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x̄n and X̄n
We introduced the sample mean x̄n as the average of the observed sample

values~x = {x1, . . . ,xn}, using the plug-in principle.

In parallel, we can also consider the average of the random variables X1, . . . ,Xn

X̄n =
X1 + . . .+Xn

n
=

1
n

n

∑
i=1

Xi

and view it as a random variable X̄n : S−→ R.

X̄n is just the average of n such functions Xi : S−→ R.

Since the xi are just the observed values of the Xi, we can view

x̄n =
1
n

n

∑
i=1

xi as the observed value of X̄n =
1
n

n

∑
i=1

Xi

X̄n, viewed as a random variable, has a distribution. Let us experiment!

R makes it very easy to get hands on experience.
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Behavior of X̄n when Sampling χ2(3)
Take a sample of size n = 5 from χ2(3) via x <- rchisq(5,3)

and then compute its mean mean(x). X ∼ χ2(3)⇒ µ = EX = 3.

Repeat this several times, i.e., get several observed values x̄5 of X̄n.

> x <- rchisq(5,3)

> mean(x)

[1] 2.199718

> x <- rchisq(5,3)

> mean(x)

[1] 4.647138

> x <- rchisq(5,3)

> mean(x)

[1] 4.771858

These values scatter widely around µ = 3, sampling variability!
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Sampling Variability of X̄5

To get a less haphazard view of this sampling variability, we repeat this process

Nsim = 1000 times and look at these 1000 observed sample means using a

kernel density plot. This is best implemented in a function with a loop.

chi2averageSim <- function(Nsim=1000,n=5,k=3){

Xbar <- numeric(Nsim)

for( i in 1:Nsim ){

x <- rchisq(n,k); Xbar[i] <- mean(x)

}

plot(density(Xbar),xlim=c(0,9),ylim=c(0,1.4),main="")

abline(h=0)

}
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Sampling Variation of X̄5: Xi ∼ χ2(3)
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Sampling Variation of X̄20: Xi ∼ χ2(3)
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Sampling Variation of X̄80: Xi ∼ χ2(3)
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Comments

All three kernel density plots are on the same horizontal and vertical scale.

We see that they are all centered more or less on µ = 3.

The sampling variability of X̄n, as we go from n = 5 to n = 20 to n = 80,

decreases visibly, almost by a factor of 2 =
√

4 each time (for a reason).

The mild skew to the right for n = 5 seems to disappear as n gets larger.

The distributions start to look more normal for larger n.

Experiment with chi2averageSim(Nsim=1000,n=5,k=3),

replacing n = 5 by n = 20 and n = 80.
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Averaging Decreases Variation in X̄n Distribution

What we saw experimentally, when sampling from χ2(3), we will now generalize.

Let X, . . . ,Xn be i.i.d. ∼ F , some cdf

with finite mean µ = EXi and finite variance σ2 = varXi.

EX̄n = E

(
1
n

n

∑
i=1

Xi

)
=

1
n

n

∑
i=1

EXi =
1
n
·n ·µ = µ (independence not used)

i.e., the mean of the X̄n population is the same as that of the sampled population.

var X̄n = var

(
1
n

n

∑
i=1

Xi

)
=

1
n2

n

∑
i=1

varXi =
1
n2 ·n ·σ

2 =
σ2

n
(independence is used)

σ(X̄n) = σ/
√

n, i.e., quadrupling n cuts σ(X̄n) by a factor 2: 1/
√

4n = 1/(2
√

n).
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The Weak Law of Large Numbers (WLLN)

Recall our previous definition of convergence: yn −→ c as n−→ ∞ iff

for any ε > 0 we can find a natural number N such that

yn ∈ (c− ε,c+ ε) for all n≥ N

We now replace the number sequence yn by a sequence Yn of random variables.

Definition: A sequence of random variables {Yn} converges in probability to a

constant c, written Yn
P−→ c, iff for any ε > 0,

lim
n→∞

P(Yn ∈ (c− ε,c+ ε)) = 1

i.e., Yn gets arbitrarily close to c with probability closer and closer to 1 as n→ ∞.

In the continuous case, denoting the density of Yn by fnZ c+ε

c−ε

fn(x)dx = Area(c−ε,c+ε)( fn)−→ 1 as n−→ ∞
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Density fn(x) of X̄n

c − ε c + εc

n = 5
n = 20
n = 80
n = 320

fn(x)
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The Weak Law of Large Numbers (WLLN)

Theorem (WLLN): Let X1,X2, . . . be a sequence of independent, identically

distributed random variables with finite mean µ and finite variance σ2. Then

X̄n
P−→ µ or equivalently X̄n−µ P−→ 0 as n−→ ∞

The average X̄n of more and more observations Xi will get closer and closer

to the mean µ of the sampled population with probability tending to 1.

Large sample sizes are good!

That is why it is important to report the sample size used in surveys.
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The Frequentist’s Basis for Interpretation of Probability

Corollary: Let A be an event and consider a sequence of independent and identical

experiments for which we record whether the event A occurs or not.

Let p = P(A) and define i.i.d. Bernoulli random variables

Xi =
{

1 A occurs
0 Ac occurs

Then X̄n is the relative frequency with which the event A occurs in n trials.

Since µ = EXi = EX̄n = p = P(A)

WLLN =⇒ X̄n
P−→ p as n−→ ∞.

