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Predicting Y from X

The previous chapter examined association between two r.v.’s X and Y .

We now examine to what extent we can use X to predict Y .

The quality of such a prediction can serve as another measure of association.

However, this measure of association is not symmetric in X and Y , i.e.,

it is not the same as predicting X from Y . This becomes clearer later.

When predicting Y from X one calls X the predictor variable

and Y the response variable.

We say prediction instead of estimation, because the target quantity Y is random

and not some fixed but unknown parameter, e.g., µ.
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The Regression or Prediction Function

Given an observed value X = x we can focus on that part of the sample space

which gives us this value x, i.e.,

S(x) = X−1(x) = {s ∈ S : X(s) = x}

Restricting Y to this reduced part S(x) of the sample space S

changes the distribution of Y to the conditional distribution of Y |X = x.

The expected value of this conditional distribution or conditional random variable

is denoted by

µ(x) = E(Y |X = x)

Note that µ(x) may change with x.

It is called the prediction function or regression function for predicting Y |X = x.

Given X = x, the predicted value for Y is ŷ(x) = µ(x).
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The Regression Function and Association

The functional form of the regression function µ(x) can provide some insight

into the relation between X and Y .

For example, if µ(x) is an increasing (decreasing) function of x, one might view this

as an indication of positive (negative) association between X and Y , since on

average the values of Y tend to increase (decrease) with increasing X = x values.

How such increasing behavior might relate to correlation will be discussed later.

However, the behavior of µ(x) can be a lot more complex, e.g., up and down, etc.

We will not get into such complexities in this course.
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Why the Mean as Prediction?

If Y has finite mean µy and variance σ2
y, we previously pointed out that without

further information the best value c to predict for Y is to choose c = µy, provided

our criterion for optimality is to minimize the mean squared error MSE

MSE(c) = E(Y − c)2 = E(Y −µy)2 +(c−µy)2

When we have (X ,Y ) and observe X = x before knowing Y , we then should use

µ(x) = E(Y |X = x) as our prediction, with the same rationalization.

If X and Y are independent then Y |X = x and Y have the same distribution.

Knowing X = x does not help us in better predicting Y , than just using µy.
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Some Examples

Predicting the adult height of a male baby we should use the mean height of the

relevant male adult population.

If we know the height of the father of this baby to be 6′−11′′ we would mostly likely

want to revise that prediction.

Our relevant population has changed to that of all fathers in that height group.

We act on a hunch that father/son heights are positively associated.

Similarly, having the scores for Quiz 1 and Quiz 2 in my class, I may want to

make different predictions for the Quiz 2 score of a randomly chosen student,

based on knowing that student’s Quiz 1 score or not.
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Bivariate Normal Case: P(Y ≤ y|X = x)

Theorem: If (X ,Y ) have a bivariate normal distribution with parameters

(µx,µy,σ
2
x,σ

2
y,ρ), then the conditional distribution of Y |X = x is

Y |X = x∼N
(

µy +ρ
σy

σx
(x−µx),(1−ρ

2)σ2
y

)

When X = x, the best prediction for Y is

ŷ(x) = E(Y |X = x) = µy +ρ
σy

σx
(x−µx)

which is a linear function of x through the point (µx,µy) with slope ρσy/σx.

It is also referred to as the (bivariate) population regression function or

population regression line.
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The MSE of Prediction

Note that the conditional variance of Y |X = x, i.e., the expected squared error

or MSE of prediction for ŷ(x) is

var(Y |X = x) = (1−ρ
2)σ2

y

which is not affected by x, but by the squared correlation coefficient ρ2.

The closer ρ2 is to 1 the smaller the MSE, the more accurate is the prediction.

ρ = 0 =⇒ var(Y |X = x) = σ2
y, i.e., knowing X = x does not improve the prediction.

σ2
y− (1−ρ2)σ2

y

σ2
y

= ρ
2

proportion of variation (variance) reduction through knowing X = x

relative to the variation (variance) of Y without knowing X = x.

ρ2 = population coefficient of determination

proportion of Y variation explained or accounted for by linear regression.
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Regression to Mediocrity

ŷ(x) = µy +ρ
σy

σx
(x−µx) ⇐⇒

ŷ(x)−µy

σy
= ρ

x−µx
σx

x−µx
σx

= z or x = µx + zσx ⇐⇒
ŷ(x)−µy

σy
= ρz or ŷ(x) = µy +ρzσy

If x lies z standard deviations (σx) above its mean µx, then the corresponding

prediction ŷ(x) should lie ρz standard deviations (σy) above µy.

For |ρ|< 1 we get |ρz|< |z|, i.e., the prediction shrinks toward the mean µy.

Sir Francis Galton called this regression to mediocrity.

It is also known as regression to the mean or the regression effect.
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Regression Effect

µx

µy

x = µx + z σx
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Galton’s Father-Son Height Data
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Regression Effect Extemes

For ρ = 0 we have complete regression to the mean ŷ(x) = µy,

since x does not provide useful information.

When ρ =±1, then X and Y are perfectly linearly related.

No regression toward the mean.

Between these two extreme situations we have the typical scenario 0 < |ρ|< 1.

We get some regression toward the mean.
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Understanding Bivariate Normal Random Variables

Let Z, Z1 and Z2 be independent standard normal random variables and 0≤ ρ≤ 1

If X =
√

ρZ+
√

1−ρZ1 and Y =
√

ρZ+
√

1−ρZ2

then (X ,Y ) has a bivariate normal distribution with µX = µY = 0 and σX = σY = 1

and correlation ρ. Write (X ,Y )∼N (0,0,1,1,ρ).

If X =
√

ρZ+
√

1−ρZ1 and Y =−
√

ρZ+
√

1−ρZ2

then (X ,Y ) has a bivariate normal distribution with µX = µY = 0 and σX = σY = 1

and correlation −ρ. Write (X ,Y )∼N (0,0,1,1,−ρ).

The common component
√

ρZ forms the basis for association between X and Y .

(aX +b,cY +d)∼N (b,d,a2,c2,±ρ)
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Regression Effect Explained
To a great extent a man’s height is determined by a genetic component

and by a myriad of other random factors.

By focussing on tall fathers, say ≈ 74′′ tall, we get a mix of fathers whose height

is mainly due to the gene and a fair number whose genetic predisposition only

gets them near 74′′ because of positive random effects, and then some few whose

genes would have predisposed them towards a height > 74′′, but they were

affected by negative random effects.

This creates a genetic height component (passed on to the sons) that is biased
toward a value < 74′′. This is a form of downward selection bias.

If the same random factors act on the sons, they will have an average height < 74′′.

Similarly explain upward selection bias for fathers with height of ≈ 62′′.
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Similar Regression Effects

Such regression effects can occur and be explained along the same lines

in many other situations:

• midterm score and final score of students

• baseball players’ batting averages in the 2009 season and 2010 season

• scores on consecutive rounds of golf.

• performance of stock portfolios over different time periods.

=⇒ http://en.wikipedia.org/wiki/Regression

_toward_the_mean#Regression_fallacies
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The Sample Regression Function

So far we focused on the regression function when the parameters (µx,µy,σ
2
x,σ

2
y,ρ)

characterizing a bivariate normal population are known.

When we have a sample from such a population we estimate these parameters via

(x̄, ȳ,s2
x,s

2
y,r) and get as estimated regression function

ŷ(x) = ȳ+ r
sy

sx
(x− x̄)

Note that
σ̂2

y

σ̂2
x

=
1
n ∑

n
i=1(yi− ȳ)2

1
n ∑

n
i=1(xi− x̄)2

=
1

n−1 ∑
n
i=1(yi− ȳ)2

1
n−1 ∑

n
i=1(xi− x̄)2

=
s2
y

s2
x

Whether we choose plug-in variance estimates or sample variance estimates,

the estimated regression function is the same.
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R Functions for Regression

=⇒ http://mypage.iu.edu/~mtrosset/StatInfeR.html

Cut and paste binorm.R into your R work space.

> pop<-c(10,20,4,16,.5) # defines bivariate normal parameters

> Data <- binorm.sample(pop,100) # gets a sample of size n=100

# from this population

> est <- binorm.estimate(Data) # gets the parameter estimates

# for this sample Data

> est # prints out these estimates

[1] 10.1850720 20.4638487 3.9883483 20.7223991 0.5353244

> binorm.regress(Data) # produces plot on next slide with estimated

# concentration ellipse and sample regression line
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The Method of Least Squares

Given any set of points (xi,yi) ∈ R2, i = 1, . . . ,n with sx > 0, we can ask:

which line y = a+bx best fits the data?

For mathematical convenience we measure discrepancy of any given line from

the points (xi,yi) by the sum of squared distances of the points from the line.

The solution depends on how the distance is measured.

Two popular choices are:

1. distance in the direction of the y-axis (good for predicting y from x)

2. distance perpendicular to the fitted line (good for data summary purposes)
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Vertical and Perpendicular Distances
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Residual Error

Using a line y = ŷ(xi) = a+bxi as prediction for yi it is natural to focus on the

residual error yi− ŷ(xi).

It is always possible to choose a and b such that the line goes through (xi,yi)

with residual error zero. It is more difficult to do justice to all points simultaneously.

We will choose as best prediction line that line y = a+bx which minimizes the sum

of squares of the residual errors, i.e.,

SS(a,b) =
n

∑
i=1

(yi− ŷ(xi))2 =
n

∑
i=1

(yi−a−bxi)2

It is easy to minimize SS(a,b) over (a,b) using Calculus or using simple algebra.

We will be content with giving the solution, which should look quite familiar.
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Least Squares Estimates

The values a and b which minimize SS(a,b) are

b∗ = r
sy

sx
= r

σ̂y

σ̂x
=

∑
n
i=1(xi− x̄)(yi− ȳ)

∑
n
i=1(xi− x̄)2 and a∗ = ȳ−b∗x̄

(a∗,b∗) = the least squares estimates of (a,b), often also denoted by (â, b̂).

ŷ(x) = a∗+b∗x = ȳ−b∗x̄+b∗x = ȳ+b∗(x− x̄) = ȳ+ r
sy

sx
(x− x̄)

our previous estimated regression function.

SSR =
n

∑
i=1

(ŷ(xi)− ȳ)2 =
n

∑
i=1

(
r
sy

sx
(xi− x̄)

)2
= r2

n

∑
i=1

(yi− ȳ)2 = r2SST

SSR = sum of squares due to variation of the regression line around ȳ

SST = total sum of squares of the yi around the sample mean ȳ.
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Sum of Squares Decomposition
Based on yi− ȳ = (yi− ŷ(xi))+(ŷ(xi)− ȳ) and

n

∑
i=1

(yi− ŷ(xi))(ŷ(xi)− ȳ) =
n

∑
i=1

(yi− ȳ−b∗(xi− x̄))b∗(xi− x̄)

=
n

∑
i=1

(yi− ȳ)b∗(xi− x̄)−b∗2
n

∑
i=1

(xi− x̄)2 = 0

we have the following sum of squares decomposition

∑
n
i=1(yi− ŷ(xi))2 + ∑

n
i=1(ŷ(xi)− ȳ)2 = ∑

n
i=1(yi− ȳ)2

SSE + SSR = SST

SSE = sum of squares due to error from regression line (residuals)

SST −SSE
SST

=
SSR
SST

=
r2SST
SST

= r2

Again, the sample coefficient of determination r2 represents the relative amount

of variation in the yi explained by the least squares regression line.
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The Simple Linear Regression Model

Paired data may not come to us as a sample from a bivariate normal distribution.

Instead a set of x1, . . . ,xn are deliberately chosen and we observe random Yi’s

corresponding to them. In such cases the xi are no longer random.

We assume the following simple linear regression model

Yi ∼N (µi,σ
2) are independent with µi = β0 +β1xi for i = 1, . . . ,n

The model is indexed by the three unknown parameters σ2 > 0,β0,β1 ∈ R.

Note the common variance for all Yi (homoscedasticity).

β0,β1 are called the regression coefficients.

xi and Yi are often referred to as independent and dependent variable, respectively.
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Simple Linear Regression Model Perspectives

Dealing with a sample (Xi,Yi), i = 1, . . . ,n from a bivariate normal distribution,

we can view the distribution of the Yi as conditional, given Xi = xi, i = 1, . . . ,n.

Yi ∼N
(

µy +ρ
σy

σx
(xi−µx),(1−ρ

2)σ2
y

)

β1 = ρ
σy

σx
, β0 = µy−ρ

σy

σx
µx = µy−β1µx, σ

2 = (1−ρ
2)σ2

y

Sometimes we do have a linear relationship between two variables x and y,

except the y’s are observed with error. For xi not all the same we have

Yi = β0 +β1xi + ei, i = 1, . . . ,n

and we assume e1, . . . ,en i.i.d. ∼N (0,σ2).

This is the same model as before, just a different perspective.
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Estimates in the Simple Linear Regression Model

As before, the least squares principle gives us the same estimates for β0 and β1

β̂1 =
∑

n
i=1(xi− x̄)(yi− ȳ)

∑
n
i=1(xi− x̄)2 =

txy

txx
and β̂0 = ȳ− β̂1x̄

and the plug-in estimate of σ2 is

σ̂
2 =

1
n

n

∑
i=1

(yi− ŷ(xi))2 =
1
n

n

∑
i=1

(yi− β̂0− β̂1xi)2 =
1
n

SSE

Theorem: Under the simple linear regression model we have that β̂1 and SSE

are independently distributed with

β̂1 ∼N

(
β1,

σ2

∑
n
i=1(xi− x̄)2

)
= N

(
β1,

σ2

txx

)
and

SSE
σ2 ∼ χ

2(n−2)

=⇒ Eβ̂1 = β1 and Eβ̂0 = E(Ȳ − β̂1x̄) = E(β0 +β1x̄− β̂1x̄) = β0

β̂1 and β̂0 are unbiased. SSE/(n−2) = MSE is an unbiased estimator of σ2.
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Tests and Confidence Intervals for β1

β̂1−β1
σ/
√

txx
∼N (0,1) and

SSE
σ2 ∼ χ

2(n−2) and independence of β̂1 and SSE

=⇒ T =
(β̂1−β1)/(σ/

√
txx)√

SSE
σ2

/
(n−2)

=
β̂1−β1√
MSE/txx

∼ t(n−2)

Testing H0 : β1 = b versus H1 : β1 6= b we reject H0 when∣∣∣∣∣ β̂1−b√
MSE/txx

∣∣∣∣∣≥ qt where qt satisfies P(|t(n−2)| ≥ qt) = α

i.e., qt = qt(1−alpha/2,n−2).

A (1−α)-level confidence interval for β1 is

β̂1±qt

√
MSE
txx
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Confidence Intervals for µ(x)
The fitted value Ŷ (x) = β̂0 + β̂1x has the following distribution

Ŷ (x)∼N

(
µ(x) = β0 +β1x,σ2

(
1
n

+
(x− x̄)2

∑
n
i=1(xi− x̄)2

))
and Ŷ (x) is independent of SSE .

Standardizing Ŷ (x) by using MSE in place of σ2 we get as before

T =
Ŷ (x)−µ(x)√

MSE

(
1
n + (x−x̄)2

∑
n
i=1(xi−x̄)2

) ∼ t(n−2)

resulting in the following confidence interval for µ(x) = β0 +β1x

Ŷ (x)±qt

√√√√MSE

(
1
n

+
(x− x̄)2

∑
n
i=1(xi− x̄)2

)
with qt = qt(1−alpha/2,n−2)

as special case with x = 0 also for µ(0) = β0.
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Spirit of St. Louis (Lindbergh’s Atlantic Crossing,1927)
http://www.charleslindbergh.com/hall/spirit.pdf

Questions: How much runway is needed for take-off at full weight?

Landing with a full tank would collapse the landing gear.

They did not have time to burn off fuel in order to land.

It was a race against time for the prize money =⇒ extrapolation.
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German French-Curve Fitting

It appears they also did not have time to do a least squares curve fit,

or they did not know about it and/or log10 transforms.
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Regress log10(Distance) vs log10(Weight)
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Distance against Weight
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Some Final Comments

Extrapolation is always dangerous business.

However, we would be more inclined to follow a strong linear pattern than a curved

trajectory, for which we don’t understand where the curve comes from.

Note: we regressed x = log10(distance) against y = log10(weight), i.e., we obtain

x = β0 +β1y i.e. distance = 10x = 10β0 · (10y)β1 = 10β0 · (weight)β1

which shows distance in a power-law relation to weight.

The weight is clearly the independent variable and distance is the response,

which will be affected by variation due to many factors, e.g., wind velocity, etc.

We could have reversed the role of x and y, but we kept the historical perspective.
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