiµ̄ =
t

∑
i=1

niµ
2
i −Nµ̄2

E(MSTreat)= E (SSTreat/(t−1))= σ
2+

t

∑
i=1

ni(µi− µ̄)2/(t−1)= σ
2+

t

∑
i=1

niτ
2
i /(t−1) .
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A Test Statistic for H0

When H0 is true then both MSTreat and MSE are unbiased estimates of σ2

H0 is false =⇒ ∑
t
i=1 ni(µi− µ̄)2/(t−1) > 0 =⇒ E(MSTreat) > E(MSE)

and MSTreat will generally be somewhat larger than MSE

and more so when the µi are more dispersed. The ni act as magnifiers!

This suggests F = MSTreat/MSE as a plausible test statistic.

Looking at the ratio makes more sense than looking at the difference, since

any such difference should be viewed relative to the magnitude of MSE.

By transferral we will use this test statistic in our randomization test,

even though we are not quite in an i.i.d. situation there.
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Equivalent Form for the F-Statistic under Randomization

First note that in the SS decomposition SST = SSTreat +SSE the sum SST stays

constant over all partitions of the full data set into t groups of sizes n1, . . . ,nt .

In SSTreat = ∑
t
i=1 niȲ 2

i.−NȲ 2.. = Fequiv−NȲ 2.. with Fequiv = ∑
t
i=1 niȲ 2

i.
the term Ȳ.. stays constant over all such partitions.

Thus

F =
N− t
t−1

SSTreat
SSE

=
N− t
t−1

SSTreat
SST−SSTreat

=
N− t
t−1

Fequiv−NȲ 2..
SST− (Fequiv−NȲ 2..)

↗ in Fequiv

Thus the randomization distribution of F is in 1-1 correspondence with the

randomization distribution of Fequiv which we can then take as an alternate

and more easily calculable test statistic for computing p-values under H0.
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Randomization Distribution for Flux3
Simulated Randomization Distribution

F−equivalent Test Statistic

F
re
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cy
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0
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20
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30

00
40

00
50

00

F−equivalent test statistic  1832.3

p−value = 0.04296

based on  1e+05  simulations
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R Code for Randomization Distribution

Ftest.rand = function (y=SIR,n=c(6,6,6),Nsim=10000){#try Nsim=10000 first for speed
F.obs=n[1]*mean(y[1:n[1]])ˆ2+n[2]*mean(y[n[1]+

1:n[2]])ˆ2+n[3]*mean(y[n[1]+n[2]+1:n[3]])ˆ2
F.eq=rep(0,Nsim)
for(i in 1:Nsim){
ind=sample(1:18)
F.eq[i]=n[1]*mean(y[ind[1:n[1]]])ˆ2+

n[2]*mean(y[ind[n[1]+1:n[2]]])ˆ2+n[3]*mean(y[ind[n[1]+n[2]+1:n[3]]])ˆ2
}
out=hist(F.eq,nclass=100,main="Simulated Randomization Distribution",

xlab="F-equivalent Test Statistic",col=c("blue","orange"))
abline(v=F.obs,col="red",lwd=2)
pval=mean(F.eq>=F.obs)
text(F.obs+.2,.24*max(out$counts),

paste("F-equivalent test statistic ",format(signif(F.obs,5))),adj=0)
text(F.obs+.2,.2*max(out$counts),paste("p-value =",format(signif(pval,4))),adj=0)
text(F.obs+.2,.16*max(out$counts),paste("based on ",Nsim," simulations"),adj=0)
c(F.obs,pval)
}

This would need to be adapted to other ANOVA data situations!
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F-Distribution as Approximation to the Randomization Distribution

As in the case of the 2-sample problem one finds that the Ft−1,N−t distribution

often provides a good approximation to the randomization distribution of F .

The randomization distribution of F is obtained from that of Fequiv via

F =
N− t
t−1

Fequiv−NȲ 2..
SST− (Fequiv−NȲ 2..)

The next slide shows the quality of this approximation for the Flux3 data set.
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Randomization Distribution for Flux3
Simulated Randomization Distribution

F−Statistic

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
2

0.
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0.
6

0.
8

1.
0

F−statistic  3.6452

p−value = 0.04296  & p−value = 0.05126  from F−distribution

based on  1e+05  simulations

superimposed F−density
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Assuming Normality

In addition, we will now assume that the Yi j are independent and have normal

distributions with the previously indicated model parameters.

Whether H0 : µ1 = . . . = µt is true or not, we have (ni−1)s2
i ∼ σ2χ2

ni−1.

Further, s2
1, . . . ,s

2
t are independent and thus

SSE =
t

∑
i=1

(ni−1)s2
i ∼ σ

2
χ

2
n1−1 + . . .+σ

2
χ

2
nt−1 ∼ σ

2
χ

2
N−t

SSE is independent of Ȳ1., . . . ,Ȳt., since s2
i and Ȳi. are independent for all i

and all pairs (s2
i ,Ȳi.) are independent =⇒ SSE and SSTreat are independent.

Is SSTreat = ∑
t
i=1 niȲ 2

i.−NȲ 2.. ∼ σ2χ2? What degrees of freedom f ?

Under H0 we would expect f = t−1 since E(MSTreat) = E(SSTreat/(t−1)) = σ2.
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The Distribution of F

The previous slide and Appendix A establish the following:

SSE and SSTreat are independent and

SSE/σ
2 ∼ χ

2
N−t and SSTreat/σ

2 ∼ χ
2
t−1,λ with λ =

t

∑
i=1

ni(µi− µ̄)2/σ
2

=⇒ F =
SSTreat/(t−1)
SSE/(N− t)

∼ Ft−1,N−t,λ

Under H0 : µ1 = . . . = µt this becomes the Ft−1,N−t distribution.

We reject H0 whenever F ≥ Ft−1,N−t(1−α) = Fcrit = qf(1−α,t−1,N−t)

which denotes the (1−α)-quantile of the Ft−1,N−t distribution.

Power function: β(λ) = P(F ≥ Ft−1,N−t(1−α)) = 1−pf(Fcrit,t−1,N−t,λ)
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R’s anova and lm Applied to Flux3
> SIR=c(Flux3$X,Flux3$Y,Flux3$Z)

> SIR

[1] 9.9 9.6 9.6 9.7 9.5 10.0 10.7 10.4 9.5 9.6 9.8

[12] 9.9 10.9 11.0 9.5 10.0 11.7 10.2

> FLUX=c(rep("X",6),rep("Y",6),rep("Z",6))

> FLUX

[1] "X" "X" "X" "X" "X" "X" "Y" "Y" "Y" "Y" "Y" "Y" "Z" "Z"

[15] "Z" "Z" "Z" "Z"

> anova(lm(SIR˜as.factor(FLUX))) # see ?anova & ?lm

Analysis of Variance Table

Response: SIR

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(FLUX) 2 2.1733 1.0867 3.6452 0.05126 .

Residuals 15 4.4717 0.2981

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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Discussion of Noncentrality Parameter λ

The power of the ANOVA F-test is a monotone function of λ = ∑
t
i=1 ni(µi− µ̄)2/σ2

(See Appendix B) Let us consider the drivers in λ.

λ increases as σ decreases (provided the µi are not all the same).

The more difference there is between the treatment means µi the higher λ

Increasing the sample sizes will magnify ni(µi− µ̄)2.

In fact: ∂λσ2/∂ni = (µi− µ̄)2−∑ j 2n j(µ j− µ̄)(µi− µ̄)/N = (µi− µ̄)2 ≥ 0,

since ∂µ̄/∂ni = ∂/∂ni
(
∑ j n jµ j/∑ j n j

)
=(µi− µ̄)/N i.e., increasing ni never hurts.

The sample sizes we can plan for.

Later we address reducing σ by blocking units into more homogeneous groups.
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Optimal Allocation of Sample Sizes?

We have N experimental units available for testing the effects of t treatments

and suppose that N is a multiple of t, say N = n× t (n and t integer).

It would seem best to use samples of equal size n for each of the t treatments

i.e., we would opt for a balanced design.

That way we would not emphasize one treatment over any of the others.

Is there some optimality criterion that could be used as justification?

How many observations per treatment, i.e., how large should n be?

We may plan for a balanced design upfront, but then something goes wrong with

a few observations and they have to be discarded from analysis.

Thus we need to be prepared for unbalanced designs.
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A Sample Size Allocation Rationale

We may be concerned with alternatives where all means but one are the same.

We want to achieve a given power β against such a mean, which deviates by ∆

from the other means (which coincide).

Since we won’t know upfront which mean sticks out, we would want to maximize

the minimum power against all such contingencies. Max-Min Strategy!

If µ1 = µ+∆ and µ2 = . . . = µt = µ then µ̄ = µ+n1∆/N .

With a bit of algebra we get

λ1 =
t

∑
i=1

ni(µi− µ̄)2/σ
2 =

N∆2

σ2
n1
N

(
1− n1

N

)

and similarly λi =
N∆2

σ2
ni
N

(
1− ni

N

)
for the other cases.

34



The Max-Min Solution

It is easy to see now that for fixed σ

max
n1,...,nt

min
1≤i≤t

[λi] = max
n1,...,nt

min
1≤i≤t

[
N∆2

σ2
ni
N

(
1− ni

N

)]
= max

n1,...,nt
min

1≤i≤t

[
N∆2

σ2 Ri

]
is achieved when n1 = . . . = nt . That is because Ri = (ni/N)(1−ni/N) increases

for ni/N ≤ 1/2. We can increase the smallest of these Ri only at the expense of

lowering some of the other higher R j, since n1 + . . .+nt = N stays fixed. This

increase can only happen when there is something left to lower.

Hence

max
n1,...,nt

min
1≤i≤t

[λi] =
N∆2

σ2 ×
n
N

(
1− n

N

)
= n×∆2

σ2×
(

1− n
nt

)
= n×∆2

σ2×
t−1

t
= n×λ0 .

λ0 = (∆2/σ2)× (t−1)/t can be interpreted more generally as ∑(µi− µ̄)2/σ2.
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An Alternate Rationale

Dean and Voss discuss an alternate rationale for optimal sample size choice.

Find the optimal sample sizes n1, . . . ,nt (with ∑ni = n× t = N), such that we have

minimum power ≥ β when any two means differ by at least ∆, i.e., when

max(µ1, . . . ,µt)−min(µ1, . . . ,µt)≥ ∆ .

It can again be shown that equal sample size allocation, i.e., n1 = . . . = nt = n, is

the optimal (max-min) strategy.