Thus the axiomatic model of probability enriched by the concept of independence

proves the frequentist’s interpretation of probability.
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Empirical Probabilities and Plug-In Principle

Recall that we defined the empirical probability of observing a random variable Xi

with value xi in event A⊂ R as

P̂n(A) =
#{xi ∈ A}

n
( = p̂n(A) may be more appropriate notation.)

When viewing this in terms of Xi instead of xi we have

P̂n(A) =
#{Xi ∈ A}

n
P−→ p = P(A) as n−→ ∞.

The WLLN gives us a justification for approximating P(A) by P̂n(A).

This is often referred to as the fundamental theorem of statistics,

especially when using A = (−∞,a] and then

F̂n(a) =
#{Xi ≤ a}

n
P−→ F(a) = P(Xi ≤ a) as n−→ ∞.
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Standardization of a Random Variable
A random variable X with finite mean µ = EX and finite variance σ2 is in its

standardized form Z when Z = (X−µ)/σ

EZ =
E(X−µ)

σ
=

µ−µ
σ

= 0

varZ =
1

σ2var(X−µ) =
1

σ2var(X) =
σ2

σ2 = 1

The following are the standardized versions of Xi, X1 + . . .+Xn and X̄n

random expected standard standard
variable value deviation units

Xi µ σ Xi−µ)/σ

X1 + . . .+Xn nµ
√

nσ (∑n
i=1 Xi−nµ)/(

√
nσ)

X̄n µ σ/
√

n (X̄n−µ)/(σ/
√

n)

Note the equivalence (X̄n−µ)/(σ/
√

n) = (∑n
i=1 Xi−nµ)/(

√
nσ)
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Comments on Standardization
The basic shape of the distribution remains unchanged by standardization.

X ∼ Bernoulli(0.5)⇒ µ = p = 0.5 and σ =
√

p(1− p) = 0.5,

then Z = (X−0.5)/0.5 = 2X−1 takes on the two values

(1−0.5)/0.5 = 1 and (0−0.5)/0.5 =−1 with equal probability p = 0.5.

Standardization 6=⇒ the standardized random variable is normally distributed.

This misconception may come from the frequent interchangeable language usage

of standardization and normalization (normal in the sense of normative).

Standardization only turns X ∼N (µ,σ2) into a Z = (X−µ)/σ∼N (0,1)

i.e., you start with normality and you end up with normality.

Approximate distributional normality is due to different effects.
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X̄n−µ P−→ 0 (Speed?)
We have

var
[√

n · (X̄n−µ)
]
= n ·var(X̄n−µ) = n ·var X̄n = n · σ

2

n
= σ

2

X̄n−µ, multiplied by the factor an =
√

n, has mean zero and fixed variance σ2.

Thus it appears that an =
√

n is just the right factor to counteract the collapse,

i.e., we can view 1/
√

n as the rate of the collapse of X̄n−µ to zero.

Aside from a stable mean zero and variance σ2 for
√

n · (X̄n−µ),

can we say more about its distribution as n−→ ∞?

This question is addressed by the Central Limit Theorem (CLT).

A mechanical display of the CLT, the Galton Board or quincunx,

is on display at the Pacific Science Center.
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Galton Board

●
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X1 + … + Xn

Nsim = 5000 n = 10
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The Central Limit Theorem

Theorem: Let X1, . . . ,Xn i.i.d. ∼ F , with finite mean µ and finite variance σ2.
Denote the cdf of the standardized random variables X̄n and X1 + . . .+Xn, i.e.,

Zn =
X̄n−µ
σ/
√

n
=

X1 + . . .+Xn−nµ√
nσ

, by Fn

Then for all z ∈ R

P(Zn ≤ z) = Fn(z)−→Φ(z) as n−→ ∞

The distribution F of the Xi can be any distribution with finite µ and σ2.

We also write Fn(z)≈Φ(z) or Zn ≈N (0,1) to express this approximation result.

Note that

Zn =
X̄−µ
σ/
√

n
=
√

n(X̄−µ)
σ

≈N (0,1) or X̄−µ≈N (0,σ2/n) the collapse
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CLT for Binomial = Sum of Bernoulli R.V.s

X1 + … + X50 ~Binomial(50, 0.4)
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approximating normal density
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Speed of Convergence in CLT

How fast is the convergence Fn(z)−→Φ(z) in relation to n?

Under mild conditions: maxz |Fn(z)−Φ(z)| −→ 0, again at a rate of about c/
√

n.

A rule of thumb: the normal approximation is usually adequate when n≥ 30.

Often a much smaller n, say n = 5, is already quite adequate.

It all depends on what is meant by “adequate.”

When |z| is large we have Φ(z)≈ 0 or ≈ 1 and the same will hold for Fn.

Then the relative errors |Fn(z)−Φ(z)|/Fn(z) or |Fn(z)−Φ(z)|/(1−Fn(z))

may be more relevant.
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Measurement Example
Nuclear magnetic resonance (NMR) spectroscopy is used to measure the distance

between nearby hydrogen atoms.

Known: The expected value of this measurement is the actual distance (no bias)

the standard deviation is σ = 0.5 angstroms.

If the measurement process is repeated 36 times, what is the chance that the

average measured value X̄36 falls within 0.1 angstrom of the true value µ?

P(µ−0.1 < X̄36 < µ+0.1) = P(µ−0.1−µ < X̄36−µ < µ+0.1−µ)

= P(−0.1 < X̄36−µ < 0.1) = P
(
−0.1
σ/
√

n
<

X̄36−µ
σ/
√

n
<

0.1
σ/
√

n

)
P(−0.1/(0.5/6) < Zn < 0.1/(0.5/6)) = P(−1.2 < