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Populations
We have introduced probability models, random variables and their distributions.

Random variables represent the numerical outcomes of a random experiment.

Randomness enters either through deliberate randomization on our part or

through parsimonious modeling of the many uncontrollable factors that affect

a numerical experimental outcome.

The distribution of a random variable is also referred to as the population.

The population notion arises from the fact that in many applications we sample a

physical population (people, fish, manufactured parts, etc.) and observe a

particular numerical characteristic for the sampled items.

The population consists of the measurements for all the items in the population.

Even if the population is typically finite, it often is so large that discrete distribution

descriptions are not practical =⇒ continuous distributions/populations.
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Characterizing Populations
In the face of the inherent experimental uncertainty, the best we can do is

to give a complete population description.

It would allow us to provide various probabilistic statements about the population,

given that deterministic statements are not feasible.

Unfortunately, knowing the full population is often not practical, since it involves

getting the numerical characteristics for all population members. However, useful

population approximations are still possible and will be discussed.

The more modest goal of characterizing basic aspects/properties of such

populations is often more realistic.

Two main characteristics of any numerical population are the population center

or middle and the population spread or dispersion.
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The Population Center

For a normal population there is no question as to what should be the middle.

It is the parameter µ, the mean, the median and the mode.

We had interpreted the mean as the point of distribution balance.

The median ν is characterized by the property that P(X ≥ ν)≥ 0.5≤ P(X ≤ ν),

For the normal population we have P(X ≥ µ) = P(X ≤ µ) = 0.5 so that ν = µ.

The mode is that value at which the pdf or pmf has its highest value.

Again it is µ for N (µ,σ2). We will not dwell much on the mode.

One reason why there was no dispute concerning the distribution center

of the normal distribution is that its density is symmetric around µ, i.e.,

f (µ− x) = f (µ+ x) for all x ∈ R
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Symmetric Populations
For general continuous random variables with pdf f we say that its distribution or

population is symmetric around some value θ whenever

f (θ− x) = f (θ+ x) for all x ∈ R

Example: X ∼ Uniform(a,b) is symmetric around (a+b)/2.

More generally, a discrete or continuous r.v. X has a symmetric distribution if

there exists a θ ∈ R such that Y = X−θ and −Y = θ−X have the same

distribution. We write Y D=−Y to express equality in distribution.

Thus the probabilities or pdf at Y = y and −Y = y or Y =−y are the same

for any y ∈ R and should balance each other so that

EY = 0 =⇒ E(X−θ) = EX−θ = 0 =⇒ EX = θ

provided that EY exists and is finite. There are pathological examples of symmetric

distributions for which the expectation does not exist.
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Quantiles

Definition: For a continuous r.v. X and for α∈ (0,1) any number q = qα = q(X ;α)
with

P(X < q) = α and P(X > q) = 1−α

is called an α-quantile of X or the associated distribution or population.

The α-quantile may not be unique, see later slide for example.

In general (continuous or discrete case) the α-quantile of a cdf F(x) is defined as

qα = F−1(α) = minimum{x : F(x)≥ α}

In this definition the quantile is unique (an arbitrary convention).

This is the definition that R uses in all its distributions.
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Two Quantile Illustrations
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Nonunique Quantile Example
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q0.3 = any value  x ∈  [2, 3]

F−1(0.3) = left endpoint of the blue interval. Could also choose interval midpoint.

When α = 0.5 this midpoint is usually the most popular choice for q0.5 = median(X).
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Quantiles in R
The .2-quantile of the Uniform[2,4] distribution is obtained as
> qunif(.2,2,4)
[1] 2.4

The .95-quantile of the standard normal distribution is obtained as
> qnorm(.95) or > qnorm(.95,0,1)
[1] 1.644854

The median or .5-quantile of a χ2
10 distribution is

> qchisq(.5,10)
[1] 9.341818 note that it is smaller than the mean 10.

The .9-quantile of the t7 distribution is
> qt(.9,7)
[1] 1.414924

The .8-quantile of the F7,20 distribution is
> qf(.9,7,20)
[1] 2.039703
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Quantiles for Discrete Distributions
For discrete distributions it is often not possible to find a q such that

P(X < q) = α and P(X > q) = 1−α for a given α ∈ (0,1)
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Consider α = 0.5: For q < 2 we have P(X < q) < 0.5 < P(X > q)

and for q > 2 we have P(X < q) > 0.5 > P(X > q).

For q = 2 we get: P(X < q) = 0.4 < 0.5 and P(X > q) = 0.2 < 0.5,

q0.5 = q(X ;0.5) = 2 is the most appealing choice, since P(X < q) and P(X > q)
both cross 0.5 as we move from q = 2 to slightly higher or lower, respectively.
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Quantile Definition for All Distributions

Definition: For any random variable X and any α ∈ (0,1) the quantity q is called
an α-quantile of X or its distribution whenever

P(X < q)≤ α and P(X > q)≤ 1−α

or equivalently (by complementation), whenever

P(X < q)≤ α and P(X ≤ q)≥ α

since

P(X > q)≤ 1−α =⇒ α≤ 1−P(X > q) = P(X ≤ q)

This definition still allows for multiple α-quantiles when F(x) = α for all x∈ [q1,q2),

where F(x) < α for x < q1 and F(q2) > α.