A worst case mean scenario occurs when two means, say µ1 and µt , differ by ∆

while the other means coincide halfway between them, i.e.,

µ1 = µ− ∆

2
, µt = µ+

∆

2
and µ2 = . . . = µt−1 = µ .

Then λ = n∆2/(2σ2) = nλ1 ≤ n(∆2/σ2)× (t−1)/t, with = for t = 2.

Note that λ1 = ∆2/(2σ2) does not depend on t.
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Discussion of λ0 and λ1.

∆ is supposed to be the minimum mean difference to be detected with probability

β under either rationale. We now make clear the difference between them.

Under the first rationale we basically assume that all but one treatment have

no effect, and that the effect on the differing mean is at least ±∆.

Under the second rationale we say that all treatments may have an effect, but that

the maximum difference between some pair of means is at least ∆.

Among those scenarios the worst case is that one where t−2 treatments show no

effect while the remaining two treatments have equal but opposite effects of size

∆/2, relative to the unchanged means.

While the motivation seems acceptable, the worst case scenario appears contrived.
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sample.sizeANOVA (see web page)

Just as in the case of planning appropriate sample sizes for the two-sample

situation the F-test encounters the same difficulties in terms of the varying impacts

of the common sample size n per treatment.

n affects the critical point of the level α F-test through

tcrit=qf(1-alpha,t-1,N-t)=qf(alpha,t-1,n*t-t).

n also enters the power function 1-pf(tcrit,t-1,n*t-t,lambda) and n enters

the power function through λ. Here λ = n(∆/σ)2(t−1)/t or λ = n(∆/σ)2/2.

In either case we should know σ or have a reasonable upper bound σu, or express

∆ not in absolute terms but in relation to the unknown σ by specifying ∆/σ.

To facilitate the choice of appropriate n per treatment the function sample.sizeANOVA

is provided on the class web page.
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Usage of sample.sizeANOVA

function (delta.per.sigma=.5,t.treat=3, nrange=2:30,alpha=.05,

power0=NULL)

{

# delta.per.sigma is the ratio of delta over sigma for which

# one wants to detect a delta shift in one mean while all other

# means stay the same, or delta is the maximum difference

# between any two means to be detected. t.treat is the number of

# treatments. alpha is the desired significance level. nrange is a

# range of sample sizes over which the power will be calculated

# for that delta.per.sigma. power0 is on optional value for the

# target power that will be highlighted on the plot.

....

}
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Example Usage of sample.sizeANOVA

The following three function calls invoke the default t.treat=3 to produce the plots

on the following three slides.

> sample.sizeANOVA()

> sample.sizeANOVA(nrange=30:100)

> sample.sizeANOVA(nrange=70:100,power0=.9)

=⇒ n = 77 as the minimal sample size under the first rationale, w.r.t. λ0

and

=⇒ n = 103 as the minimal sample size under the alternate rationale, w.r.t. λ1
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Sample Size Determination
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Sample Size Determination (increased n)
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Sample Size Determination (magnified)
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The Effect of t

Even though the number of treatments does not affect λ1 it affects the power

function through the degrees of freedom

tcrit = qf(1−alpha,t−1,n∗t−t) and 1−pf(tcrit,t−1,n∗t−t,ncp)

Thus the choice of n is very much affected, as can be seen in the following slide

produced with t = 6

> sample.sizeANOVA(nrange=70:100,power0=.9,t.treat=6)

The minimum sample size per treatment is n = 81 under the first rationale (λ0)

and n = 133 under the alternate rationale (λ1).
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Sample Size Determination (magnified)
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Degrees of Freedom and Geometry – Single Sample


X1
X2
...
...
...

Xn

=


X̄
X̄
...
...
...
X̄


⊥
+


X1− X̄
X2− X̄

...

...

...
Xn− X̄



⊥ because (X̄ , . . . , X̄)·


X1− X̄
X2− X̄

...

...

...
Xn− X̄

= X̄ ·
n

∑
i=1

(Xi−X̄)= X̄ ·

(
n

∑
i=1

Xi−n · X̄

)
= 0

(X̄ , . . . , X̄) varies in just one dimension, along 1′ = (1, . . . ,1), and the residual
vector (X1− X̄ , . . . ,Xn− X̄) varies in its (n−1)-dimensional orthogonal
complement. The n residuals thus have n−1 degrees of freedom.
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Orthogonal Decomposition of Sample Vector

●

●

●

●

x1

x2

x =  ( x , x )

x =  ( x1 , x2 )

x − x =  ( x1 − x , x2 − x )

Pythagoras

|x|2 = |x̄|2 + |x− x̄|2

∑i x2
i = ∑i x̄2 +∑i(xi− x̄)2

= nx̄2 +∑i(xi− x̄)2

our previous

SS decomposition
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Degrees of Freedom and Geometry in t Samples

Decomposition of total dimension N = ∑ni into subspace dimensions

N = 1 + N−1 = 1 + ∑(ni−1) + t−1
N− t

Y11
...

Y1n1...
...

Yt1
...

Ytnt


=



Ȳ..
...

Ȳ..
...
...

Ȳ..
...

Ȳ..


⊥
+



Y11− Ȳ..
...

Y1n1− Ȳ..
...
...

Yt1− Ȳ..
...

Ytnt − Ȳ..


=



Ȳ..
...

Ȳ..
...
...

Ȳ..
...

Ȳ..


⊥
+



Y11− Ȳ1.
...

Y1n1− Ȳ1.
...
...

Yt1− Ȳt.
...

Ytnt − Ȳt.



⊥
+
...
...
...
⊥
+



Ȳ1.− Ȳ..
...

Ȳ1.− Ȳ..
...
...

Ȳt.− Ȳ..
...

Ȳt.− Ȳ..



∑
i

∑
j

Y 2
i j =∑

i
∑

j
Ȳ 2..+∑

i
∑

j
(Yi j−Ȳ..)2 =∑

i
∑

j
Ȳ 2..+∑

i
∑

j
(Yi j−Ȳi.)2+∑

i
∑

j
(Ȳi.−Ȳ..)2
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Orthogonalities

∑
i

∑
j

Ȳ..(Ȳi.− Ȳ..) = Ȳ..∑
i

ni(Ȳi.− Ȳ..) = Ȳ..(∑
i

∑
j

Yi j−NȲ..) = 0

∑
i

∑
j

Ȳ..(Yi j− Ȳi.) = Ȳ..∑
i
(niȲi.−niȲi.) = 0

∑
i

∑
j
(Ȳi.− Ȳ..)(Yi j− Ȳi.) = ∑

i
(Ȳi.− Ȳ..)∑

j
(Yi j− Ȳi.) = 0

49



Dimensions of Subspaces or Degrees of Freedom

Let 1′n = (1,1, . . . ,1) denote an n-vector filled with 1’s. With varying Yi j, the vectors

Ȳ1.− Ȳ..
...

Ȳ1.− Ȳ..
...
...

Ȳt.− Ȳ..
...

Ȳt.− Ȳ..


= (Ȳ1.− Ȳ..)


1n1
0
...
0

+ . . .+(Ȳt.− Ȳ..)


0
...
0

1nt



= (Ȳ1.− Ȳ..)E1 + . . .+(Ȳt.− Ȳ..)Et = D

span a (t−1)-dimensional subspace of RN , because the orthogonal vectors E1, . . . ,Et

span a t-dimensional subspace of RN and D is always orthogonal to 1′N =(1′n1
, . . . ,1′nt)

= E′1 + . . .+E′t , since 1′ND = (E′1 + . . .+E′t)((Ȳ1.−Ȳ..)E1 + . . .+(Ȳt.−Ȳ..)Et)

= ∑
t
i=1 ni(Ȳi.− Ȳ..) = 0, because E′iEi = ni and E′iEk = 0 for i 6= k.

Note that ∑
t
i=1 aiEi ⊥ 1N = (E1 + . . .+Et) ⇐⇒ ∑

t
i=1 niai = 0.
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More on Dimensions and Degrees of Freedom

Using the standard orthonormal basis vectors ei j (with 1 in vector position (i, j)

and 0 in all other positions) we have that

R =



Y11− Ȳ1.
...

Y1n1− Ȳ1.
...
...

Yt1− Ȳt.
...

Ytnt − Ȳt.


=

(Y11− Ȳ1.)e11 + . . .+(Y1n1− Ȳ1.)e1n1+
. . .
. . .

+(Yt1− Ȳt.)et1 + . . .+(Ytnt − Ȳ1.)etnt

⊥ Ei ∀i

because ∑
ni
j=1(Yi j− Ȳi.) = 0 for all i.

Thus R lives in the N− t dimensional orthogonal complement MN−t of E1, . . . ,Et .

Any vector v in MN−t has to have the form

v = a11e11+ . . .+a1n1e1n1 + . . .+at1et1+ . . .+atn1etn1 with ∑
ni
j=1 ai j = 0 for

i = 1, . . . , t. Thus the R vectors span MN−t .
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Orthogonal Decomposition of Sample Space

●
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.. 
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.. 
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 1
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dimension = N−t

|(Y11, . . . ,Ytnt)|
2 = |(Ȳ.., . . . ,Ȳ..)|2+|(Y11−Ȳ1., . . . ,Ytnt−Ȳt.)|2+|(Ȳ1.−Ȳ.., . . . ,Ȳt.−Ȳ..)|2

∑
i

∑
j

Y 2
i j = ∑

i
∑

j
Ȳ 2..+∑

i
∑

j
(Yi j− Ȳi.)2 +∑

i
∑

j
(Ȳi.− Ȳ..)2
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Coagulation Example

In order to understand the blood coagulation behavior in relation to various diets,

lab animals were given 4 different diets and their subsequent blood draws were

then measured for their respective coagulation times in seconds.

The lab animals were assigned randomly to the various diets.

The results were as follows:

> ctime

[1] 59 60 62 63 63 64 65 66 67 71 66 67 68 68 68 71 56 59

[19] 60 61 62 63 63 64

> diet

[1] "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "C" "C" "C"

[14] "C" "C" "C" "D" "D" "D" "D" "D" "D" "D" "D"
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Plot for Coagulation Example
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ANOVA for Coagulation Example
Note that in the previous plot we used jitter(ctime) to plot ctime in the vertical

direction and to plot its horizontal mean lines. This perturbs tied observations a

small random amount to make tied observations more visible. For example, the

mean lines for diet A and D would have been the same otherwise.

> anova(lm(ctime˜as.factor(diet))) # assumes ctime & diet in workspace
or > anova(lm(ctime˜as.factor(diet),data=coagulation.data))
# assumes coagulation.data is a list in the workspace
# with ctime & diet as components.
Analysis of Variance Table

Response: ctime
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(diet) 3 228.0 76.0 13.571 4.658e-05 ***
Residuals 20 112.0 5.6
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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lm for Coagulation Example

> out=lm(ctime˜as.factor(diet)) # this preserves all output from lm

> names(out)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "contrasts"

[10] "xlevels" "call" "terms"

[13] "model"

> out$coefficients # or out$coef

(Intercept) as.factor(diet)B as.factor(diet)C

6.100000e+01 5.000000e+00 7.000000e+00

as.factor(diet)D

-1.095919e-14

Note that these are the estimates

µ̂A = 61 (Intercept), µ̂B− µ̂A = 5, µ̂C− µ̂A = 7, µ̂D− µ̂A = 0.
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Residuals from lm for Coagulation Example

> out$residuals

1 2 3 4

-2.000000e+00 -1.000000e+00 1.000000e+00 2.000000e+00

5 6 7 8

-3.000000e+00 -2.000000e+00 -1.000000e+00 1.111849e-16

9 10 11 12

1.000000e+00 5.000000e+00 -2.000000e+00 -1.000000e+00

13 14 15 16

-5.534852e-17 -5.534852e-17 -5.534852e-17 3.000000e+00

17 18 19 20

-5.000000e+00 -2.000000e+00 -1.000000e+00 -1.663708e-16

21 22 23 24

1.000000e+00 2.000000e+00 2.000000e+00 3.000000e+00

Numbers such as -5.534852e-17 should be treated as 0 (computing quirks).
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Rounded Residuals from lm for Coagulation Example

> round(out$resid,4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-2 -1 1 2 -3 -2 -1 0 1 5 -2 -1 0 0 0 3 -5 -2 -1 0

21 22 23 24

1 2 2 3
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Fitted Values from lm for Coagulation Example

> out$fitted.values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

61 61 61 61 66 66 66 66 66 66 68 68 68 68 68 68 61 61 61

20 21 22 23 24

61 61 61 61 61
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Randomization Test for Coagulation Example
Simulated Randomization Distribution

F−equivalent Test Statistic

F
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F−equivalent test statistic  98532

p−value = 7e−05

based on  1e+05  simulations
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F-Approximation to Coagulation Randomization Test
Simulated Randomization Distribution

F−Statistic
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F−statistic  13.571

p−value = 7e−05

p−value = 4.658e−05  from F−distribution

based on  1e+05  simulations
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Comparing Treatment Means Ȳi.

When the hypothesis H0 : µ1 = . . . = µt is not rejected at level α then there is

little purpose in looking closer at differences between the sample means Ȳi.
for the various treatments.

Any such perceived differences could easily have come about by

simple random variation, even when the hypothesis is true.

Why then read something into randomness? It is like reading tea leaves!

However, when the hypothesis is rejected it is quite natural to ask

in which way the hypothesis was contradicted.
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Confidence Intervals for µi

A first step in understanding differences in the µi is to look at their estimates µ̂i =
Ȳi..

We should do this in the context of the sampling variability of µ̂i.

In the past we addressed this via confidence intervals for µi based on µ̂i.

In any such confidence interval we can now use the pooled variance s2

from all t samples and not just the variance s2
i from the ith sample, i.e. we get

µ̂i± tN−t,1−α/2×
s
√

ni
as our 100(1−α)% confidence interval for µi.

This follows as before (exercise) from the independence of µ̂i and s, the fact that

(µ̂i−µi)/(σ/
√

ni)∼N (0,1) and s2/σ2 ∼ χ2
N−t/(N− t) and combining this to

µ̂i−µi
s/
√

ni
=

(µ̂i−µi)/(σ/
√

ni)
s/σ

∼ tN−t
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Validity of Pooling?

Using s2 instead of s2
i improves (narrows) the confidence intervals for µi.

This narrowing comes about because tN−t,1−α/2 then uses much higher degrees

of freedom (N− t� ni−1) and thus shrinks, up to a point (see later plot).

The validity of this improvement depends strongly on the assumption that the

population variances σ2 behind all t samples are the same, or at least

approximately so.

Recall our earlier discussion of this issue for the 2-sample t-test.
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Standard Errors SE(θ̂)
Suppose θ̂ is an estimator for a parameter θ of interest. We denote by

σ2
θ̂

= var(θ̂) = g(θ,ψ) its sampling variance and by σ
θ̂

=
√

g(θ,ψ) its

sampling standard deviation.

The estimated sampling standard deviation of θ̂, i.e., σ̂
θ̂

=
√

g(θ̂, ψ̂),

is also called the standard error of θ̂ and is denoted by SE(θ̂).

Example 1: µ̂ = X̄ as estimate of µ has variance var(µ̂) = σ2/n ⇒ SE(µ̂) = s/
√

n.

Example 2: s2 ∼ σ2χ2
n−1/(n−1) as estimate of σ2 has sampling variance

var(s2) =
σ4 2(n−1)
(n−1)2 =

2σ4

n−1
=⇒ SE(s2) = s2

√
2

n−1

Note the different roles of (θ,ψ) in these two examples.

In Example 1: θ = µ and ψ = σ2 and we only use ψ̂ in SE(θ̂).

In Example 2: θ = σ2 and there is no ψ. We only use θ̂ in SE(θ̂).
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95%-Rule of Thumb Using SEs

If θ̂ has an approximate normal distribution with mean θ and standard deviation σ
θ̂
,

i.e., θ̂ ≈ N (θ,σ2
θ̂
) ≈ N (θ,SE2(θ̂)) ,

as is often the case with many estimators

=⇒ θ̂±2×SE(θ̂) is an approximately 95% confidence interval for θ

because z.975 = qnorm(.975) = 1.959964≈ 2.

This works especially well for Student-t based intervals

µ̄i ± t f ,.975×
s
√

ni
= Ȳi. ± tN−t,.975×

s
√

ni

because t f ,.975 ≈ z.975 for large f , see next slide.
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t f ,.975→ z.975 = 1.96≈ 2
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Why Rule of Thumb Works for s2

Why should the rule of thumb work for s2 as estimator of σ2?

Recall: s2 ∼ σ2χ2
n−1/(n−1). CLT =⇒ approximate normality for s2 since

(n−1)s2

σ2 = χ
2
n−1 =

n−1

∑
i=1

Z2
i ≈N (n−1,2(n−1))⇒ s2 ≈N

(
σ

2,2σ
4/(n−1)

)

=⇒ s2 ± 2×SE(s2) = s2 ± 2× s2
√

2
n−1

since SE(s2) = s2√2/(n−1) is the estimate of σ2√2/(n−1),

the sampling standard deviation of s2.
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Table of Confidence Intervals for Flux3 Data

Although for testing H0 : µ1 = µ2 = µ3 in the case of the Flux3 data the p-value

of .05126 was not significant at level α = .05 we illustrate the concepts of the

different types of confidence intervals for the means.

95% intervals 95% intervals
Flux µ̂i si s using si using s

X 9.717 0.194 0.546 [9.513, 9.920] [ 9.242, 10.192]

Y 9.983 0.471 0.546 [9.489, 10.477] [ 9.508, 10.458]

Z 10.550 0.797 0.546 [9.714, 11.386] [10.075 ,11.025]
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Plots of Confidence Intervals for Flux3 Data
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Tables of Confidence Intervals for the Coagulation Data

For testing H0 : µ1 = µ2 = µ3 = µ4 in the case of the coagulation data the p-value

of 4.7 ·10−5 is highly significant. We again illustrate the concepts of the

different types of confidence intervals for the means.

95% intervals 95% intervals
Diet µ̂i si s using si using s

A 61 1.9 2.2 [57.9,64.1] [58.7,63.3]

B 66 2.1 2.2 [63.8,68.2] [64.1,67.9]

C 68 1.5 2.2 [66.4,69.6] [66.1,69.9]

D 61 2.6 2.2 [58.8,63.2] [59.4,59.4]
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Plots of Confidence Intervals for Coagulation Data
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Simultaneous Confidence Intervals

When constructing intervals of the type:

µ̂i± tN−t,1−α/2
s
√

ni
or µ̂i± tni−1,1−α/2

si√
ni

for i = 1, . . . , t

we should be aware that these intervals don’t simultaneously cover their respective

targets µi with probability 1−α. They do so individually. For example

P
(

µi ∈ µ̂i± tni−1,1−α/2
si√
ni

, i = 1, . . . , t
)

=
t

∏
i=1

P
(

µi ∈ µ̂i± tni−1,1−α/2
si√
ni

)
= (1−α)t < 1−α.

To get simultaneous 1−α coverage probability we should choose 1−α? for

individual interval coverage probability to get

(1−α
?)t = 1−α or α

? = 1− (1−α)1/t ≈ α

t
= α̃t .

A problem remains when using a common pooled estimate s. No independence!
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α? = 1− (1−α)1/t ≈ α/t
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Dealing with Dependence from Using Pooled s

When we use a common pooled estimate s for the standard deviation σ

the previous confidence intervals are no longer independent.

However, it can be shown that

P
(

µi ∈ µ̂i± tN−t,1−α?/2
s
√

ni
, i = 1, . . . , t

)
≥

t

∏
i=1

P
(

µi ∈ µ̂i± tN−t,1−α?/2
s
√

ni

)
= (1−α

?)t = 1−α

This comes from the positive dependence between confidence intervals through s,

i.e., if one interval is more (less) likely to cover its target µi due to s, so are the other

intervals more (less) likely to cover their targets µ j.

Using the same compensation as in the independence case would let us err on the

conservative side, i.e., give us higher confidence than the targeted 1−α.
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Boole’s and Bonferroni’s Inequality
For any m events E1, . . . ,Em Boole’s inequality states

P(E1∪ . . .∪Em)≤ P(E1)+ . . .+P(Em)

For any m events E1, . . . ,Em Bonferroni’s inequality states

P(E1∩ . . .∩Em)≥ 1−
m

∑
i=1

(1−P(Ei))

The statements are equivalent, since P(Ec
1∪ . . .∪Ec

m)≤ P(Ec
1)+ . . .+P(Ec

m)⇐⇒

P(E1∩. . .∩Em)= 1−P((E1∩ . . .∩Em)c)= 1−P(Ec
1∪. . .∪Ec

m)≥ 1−
m

∑
i=1

(1−P(Ei))

If Ei denotes the ith coverage event
{

µi ∈ µ̂i± tN−t,1−α̃/2
s√
ni

}
with P(Ei) = 1−α̃,

then the simultaneous coverage probability is bounded from below as follows

P

(
t\

i=1
Ei

)
≥ 1−

t

∑
i=1

(1−P(Ei)) = 1− tα̃ = 1−α if α̃ = α̃t = α/t ,

i.e., we can achieve at least 1−α probability coverage by choosing the individual
coverage appropriately, namely 1− α̃ = 1−α/t. Almost same adjustment.
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Decomposing the Mean Vector µ

Variation in the means µi is best understood through the familiar decomposition:

µ =



µ1
...

µ1
...
...

µt
...

µt


= µ̄ ·1N +



µ1− µ̄
...

µ1− µ̄
...
...

µt− µ̄
...

µt− µ̄


The two vectors on the right are orthogonal to each other, with the first vector

representing the projection of µ onto 1N (with all components equal to µ̄)

and the second representing the projection of µ onto a (t−1)-dimensional

subspace Vt−1 of the (N−1)-dimensional orthogonal complement VN−1 to 1N .

It is this second vector that captures all aspects of variation in µ.
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Why (t−1)-Dimensional Subspace Vt−1?


µ1− µ̄
...

µ1− µ̄
...
...
0
...
0


⊥
+ . . .

⊥
+



0
...
0
...
...

µt− µ̄
...

µt− µ̄


=

γ1
n1(µ1− µ̄)

a1

1/n1
...

1/n1
...
...
0
...
0


⊥
+ . . .

⊥
+

γt
nt(µt− µ̄)

at

0
...
0
...
...

1/nt
...

1/nt


= γ1a1 + . . .+ γtat =

t−1

∑
i=1

γiai−
t−1

∑
i=1

γiat =
t−1

∑
i=1

γi(ai−at)

since
t

∑
i=1

γi =
t

∑
i=1

ni(µi− µ̄) = 0 and thus γt =−
t−1

∑
i=1

γi

and a1−at, . . . ,at−1−at are t−1 linearly independent vectors, spanning Vt−1.

∑
t−1
i=1 xi(ai−at) = 0 =⇒ ∑

t−1
i=1 xiai = at ∑

t−1
i=1 xi =⇒ x1 = . . . = xt−1 = 0.
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Motivating Contrasts

Any linear function of the distinct components (µ1− µ̄, . . . ,µt− µ̄) has to be

of the form C = ∑
t
i=1 ciµi with ∑

t
i=1 ci = 0.

t

∑
i=1

ai(µi− µ̄) =
t

∑
i=1

aiµi−
t

∑
i=1

ai

t

∑
j=1

n j

N
µ j

=
t

∑
i=1

aiµi−
t

∑
i=1

ni
N

µi

t

∑
j=1

a j =
t

∑
i=1

ciµi with ci = ai−
ni
N

t

∑
j=1

a j

where
t

∑
i=1

ci =
t

∑
i=1

ai−
t

∑
i=1

ni
N

t

∑
j=1

a j =
t

∑
i=1

ai−
t

∑
j=1

a j = 0 .

Such a function C = ∑
t
i=1 ciµi of the µi, with ∑

t
i=1 ci = 0, is called a contrast.
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Examples of Contrasts

Suppose we have 4 treatments with respective means µ1, . . . ,µ4.

We may be interested in contrasts of the following form C12 = µ1−µ2

with c′ = (c1, . . . ,c4) = (1,−1,0,0). Similarly for the other differences

Ci j = µi−µ j. There are
(4

2
)

= 6 such contrasts.

Sometimes one of the treatments, say the first, is singled out as the control.

We may then be interested in just the 3 contrasts C12,C13 and C14 or we may be

interested in C1.234 = µ1− (µ2 +µ3 +µ4)/3 with c′ = (1,−1/3,−1/3,−1/3).

Sometimes the first 2 treatment share something in common and so do the last 2.

One might then try: C12.34 =(µ1+µ2)/2−(µ3+µ4)/2 with c =(1/2,1/2,−1/2,−1/2)
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Estimates and Confidence Intervals for Contrasts

A natural estimate of C = ∑
t
i=1 ciµi is Ĉ = ∑

t
i=1 ciµ̂i = ∑

t
i=1 ciȲi..

We have E(Ĉ) = E

(
t

∑
i=1

ciȲi.
)

=
t

∑
i=1

ciE (Ȳi.) =
t

∑
i=1

ciµi = C

and var(Ĉ) = var

(
t

∑
i=1

ciȲi.
)

=
t

∑
i=1

c2
i var(Ȳi.) =

t

∑
i=1

c2
i σ

2/ni .

Under the normality assumption for the Yi j we have

Ĉ−C

s
√

∑
t
i=1 c2

i /ni

∼ tN−t where s2 =
∑

t
i=1(ni−1)s2

i
N− t

=
∑i j(Yi j− Ȳi.)2

N− t
= MSE .

=⇒ Ĉ±tN−t,1−α/2×s×

√√√√ t

∑
i=1

c2
i /ni is a 100(1−α)% confidence interval for C.
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Testing H0 : C = 0

Based on the duality of testing and confidence intervals we can test the

hypothesis H0 : C = 0 by rejecting it whenever the previous confidence interval

does not contain C = 0.

Similarly, reject H0 : C = C0 by rejecting it whenever the previous confidence

interval does not contain C = C0

Another notation for this interval is Ĉ± tN−t,1−α/2×SE(Ĉ) where

SE(Ĉ) = s×

√√√√ t

∑
i=1

c2
i /ni .

SE(Ĉ) is the standard error of Ĉ, the estimate of the standard deviation of Ĉ.
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Simultaneous Confidence Intervals for Contrasts

Just as with simultaneous confidence intervals for means we need to face the issue

of simultaneous coverage probability in relation to the individual coverage

probability for each such interval.

We will introduce/compare several such procedures, although there are still others.

The subject of such multiple comparisons is a very active research area.

Simultaneous Statistical Inference by Rupert Miller (1966)

Multiple Comparison Procedures by Yosef Hochberg and Ajit Tamhane (1987)

Multiple Comparisons: Theory and Methods by Jason Hsu (1996)

Multiple Comparisons and Multiple Tests by Peter Westfall (2000).
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Paired Comparisons: Fisher’s Protected LSD Method

After rejecting H0 : µ1 = . . . = µt one is often interested in looking at all
(t

2
)

pairwise

contrasts Ci j = µi−µ j. The following procedure is referred to as

Fisher’s Protected Least Significant Difference (LSD) Method.

It consists of possibly two stages:

1) Perform α level F-test for testing H0. If H0 is not rejected, stop.

2) If H0 is rejected, form all
(t

2
)

(1−α)-level confidence intervals for Ci j = µi−µ j:

Îi j = µ̂i− µ̂ j± tN−t,1−α/2× s ×
√

1
ni

+
1
n j

and declare all µi−µ j 6= 0 for which Îi j does not contain zero.
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Comments on Fisher’s Protected LSD Method

If H0 is true, the chance of making any statements contradicting H0 is at most α.

This is the protected aspect of this procedure.

However, when H0 is not true there are many possible contingencies, some of

which can give us a higher than desired chance of pronouncing a significant

difference, when in fact there is none.

E.g., if all but one mean (say µ1) are equal and µ1 is far away from µ2 = . . . = µt

our chance of rejecting H0 is almost 1.

However, among the intervals for µi−µ j, 2≤ i < j we may find a significantly

higher than α proportion of cases with wrongly declared differences.

This is due to the multiple comparison issue.
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Pairwise Comparisons: Tukey-Kramer Method

The Tukey-Kramer method is based on the distribution of

Qt, f = max
1≤i< j≤t

{|Zi−Z j|
s

}
where Z1, . . . ,Zt

i.i.d.∼ N (0,1) and f × s2 ∼ χ2
f

Its cdf and quantile function are given in R as ptukey(q,nmeans,df) and

qtukey(p,nmeans,df), nmeans = t is the number of means, df = f = N− t

denotes the degrees of freedom in s. Applying this to Zi = (µ̂i−µi)/(σ/
√

n)

and assuming n1 = . . . = nt = n we get

max
i< j

{√
n|µ̂i− µ̂ j− (µi−µ j)|

s

}
= max

i< j


∣∣∣ µ̂i−µi
σ/
√

n−
µ̂ j−µ j
σ/
√

n

∣∣∣
s/σ

= Qt, f

P
(
µi−µ j ∈ µ̂i− µ̂ j±qt, f ,1−α s/

√
n ∀ i < j

)
= 1−α

simultaneous (1−α)-coverage confidence intervals. ∀= “for all.”

Here P(Qt, f ≤ qt, f ,1−α) = 1−α or qt, f ,1−α = qtukey(1−α,t,f).
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Tukey-Kramer Method: Unequal Sample Sizes

The simultaneous intervals for all pairwise mean differences was due to Tukey,

but it was limited by the requirement of equal sample sizes.

This was addressed by Kramer in the following way. In the above confidence

intervals replace n in 1/
√

n =
√

1/n by n?
i j, where n?

i j is the harmonic mean

of ni and n j, i.e., 1/n?
i j = (1/ni +1/n j)/2. Different adjustment for each pair (i, j)!

It was possible to show

P
(

µi−µ j ∈ µ̂i− µ̂ j±qt, f ,1−α s/
√

n?
i j ∀ i < j

)
≥ 1−α

simultaneous confidence intervals with coverage ≥ 1−α.
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Tukey-Kramer Method for Coagulation Data

coag.tukey = function (alpha=.05)

{

diets=unique(diet)

mu.vec=NULL

nvec=NULL

mean.vec=NULL

for(i in 1:length(diets)){

mu.vec=c(mu.vec,mean(ctime[diet==diets[i]]))

nvec=c(nvec,length(ctime[diet==diets[i]]))

mean.vec=c(mean.vec,rep(mu.vec[i],nvec[i]))

}

tr=length(nvec)

N=sum(nvec)

MSE=sum((ctime-mean.vec)ˆ2/(N-tr))
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Tukey-Kramer Method for Coagulation Data

s=sqrt(MSE)

intervals=NULL

for(i in 1:3){

for(j in (i+1):4){

nijstar=1/(.5*(1/nvec[i]+1/nvec[j]))

qTK=qtukey(1-alpha,tr,N-tr)

Diff=mu.vec[i]-mu.vec[j]

lower=Diff - qTK*s/sqrt(nijstar)

upper=Diff + qTK*s/sqrt(nijstar)

intervals=rbind(intervals,c(lower,upper))

}

}

intervals

}
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Tukey-Kramer Results for Coagulation Data

> coag.tukey()

[,1] [,2]

[1,] -9.275446 -0.7245544

[2,] -11.275446 -2.7245544

[3,] -4.056044 4.0560438

[4,] -5.824075 1.8240748

[5,] 1.422906 8.5770944

[6,] 3.422906 10.5770944

Declare significant differences in µ1−µ2, µ1−µ3, µ2−µ4 , and µ3−µ4.
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Bonferroni Confidence Intervals for Pairwise Contrasts

Applying Bonferroni’s methods for simultaneous confidence statement we take

α̃ = α/
(t

2
)

for the individual confidence statements

µi−µ j ∈ µ̂i− µ̂ j± tN−t,1−α̃/2× s ×
√

1
ni

+
1
n j

with 1− α̃ individual coverage probability.

Then

P(µi−µ j ∈ µ̂i− µ̂ j± tN−t,1−α̃/2× s ∀i < j) ≥ 1−
(

t
2

)
(1− (1− α̃))

= 1−
(

t
2

)
α̃ = 1−α

i.e., the joint coverage probability for all pairwise contrasts is at least 1−α.
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Scheffé’s Confidence Intervals for All Contrasts

Scheffé took the F-test for testing H0 : µ1 = . . . = µt and converted it into a

simultaneous coverage statement about confidence intervals for all contrasts

c′ = (c1, . . . ,ct):

P

 t

∑
i=1

ciµi ∈
t

∑
i=1

ciµ̂i±
√

(t−1) ·Ft−1,N−t,1−α× s×

(
t

∑
i=1

c2
i /ni

)1/2

∀ c


= 1−α

This is a coverage statement about an infinite number of contrasts, but can be

applied conservatively to all pairwise contrasts. The resulting intervals tend to be

quite conservative.

But it compares well with Bonferroni type intervals if applied to many contrasts.
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Pairwise Comparison Intervals for Coagulation Data

(simultaneous) 95%-Intervals
mean Fisher’s Bonferroni Scheffé’s all

difference Tukey-Kramer protected LSD inequality contrasts method
µ1−µ2 -9.28 -0.72 -8.19 -1.81 -9.47 -0.53 -9.66 -0.34
µ1−µ3 -11.28 -2.72 -10.19 -3.81 -11.47 -2.53 -11.66 -2.34
µ1−µ4 -4.06 4.06 -3.02 3.02 -4.24 4.24 -4.42 4.42
µ2−µ3 -5.82 1.82 -4.85 0.85 -6.00 2.00 -6.17 2.17
µ2−µ4 1.42 8.58 2.33 7.67 1.26 8.74 1.10 8.90
µ3−µ4 3.42 10.58 4.33 9.67 3.26 10.74 3.10 10.90

Declare significant differences in µ1− µ2, µ1− µ3, µ2− µ4 , and µ3− µ4,

using any of the four methods.
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Simultaneous Paired Comparisons (95%)
−

1
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−
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µµ1 −− µµ2
µµ1 −− µµ3

µµ1 −− µµ4
µµ2 −− µµ3

µµ2 −− µµ4
µµ3 −− µµ4

Pairwise Comparisons of Means (Coagulation Data):   1 −− αα == 0.95

Tukey−Kramer pairwise comparisons
Fisher's protected LSD
Bonferroni intervals
Scheffe's intervals for all contrasts
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Simultaneous Paired Comparisons (99%)
−

1
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−
1
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5
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5
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0
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µµ1 −− µµ2
µµ1 −− µµ3

µµ1 −− µµ4
µµ2 −− µµ3

µµ2 −− µµ4
µµ3 −− µµ4

Pairwise Comparisons of Means (Coagulation Data):   1 −− αα == 0.99

Tukey−Kramer pairwise comparisons
Fisher's protected LSD
Bonferroni intervals
Scheffe's intervals for all contrasts
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Orthogonal Contrast

All
(t

2
)

pairwise comparisons for µi−µ j could be very many and simultaneous

intervals would become quite conservative.

Since all these contrasts span a (t−1)-dimensional space one should be

able to capture all differences with just t−1 orthogonal contrasts.

C1 =
t

∑
i=1

c1iµi ⊥ C2 =
t

∑
i=1

c2iµi ⇐⇒
t

∑
i=1

c1ic2i/ni = 0

C1 ⊥C2 =⇒ cov(Ĉ1,Ĉ2) =
t

∑
i=1

t

∑
j=1

c1ic2 jcov(µ̂i, µ̂ j) =
t

∑
i=1

c1ic2iσ
2/ni = 0 ,

i.e., Ĉ1 and Ĉ2 are independent and simultaneous statements for C1,C2, . . . are

easier to handle, just as before when making simultaneous intervals for µ1, . . . ,µt

based on independent µ̂1, . . . , µ̂t .

The independence of the contrast estimates motivates orthogonal contrasts.
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An Orthogonal Contrast Example

The trick is to have meaningful or interpretable orthogonal contrast.

Suppose we have t = 3 treatments of which the third is a control,

i.e., we are familiar with its performance.

Assume further that we have a balanced design, i.e., n1 = n2 = n3.

We could try the following t−1 = 2 orthogonal contrasts:

c′1 = (.5, .5,−1) and c′2 = (1,−1,0).

Note that C1 = (µ1 +µ2)/2−µ3 and C2 = µ1−µ2, of which the first

assesses how much the average mean of the two new treatments differs from the

control mean and the second assesses the difference between the two new

treatments. These are seemingly “orthogonal” issues.
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Unbalanced Case of Previous Example

We have an unbalanced design, i.e., n1, n2, n3 may be different.

Then the following t−1 = 2 vectors:

c′1 = (n1/(n1 +n2),n2/(n1 +n2),−1) and c′2 = (1,−1,0) are indeed

contrast vectors: n1/(n1 +n2)+n2/(n1 +n2)−1 = 0 and 1−1+0 = 0

and they are orthogonal: n1/[(n1 +n2)n1]−n2/[(n1 +n2)n2]−1 ·0/n3 = 0.

=⇒ C1 = (n1µ1 +n2µ2)/(n1 +n2)−µ3 = µ̄12−µ3 and C2 = µ1−µ2,

of which the first assesses how much the weighted average mean of the two new

treatments differs from the control mean and the second assesses the difference

between the two new treatments.

These are seemingly “orthogonal” issues.
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Service Center Data

# of
persons # of calls
on call processed per hour

2 1.7 2.7 2.5 1.9
3 4.5 3.5 4.7 5.4
4 4.7 4.8 5.6 5.1
5 6.3 5.2 6.6 4.9
7 6.3 5.7 6.1 6.1
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Service Center Data

Here we have a new type of treatment (number of persons on call), where the

different treatment levels are scalar and not just qualitative.

In such situations the following orthogonal contrasts are of practical interest:

ci1 ci2 ci3 ci4 ci5

C1 = ∑
5
j=1 c1 j µ j -2 -1 0 1 2

C2 = ∑
5
j=1 c2 j µ j 2 -1 -2 -1 2

C3 = ∑
5
j=1 c3 j µ j -1 2 0 -2 1

C4 = ∑
5
j=1 c4 j µ j 1 -4 6 -4 1

For what kind of mean patterns in µ1, . . . ,µ5 would |Ci| and consequently

|Ĉi| be large?

100



Correlations and Contrasts

For a contrast vector c let C = c′µ = ∑
t
j=1 c jµ j be the corresponding contrast.

Then C = c′µ =
t

∑
j=1

c jµ j =
t

∑
j=1

c j(µ j− µ̄) =
t

∑
j=1

(c j− c̄)(µ j− µ̄)

=
∑

t
j=1(c j− c̄)(µ j− µ̄)√

∑
t
j=1(c j− c̄)2

∑
t
j=1(µ j− µ̄)2

×

√√√√ t

∑
j=1

(c j− c̄)2
t

∑
j=1

(µ j− µ̄)2

= ρ(c,µ)×

√√√√ t

∑
j=1

(c j− c̄)2
t

∑
j=1

(µ j− µ̄)2

where the third and fourth = come from ∑
t
j=1 c j = 0 and thus c̄ = 0.

Here ρ(c,µ) is the ordinary correlation coefficient of the vectors c and µ.

Aside from scaling c and µ, the absolute contrast |C| becomes large when the

absolute correlation |ρ(c,µ)| is large, i.e., when c and µ align reasonably well.
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Orthogonal Contrast Plots
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Interpretation of Orthogonal Contrast Plots

The previous plot suggests that a pattern in the means µ j in relation to j = 1, . . . ,5

that correlates most strongly with the corresponding pattern in the plot should yield

a high value for the corresponding absolute contrast |Ci|.

Thus a large value |C1| indicates a strong linear component in the mean pattern.

A large value |C2| indicates a strong quadratic component in the mean pattern.

A large value |C3| indicates a strong cubic component in the mean pattern.

A large value |C4| indicates a strong quartic component in the mean pattern.

Typically, one hopes to rule out some (if not all) of the latter possibilities.
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Simultaneous Bonferroni Contrast Intervals
for Service Center Data

95% 99%

C1 [ 6.27, 11.58] [ 5.53, 12.32]

C2 [-7.02, -0.73] [ -7.89, 0.14]

C3 [-1.26, 4.06] [ -1.99, 4.79]

C4 [-9.58, 4.48] [-11.53, 6.43]

From these intervals one sees that C1 and C2 are significantly different from zero.

with 95% confidence, but C2 not quite with 99% confidence.

Hence there appears to be a sufficiently strong linear and mildly quadratic

component.

The original data plot suggested this and its strength is now assessed statistically.
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Orthogonal Polynomial Contrast Vectors
The previous orthogonal contrasts for linear, quadratic, cubic, quartic behavior were
tailored to five treatments.

How do we get similar contrast vectors when we have t treatments?

R has a function contr.poly(t) that gives you orthogonal vectors representing

the various polynomial components: linear, quadratic, . . .

> round(contr.poly(7),3)
.L .Q .C ˆ4 ˆ5 ˆ6

[1,] -0.567 0.546 -0.408 0.242 -0.109 0.033
[2,] -0.378 0.000 0.408 -0.564 0.436 -0.197
[3,] -0.189 -0.327 0.408 0.081 -0.546 0.493
[4,] 0.000 -0.436 0.000 0.483 0.000 -0.658
[5,] 0.189 -0.327 -0.408 0.081 0.546 0.493
[6,] 0.378 0.000 -0.408 -0.564 -0.436 -0.197
[7,] 0.567 0.546 0.408 0.242 0.109 0.033

More on this under Regression in Stat 423.
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Orthogonal Polynomial Contrasts from contr.poly(7)
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Model Diagnostics

Model: Yi j = µi+εi j, j = 1, . . . ,ni , i = 1, . . . , t, with the following assumptions:

A1: {εi j} are independent;

A2: var(εi j) = var(Yi j) = σ2 for all i, j

(homogeneity of variances or homoscedasticity);

A3: {εi j} are normally distributed.

These assumption allow us to perform the F-test for homogeneity of means,

do power calculations, plan sample sizes to achieve a desired power,

and obtain simultaneous confidence intervals for contrasts.

We will examine A2 and A3 and deal with A1 when we exploit blocking.
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Checking Normality

Here we would like to check normality of εi j = Yi j−µi, j = 1, . . . ,ni, i = 1, . . . , t.

Not knowing µi we estimate the error term εi j via ε̂i j = Yi j− µ̂i = Yi j− Ȳi..

If normality holds then a normal QQ-plot of all these N = n1 + . . .+nt estimated

error terms (also called residuals) should look roughly linear with intercept near

zero. qqnorm(residual.vector) =⇒ normal QQ-plot. Slope ≈ σ.

We have done this before in the single sample situation and won’t show repeats.

It is also possible to perform the formal EDF-based tests of fit (KS, CvM, and AD),

but they would require minor modifications in the package nortest,

not available right now.
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Checking Normality by Simulation

We can just adapt the KS, CvM, and AD EDF test of fit criteria and simulate their

null distribution, in order to judge any significant non-normality in the residuals.

DKS = max
{

max
i

[
i
N
−U(i)

]
,max

i

[
U(i)−

i−1
N

]}
DCvM =

N

∑
i=1

[
U(i)−

2i−1
2N

]2
+

1
12N

DAD = −N− 1
N

N

∑
i=1

(2i−1)
[
log(U(i))+ log(1−U(i))

]
where

Ui j = Φ

(
Yi j− Ȳi.

s

)
and U(1) ≤ . . .≤U(N) are the Ui j in increasing order.
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The Simulation

The distribution of

Ui j = Φ

(
Yi j− Ȳi.

s

)
= Φ

(
(Yi j−µi)/σ− (Ȳi.−µi)/σ

s/σ

)
does not depend on any unknown parameters.

Thus we may as well simulate the Yi j
i.i.d.∼ N (0,1), compute Ȳi., i = 1, . . . , t and s

and then Ui j, sort these values and compute the respective EDF criteria.

Repeat this over and over, say Nsim = 10000 times, and compare the EDF criteria

for the actual data set against these simulated null distributions to obtain estimated

p-values. View this as potential homework.

It may be advantageous to modify the above EDF criteria if sample sizes are quite

different (uncharted territory).

110



Hermit Crab Count Data

Hermit Crab counts were obtained at 6 different coastline sites.

For each site counts were obtained at 25 randomly selected transects.

Download the data file crab.csv from the web into your work directory.

Import it into R via crab=read.csv("crab.csv").

Since these are count data one should not expect good normality behavior.

> names(crab)

[1] "count" "site"

> plot(crab$site,crab$count,xlab="site",ylab="count",

+ col="blue",cex.lab=1.3)

produced the plot on the next slide.
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Plot of Hermit Crab Counts
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ANOVA for Hermit Crab Count Data

> out.lm=lm(crab$count˜as.factor(crab$site))

> anova(out.lm)

Analysis of Variance Table

Response: crab$count

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(crab$site) 5 76695 15339 2.9669 0.01401 *

Residuals 144 744493 5170

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> qqnorm(out.lm$residuals)

> qqline(out.lm$residuals)

produced the (not so) normal QQ-plot for the ANOVA residuals on the next slide.
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Normal QQ-Plot of Hermit Crab Count ANOVA Residuals
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Checking for Homoscedasticity

The appropriate indicators for checking a constant variance over all t treatment

groups would seem to be s2
1, . . . ,s

2
t .

There are various rules of thumb involving Fmin = min(s2
1, . . . ,s

2
t )/max(s2

1, . . . ,s
2
t ).

For example, if Fmin > 1/3 the constant variance assumption should be OK

while for Fmin < 1/7 we should deal with it.

Where the 1/3 or 1/7 come from and what to do in between is not clear.

With R it is simple enough to simulate the distribution for Fmin.
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Fmin.test

The R function Fmin.test can be found on the class web site. It simulates the

Fmin distribution, assuming normal samples with equal variances. The sample

sizes may vary. The documentation for Fmin.test is inside the function body.

It can be used to explore any desired rule of thumb, by calculating the proportion

of Fmin values ≤ to the rule of thumb value.

If Fmin,observed is provided, it calculates the estimated p-value from this simulated

distribution.

See the next two slides for examples.

Note however, that the validity of this test depends strongly on data normality.
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Fmin.test(k=3,n=8,a.recip=7)
k = 3 ,  n =  8 ,   Nsim =  10000 ,   a = 1/ 7
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Fmin.test(k=3,n=c(3,3,4),a.recip=7,Fmin.observed=.1)

k = 3 ,  n = ( 3, 3, 4 ) ,   Nsim =  10000 ,   a = 1/ 7 , Fmin.observed = 0.1
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Diagnostic Plots for Checking Homoscedasticity

One first diagnostic is to plot the residuals Yi j− Ȳi. versus the corresponding

fitted values Ȳi. for j = 1, . . . ,ni, i = 1, . . . , t.

Compare the difference in information displayed in the next two plots.

The second display suggests that variability increases with fitted value.

Often there is a relationship between variability and the mean.

There are ways to deal with this by using variance stabilizing transforms of the Yi j.
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plot(crab$site,out.lm$residuals,
col="blue",xlab="site",ylab="residuals",cex.lab=1.3)
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plot(out.lm$fitted.values,out.lm$residuals,col="blue",
xlab="fitted values",ylab="residuals",cex.lab=1.3)
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Levene’s Test for Homoscedasticity

The modified Levene test looks at the absolute deviations Xi j = |Yi j− Ỹi|

where Ỹi denotes the median of the ith treatment sample.

Originally this was proposed with using Ȳi. in place of Ỹi, whence “modified.”

The idea is as follows:

If the standard deviations in the t samples Yi1, . . . ,Yini, i = 1, . . . , t are the same,

then one would expect to have roughly equal means for the Xi j.

One can check this by performing an ANOVA F-test on the Xi j values.

The ANOVA F-test for means is not as sensitive to the normality assumption

as the F-test or Fmin.test for comparing variances.
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Levene’s Test for Crab Count Data

crab.levene = function (){
d=NULL
for(i in 1:6){

m=median(crab$count[crab$site==i])
d=c(d,abs(crab$count[crab$site==i]-m))

}
anova(lm(d˜as.factor(crab$site)))
}
> crab.levene()
Analysis of Variance Table

Response: d
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(crab$site) 5 71146 14229 2.9278 0.01508 *
Residuals 144 699845 4860
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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A Multiplicative Error Model

We saw for the crab count data that the variability in counts seemed proportional

to the averages of the counts and the variability did not show much normality.

Some random phenomena are not so much driven by additive accumulation of

random contributions but more so by multiplicative accumulations.

A crab colony could have started with a starting group of size X0 that somehow

found each other. This group produced a random number X0×X1 of new crabs,

where X1 represents the reproduction rate per crab. This rate is variable or random.

The next generation would have X0×X1×X2 crabs, and so on.

This motivates the following variation model: Y = µ× ε = µ× (X1×X2× . . .),
where the random term ε has mean µε and standard deviation σε.

⇒ var(Y ) = µ2×var(ε) or σY = µ×σε and µY = E(Y ) = µ×E(ε)
and thus σY is proportional to µY since both are proportional to µ.
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Variance Stabilization and Normality under log-Transform

Multiplicative error model =⇒ σ ∝ µ. However, using log(Y ) = log(µ)+ log(ε)

=⇒ E(log(Y )) = log(µ)+E(log(ε)) and var(log(Y )) = var(log(ε))

breaks the link, i.e., µ affects the mean but no longer the variance of log(Y ),

an example of variance stabilization!

There is further benefit in viewing the multiplicative error term ε as a product of
several random contributors. By taking the transform log(Y ):

V = log(Y ) = log(µ)+ log(ε) = log(µ)+ log(X1)+ log(X2)+ . . .

we can appeal to the CLT, applied to the sum of the log(Xi) terms, to justify a

normal additive error model for V , i.e., V = µ̃+ ε̃ with ε̃∼N (0,σ2).

Applying this to all our count data we would have the following familiar model:

Vi j = log(Yi j) = µ̃i + ε̃i j with ε̃i j
i.i.d.∼ N (0,σ2).
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The Problem of Zero Counts

Since some of the observed counts are zero there would be the problem of log(0).

We look at two ways of dealing with it.

1. Adding a small fraction, say 1/6, to all counts. (1/6 > 0 is somewhat arbitrary)

This is a technical solution, keeping all the data.

2. Eliminate all zero counts.

This may be justified if a zero count just means that there were no crabs in that

transect to begin with. It is not a matter of not seeing them because the

population size is small. This reduces the count data to 150−33 = 117 counts.
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Box Plots for count and log(count+1/6)
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Normal QQ-Plots of 150 Residuals
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ANOVA for log(count+1/6)

Analysis of Variance Table

Response: log(count + 1/6)

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(site) 5 54.73 10.95 2.3226 0.04604 *

Residuals 144 678.60 4.71

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Box Plots for count and log(count[count>0])
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Normal QQ-Plots of 117 Residuals
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ANOVA for log(count[count>0])

Analysis of Variance Table

Response: log(count[count > 0])

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(site[count > 0]) 5 47.905 9.581 4.3866 0.001107 **

Residuals 111 242.440 2.184

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Levene Test for log(count+1/6) and log(count[count>0])

> log.crab.levene16()

Analysis of Variance Table

Response: d

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(site) 5 7.193 1.439 0.7513 0.5864

Residuals 144 275.748 1.915

> log.crab.levene0()

Analysis of Variance Table

Response: d

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(site) 5 6.168 1.234 1.4711 0.205

Residuals 111 93.077 0.839
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Comments: log(count+1/6) vs. log(count[count>0]) Analysis

The log(count[count>0]) analysis appears to show stronger evidence of

site differences, as indicated by the p-values: .0011 < .046.

The qqnorm plots for the residuals seem to show no gross violation of normality,

when compared to qqnorm plots of true normal random samples of same size.

The qqnorm plot for the log(count+1/6) residual analysis shows the effect

of the retained zeros strongly (see red dots).

The boxplots for the log(count[count>0]) analysis seem better regularized

than in the case of the log(count+1/6) analysis (the box for site 6 is distorted

by 9 zeros).

The Levene test shows no significant differences in σ across sites for either case.

134



Other Variance Stabilizing Transforms

For data with a multiplicative error model for Yi j we showed σi ∝ µi or σµ ∝ µ

and we saw the beneficial variance stabilizing effect of the log-transform.

Suppose σµ = k×µα, a power relationship, somewhat more general than σµ ∝ µ.

Can we find a transform V = f (Y ) for which the variance no longer depends on µ?

A 1-term Taylor series expansion of f around µ = E(Y )

⇒ f (Y )≈ f (µ)+(Y−µ) f ′(µ) ⇒ E( f (Y ))≈ f (µ) and var( f (Y ))≈σ
2
µ
[

f ′(µ)
]2

To get var( f (Y )) independent of µ we need σ2
µ
[

f ′(µ)
]2 = k2µ2α

[
f ′(µ)

]2 = c, i.e.,

f ′(µ)=
c̃

µα
or f (µ)= c̃

µ1−α

1−α
+c? with α = 1 ⇒ f (µ) = log(µ) as special case.

135



Finding the Variance Stabilizing Transform

According to the previous slide: If σµ = kµα we should analyze the transformed

data Ỹ = f (Y ) = Y 1−α if α 6= 1 and Ỹ = log(Y ) when α = 1.

But what is the correct α? Let the data speak for themselves.

σµ ∝ µα⇐⇒ σµ = c×µα⇐⇒ log(σµ) = k +α× log(µ)

Thus look for a linear relationship between log(si) and log(µ̂i) = log(Ȳi.).

Its slope α̂ is our estimate of α.

α̂ = lm(log(si)∼ log(Ȳi.))$coef[2]

Then perform the ANOVA for Ỹi j = Y 1−α̂

i j = Y λ̂
i j.
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Variance Stabilizing Transforms

Relation
σY ∼ µY α λ = 1−α transform Ỹi j

σY ∝ const. 0 1 no transform! Yi j

σY ∝ µ1/2
Y 1/2 1/2 square root Y 1/2

i j =
√

Yi j

σY ∝ µY 1 0 log log(Yi j)

σY ∝ µ3/2
Y 3/2 -1/2 reciproc. of sqrt Y−1/2

i j = 1/
√

Yi j

σY ∝ µ2
Y 2 -1 reciprocal 1/Yi j
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Box-Cox Transformations

All the above transformations can be captured in the following unified format

known as the Box-Cox transformations

y(λ) =
yλ−1

λ
with y(0) = lim

λ→0

yλ−1
λ

= log(y) by L’Hospital’s rule .

For any given λ 6= 0 the results of an ANOVA on Ỹi j or an ANOVA on

Y (λ)
i j = (Y λ

i j−1)/λ = a×Y λ
i j +b = a× Ỹi j +b will be the same.

Shifts b don’t affect the SS’s and scale factors a don’t affect F-ratios of SS’s.
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Comments on Box-Cox Transformations

Don’t transform if min(s2
1, . . . ,s

2
t )/max(s2

1, . . . ,s
2
t ) is not sufficiently small

=⇒ Fmin.test.

Make sure the linear relationship between log(si) and log(Ȳi.) is strong.

Use simple exponents λ in the transformations, i.e., use λ = 1/2

rather than λ = 1−α = .473, as possibly calculated from slope of the linear fit

of log(si)≈ α× log(Ȳi.)+b.

Try to see whether the transform can be explained rationally,

as with the multiplicative model motivating the log-transform.

When presenting the analysis, make sure to point out the transformation issue

and show the transformed and untransformed data in graphical form.
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log(si) vs log(µ̂i) Analysis for Crab Data

site si µ̂i log(si) log(µ̂i)

4 17.39 9.24 2.86 2.22

5 19.84 10.00 2.99 2.30

6 23.01 12.64 3.14 2.54

1 50.39 33.80 3.92 3.52

3 107.44 50.64 4.68 3.92

2 125.35 68.72 4.83 4.23

Fmin =
(

17.39
125.35

)2
= .01925
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Fmin.test(k=6,n=25,a.recip=3,Fmin.observed=.01925)

k = 6 ,  n =  25 ,   Nsim =  10000 ,   a = 1/ 3 , Fmin.observed = 0.01925

min  ((s1
2,,  ……,,  sk

2)) max  ((s1
2,,  ……,,  sk

2))
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Some Comments

The p-value of 0 obtained by Fmin.test appears to be much stronger evidence

against the hypothesis of homoscedasticity than the .01508 obtained by the

Levene test.

However, recall the caution given for Fmin.test, that it is sensitive to the

normality assumption.

The Levene test is more robust in that respect, thus the p-value of .01508

should be more relevant.
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log(si) vs log(µ̂i) Plot for Crab Data
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Nonparametric k-Sample Tests

Let Y11, . . . ,Y1n1
i.i.d.∼ F1, Y21, . . . ,Y2n2

i.i.d.∼ F2 , . . . , Yk1, . . . ,Yknk
i.i.d.∼ Fk

Test the hypothesis H0 : F1 = . . . = Fk where the common F is not specified.

Since the problem stays invariant under the same strictly monotone transformation

of the Yi j values, only their relative position to each other should matter, i.e.,

one should only pay attention to their ranks =⇒ rank tests.

Denote by Ri j the rank of observation Yi j among all N observations Y11, . . . ,Yknk,

i.e., the smallest of the Yi j gets rank 1, the second smallest gets rank 2, . . .,

and the largest of the Yi j gets rank N.

In the case of ties assign the same average rank to all these tied observations.
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Kruskal-Wallis k-Sample Test

Let R̄i. = ∑
ni
j=1 Ri j/ni denote the average rank for the ith sample

Note that the average R̄.. of all N ranks, Ri j, j = 1, . . . ,ni, i = 1, . . . ,k,

is just the midpoint between 1 and N, i.e., R̄.. = (N +1)/2.

If the distributions of these samples are the same, one would expect that the sets

of ranks for the k samples are well intermeshed, i.e., their variability around their

means should compare well with the variability of all N ranks around (N +1)/2.

H =
SSTreat

SST/(N−1)
=

∑
k
i=1 ni(R̄2

i.− R̄..)2

∑
k
i=1 ∑

ni
j=1(Ri j− R̄..)2/(N−1)

=
∑

k
i=1 niR̄2

i.−NR̄2..
[∑k

i=1 ∑
ni
j=1 R2

i j−NR̄2..]/(N−1)

suggests itself as a reasonable test statistic.
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ANOVA Analogy of the Kruskal-Wallis k-Sample Test

The notation SSTreat and SST on the previous slide indicates the analogy to our

previous use of these terms. All that is changed is that Yi j is interchanged with Ri j.

The sum of squares decomposition SST = SSTreat +SSE still holds.

H
N−1

=
SSTreat

SST
=

SSTreat
SSE +SSTreat

=
SSTreat/SSE

1+SSTreat/SSE
↗ in SSTreat/SSE

=⇒ H is in 1-1 correspondence with the F-test applied to Ri j in place of the Yi j.

Recall F =
SSTreat/(k−1)
SSE/(N− k)

(k≡ t)
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Null Distribution of H
N

∑
i=1

i2 =
N(N +1)(2N +1)

6
=⇒

k

∑
i=1

ni

∑
j=1

(Ri j− R̄..)2 =
k

∑
i=1

ni

∑
j=1

R2
i j−N

(
N +1

2

)2

=
N(N +1)(2N +1)

6
−N

(
N +1

2

)2

=
N(N +1)(N−1)

12
=⇒ SST

N−1
=

N(N +1)
12

Kruskal and Wallis showed that under H0 (all rankings are equally likely)

H =

{
k

∑
i=1

niR̄
2
i.−N

(
N−1

2

)2
}

/[N(N +1)/12] =
12

N(N +1)

k

∑
i=1

niR̄
2
i.−3(N +1)

has an approximate χ2
k−1 distribution as N −→ ∞.

We reject H0 whenever H ≥ χ2
k−1,1−α

= qchisq(1−α,k−1).
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Kruskal-Wallis Test for Flux3

> kruskal.test(list(Flux3$X,Flux3$Y,Flux3$Z))

Kruskal-Wallis rank sum test

data: list(Flux3$X, Flux3$Y, Flux3$Z)
Kruskal-Wallis chi-squared = 4.2633, df = 2, p-value = 0.1186

The p-value is not as small as in the normal ANOVA or randomization tests, i.e.,

.05126 from the F-distribution or .04296 from simulated randomization distribution.

Compared to the former test we no longer assume normality and

compared to the latter we used Ri j in place of the more informative Yi j.

The K-W test is ineffective for changes in scale while locations are matched.

Look at the documentation of kruskal.test on how to use it.
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How Good is the χ2
k−1 Approximation?

Simulated Kruskal−Wallis Statistics
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How Good is the χ2
k−1 Approximation?
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How Good is the χ2
k−1 Approximation?

Histogram shows a good agreement with the approximating χ2
k−1 = χ2

2 distribution.

The QQ-plot shows that the distributions agree fairly well up to and somewhat

beyond the .95-quantile.

Above that the actual distribution of the Kruskal-Wallis statistic has a shorter tail

than the approximating χ2
k−1 = χ2

2 distribution.

This means that the approximating χ2
k−1 = χ2

2 distribution will give p-values that

are higher than they should be, in the range when the true p-value is less than .05.
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kruskall.wallis.pvalue (on web)
kruskal.wallis.pvalue <- function (KW,nvec=c(8,10,15),nsim=1000){
# This function simulates the p-value of an observed Kruskal-Wallis
# statistic KW, computed from samples of sizes nvec.
# The p-value is based on nsim simulations.
#---------------------------------------------------
N<-sum(nvec)
k <- length(nvec)
nvec2<-cumsum(nvec)
nvec1<-c(0,nvec2[1:(k-1)])+1
out<- NULL
x <-list()
for(i in 1:nsim){
xx <- sample(1:N,replace=F)
for(j in 1:k){x[[j]]<-xx[nvec1[j]:nvec2[j]]}
out[i]<-kruskal.test(x)$statistic}
y<-mean(out>=KW)
names(y)<-"p-value"
y}
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Kruskal-Wallis for Flux3 Revisited

kruskal.wallis.pvalue(4.263295,c(6,6,6),10000)

p-value

0.1148

The simulated p-value agrees well with the .1186 from the χ2
2 approximation.