Then this interval consists of all α-quantiles of F .

F−1(α) = q1 always gives you a unique choice for that α-quantile.
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Quantile Illustration
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Symmetry Revisited

When X has a distribution that is symmetric around θ then the median

of this distribution is median(X) = θ. In that case median(X) = EX ,

provided the latter exists.

P(X < θ) = P(X−θ < 0) = P(X−θ > 0) = P(X > θ) =
1−P(X = θ)

2
≤ 1

2

=⇒ θ = q(X ;0.5) = q0.5 = median(X)

For symmetric distributions around θ any ambiguity interval for q0.5

is centered on θ.

Thus we prefer the interval midpoint as median, in case of ambiguity.
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Outlier Resistance of Median
x f (x)
-1 0.19
0 0.60
1 0.19

107 0.02

The median of this distribution is 0.

It stays there, even if we make 107 much larger.

Because of this the median is called outlier resistant.

In salary surveys the median salary is often more meaningful than the mean

in portraying the midpoint or center of the salary distribution.

For the above distribution we have

EX = (−1) ·0.19+0 ·0.6+1 ·0.19+107 ·0.02 = 2 ·105
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Interquantile Ranges
As a measure of spread in the X distribution we could take the quantile difference

q(X ;α2)−q(X ;α1) = qα2−qα1 for any α1 < α2

For continuous distributions such an interval [qα1,qα2] contains α2−α1

of the X -distribution probability.

With that choice of α1 < α2 we could say that the X distribution is more dispersed

than the Y distribution if

q(X ;α2)−q(X ;α1) > q(Y ;α2)−q(Y ;α1)

since the same amount of probability, α2−α1, is spread out over a wider interval

for the X distribution than for the Y distribution.

Such ranges are mainly used in the context of continuous distributions.

However, which α1 < α2 to choose presents too many choices.
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Interquartile Range

Statisticians have singled out the interquartile range with α1 = 0.25, α2 = 0.75, i.e,

iqr(X) = q0.75−q0.25 = q(X ;0.75)−q(X ;0.25) = q3−q1

The interval [q0.25,q0.75] contains half of the X distribution probability.

The notation q3−q1 uses two of a distribution’s 3 quartiles q1,q2,q3,

defined for continuous distributions by

P(X ≤ q1) = 0.25, P(X ≤ q2) = 0.5 and P(X ≤ q3) = 0.75

Of course, q2, the second quartile, is just the median.

The 3 quartiles divide a distribution into 4 intervals containing 0.25 probability each.

To some extent the iqr is also outlier resistant.
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Alternate Characterizations of EX and median(X)
We could measure dispersion of an X distribution by the expected value of |X− c|
or (X− c)2 for some chosen value c, i.e.,

E|X− c| or E(X− c)2

Again we have to deal with the choice of c.

Resolve this by choosing c which minimizes the respective dispersion measure.

Theorem: Let X be a random variable with population median q2 and population
mean µ = EX . Then

1) the value of c that minimizes E|X− c| is c = q2
2) the value of c that minimizes E(X− c)2 is c = µ.

The second statement follows from

E(X− c)2 = E(X−µ+µ− c)2 = E(X−µ)2 +E[2(X−µ)(µ− c)]+E(µ− c)2

= E(X−µ)2 +2(µ− c)E(X−µ)+(µ− c)2 = E(X−µ)2 +(µ− c)2

≥ E(X−µ)2 = σ
2 an example of the method of least squares

Property 1) we take without proof.
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Indication of Asymmetry

We saw that mean and median coincide for symmetric populations.

When µ 6= q2 we can conclude that the X distribution is not symmetric.

The wider they are apart the stronger the asymmetry.
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Normality and iqr and σ

Let X = µ+σZ with Z ∼N (0,1) so that X ∼N (µ,σ2), then

α = P(X ≤ q(X ;α))= P(µ+σZ≤ q(X ;α))= P
(

Z ≤ q(X ;α)−µ
σ

)
= P(Z≤ q(Z;α))

=⇒ q(Z;α) =
q(X ;α)−µ

σ
or q(X ;α) = µ+σq(Z;α)

=⇒ q(X ;α2)−q(X ;α1)
σ

=
q(Z;α2)−q(Z;α1)

1
= q(Z;α2)−q(Z;α1)

Thus the ratio (interquantile range)/σ does not depend on µ and is constant.

In particular, for the interquartile range of normal populations this ratio is

iqr
σ

= (qnorm(.75)−qnorm(.25)) = 1.348980

If we encounter a random variable X for which this is not the case, then X cannot
be normally distributed. The stronger the discrepancy from 1.35 the stronger the
nonnormality.
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