This in turn agrees with our previous observations about the approximation.

However, note what we get for the more extreme KW = 8:

> kruskal.wallis.pvalue(8,c(6,6,6),10000)

p-value

0.0108

> 1-pchisq(8,2)

[1] 0.01831564
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The Anderson-Darling k-Sample Test

Estimate Fi(x) by the ith sample distribution function, i.e., by its EDF F̂i(x)

and estimate the common cdf F(x) (under H0) by the EDF F̂(x)

of all samples combined.

Under H0 we expect that the F̂i(x) should not differ much from F̂(x).

We asses the difference between the F̂i(x) and F̂(x) by the Anderson-Darling

discrepancy metric

ADk =
k

∑
i=1

ni

Z
B

[F̂i(x)− F̂(x)]2

F̂(x)(1− F̂(x))
dF̂(x) =

k

∑
i=1

ni
N

N−1

∑
r=1

[F̂i(Zr)− F̂(Zr)]2

F̂(Zr)(1− F̂(Zr))

where B denotes the set of all x for which F̂(x) < 1

and Z1 < .. . < ZN denote the ordered combined sample values.

Reject H0 for large ADk.

154



The ADk Test Is a Rank Test
Assume that all N observation Yi`, ` = 1, . . . ,ni, i = 1, . . . ,k are distinct (no ties).

From the second and computational form of ADk one can see that it depends on

the observations Yi` only through its ranks.

This becomes clear when looking at F̂i(Zr) which is the proportion of Yi` values

that are ≤ Zr, i.e., only the rank of the Yi` matters in such comparisons, since

Yi` ≤ Zr ⇐⇒ rank(Yi`)≤ rank(Zr) = r ⇐⇒ Ri` ≤ r

Some thought makes clear that the argument stays the same in the case of ties.

For details on the approximate null distribution of ADk see the class website

Reference: K-Sample Anderson-Darling Tests (Scholz and Stephens, 1987)

see under R Code for Lecture Examples.

For R code to carry out the ADk test install package adk and see ?adk.test

after invoking library(adk) for each new R session.
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Anderson-Darling Test for Flux3
> adk.test(Flux3$X,Flux3$Y,Flux3$Z)
Anderson-Darling k-sample test.

Number of samples: 3
Sample sizes: 6 6 6
Total number of values: 18
Number of unique values: 12

Mean of Anderson Darling Criterion: 2
Standard deviation of Anderson Darling Criterion: 0.94415

T = (Anderson Darling Criterion - mean)/sigma

Null Hypothesis: All samples come from a common population.

t.obs P-value extrapolation
not adj. for ties 1.22493 0.11073 0
adj. for ties 1.12515 0.12346 0
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Comments on KW-Test and AD-Test
For Flux3 the p-values were comparable.

The AD-test is effective against any alternatives of H0, it is an omnibus test.

This is not the case for the KW-test (as mentioned w.r.t. variability differences).

The AD-test may have less power than a test geared against a specific alternative.

Similarly for the KW-test.

In large samples the AD-test rejects with probability→ 1 for any alternative to H0.

Not always true for the KW-test.

It is advised to restrict use of the AD-test to ni ≥ 5, i = 1, . . . , k.

Similar restriction may be appropriate to make χ2
k−1 approximation reasonable.

The AD-test is often used to justify the pooling of data when H0 is not rejected.

It pays special attention to behavior in the sample tails, when [F̂(x)(1− F̂(x))]−1

is large, thus giving larger weight to discrepancies [F̂i(x)− F̂(x)]2 there.

157



adk.pvalue
Although adk.test provides p-values, they are approximations based on a mix of

large sample theory and simulations. In order to assess the p-value via simulations

first hand we provide on the web the function adk.pvalue which is very similar to

kruskal.wallis.pvalue. Honest answers for ni < 5 & p-values < .01 or > .25.

> system.time(out<-adk.pvalue(1.22493,nvec=c(6,6,6),nsim=1000))
user system elapsed

10.18 0.01 10.27
> out
p-value

0.12
> system.time(out<-adk.pvalue(1.22493,nvec=c(6,6,6),nsim=10000))

user system elapsed
101.67 0.21 107.93
> out

p-value
0.1155
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Appendix A: Distribution of SSTreat

The next three slides establish the noncentral χ2
t−1,λ

distribution for SSTreat/σ2,

with noncentrality parameter

λ =
t

∑
i=2

ν
2
i /σ

2 =
t

∑
i=1

ni(µi− µ̄)2/σ
2
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Distribution of SSTreat

Ȳi.∼N (µi,σ
2/ni) =⇒ √

ni Ȳi.∼N (
√

ni µi,σ
2) =⇒ √

ni Ȳi.=
√

ni µi+σZi

with Z1, . . . ,Zt being i.i.d. standard normal random variables.

Via Gram-Schmidt get an orthonormal basis g1, . . . ,gt with g′1 =(
√

n1/N, . . . ,
√

nt/N)

Then (
√

n1 Ȳ1., . . . ,
√

nt Ȳt.) =
√

n1 Ȳ1. e′1 + . . .+
√

nt Ȳt. e′t
= V1g′1 + . . .+Vtg′t

The latter is the representation of (
√

n1 Ȳ1., . . . ,√nt Ȳt.) in terms of the orthonor-
mal

basis vectors gi with random coefficients

Vi = (V1g′1 + . . .+Vtg′t)gi = (
√

n1 Ȳ1., . . . ,
√

nt Ȳt.)gi .

In particular

V1 = (
√

n1 Ȳ1., . . . ,
√

nt Ȳt.)g1 =
t

∑
i=1

√
niȲi.×

√
ni/N =

t

∑
i=1

niȲi./
√

N =
√

NȲ..
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Distribution of SSTreat

and
t

∑
i=1

(
√

niȲi.)2 =
t

∑
i=1

niȲ
2
i.= (V1g′1+ . . .+Vtg′t)(V1g1+ . . .+Vtgt) =

t

∑
i=1

V 2
i

Thus
t

∑
i=2

V 2
i =

t

∑
i=1

niȲ
2
i.−V 2

1 =
t

∑
i=1

niȲ
2
i.−(

√
NȲ..)2 =

t

∑
i=1

niȲ
2
i.−NȲ 2..= SSTreat

Vi = (
√

n1 Ȳ1., . . . ,
√

nt Ȳt.)gi = (
√

n1µ1, . . . ,
√

ntµt)gi +σ(Z1, . . . ,Zt)gi

= νi +σUi where νi = (
√

n1µ1, . . . ,
√

ntµt)gi and Ui = (Z1, . . . ,Zt)gi

∑
t
i=1Uig′i is the representation of (Z1, . . . ,Zt) in terms of the gi basis.

∑
t
i=1 νig′i is the representation of (

√
n1µ1, . . . ,

√
ntµt) in terms of the gi basis.

t

∑
i=1

νig′i×
t

∑
j=1

ν jg j =
t

∑
i=1

ν
2
i =

t

∑
i=1

(
√

niµi)2 =
t

∑
i=1

niµ
2
i

As argued previously, Z1, . . . ,Zt i.i.d. N (0,1) =⇒ U1, . . . ,Ut i.i.d. N (0,1).
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Distribution of SSTreat

ν1 =
t

∑
i=1

√
niµi×

√
ni/N =

t

∑
i=1

niµi/
√

N =
√

Nµ̄

t

∑
i=2

ν
2
i =

t

∑
i=1

niµ
2
i −ν

2
1 =

t

∑
i=1

niµ
2
i −Nµ̄2 =

t

∑
i=1

ni(µi− µ̄)2

SSTreat/σ
2 =

t

∑
i=2

V 2
i /σ

2 =
t

∑
i=2

(Ui +νi/σ)2 ∼ χ
2
t−1,λ

with λ =
t

∑
i=2

ν
2
i /σ

2 =
t

∑
i=1

ni(µi− µ̄)2/σ
2
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Appendix B: F-Test Power Monotonicity

The next two slides establish the “intuitively obvious” fact that the power function of

the F-test is monotonically increasing in the noncentrality parameter λ.

163



A Monotonicity Property of Coverage Probability

Theorem: If a r.v. X ∼ f (x) = F ′(x) with f (x) = f (−x) and if f (x) is (strictly)

monotone decreasing in x≥ 0, then H(a) = P(|X−a| ≤ x) (strictly)↘ in |a|.

Proof: H(a) = P(|X−a| ≤ x) = P(|−X−a| ≤ x) = P(|X +a| ≤ x) = H(−a),

and thus it suffices to show H(a)↘ for a≥ 0. Also, only the case x > 0 matters.

H(a) = P(a− x≤ X ≤ a+ x) = F(a+ x)−F(a− x)

with
∂H(a)

∂a
= f (a+x)− f (a−x)= f (a+x)− f (x−a)≤ 0 (< 0) ,

since either 0≤ a− x < a+ x =⇒ f (a+ x)− f (a− x)≤ 0(< 0) or

0≤ x−a < x+a =⇒ f (a+ x)− f (x−a)≤ 0(< 0).

Corollary: P(|X−a| ≥ x) = 1−H(a) (strictly)↗ in |a|.
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Monotonicity of the Power Function
The noncentral F tail probability is strictly↗ in λ, i.e., β(λ) strictly↗ in λ.

With Zi, Z̃ j
i.i.d.∼ N (0,1) the monotonicity in λ follows from

β(λ) = P(Ft−1,N−t,λ ≥ Fcrit) = P


(

Z1 +
√

λ

)2
+∑

t−1
i=2 Z2

i

t−1
≥ Fcrit

∑
N−t
j=1 Z̃2

j

N− t


= P

((
Z1 +

√
λ

)2
≥ Fcrit

N−t

∑
j=1

Z̃2
j

t−1
N− t

−
t−1

∑
i=2

Z2
i

)

=
Z

∞

−∞

P
((

Z1 +
√

λ

)2
≥ y
)

g(y)dy strictly↗ in λ

applying the previous theorem with f (x) = ϕ(x), the standard normal density.

Here g(y) is the density of Y = Fcrit ∑
N−t
j=1 Z̃2

j (t−1)/(N− t)−∑
t−1
i=2 Z2

i .
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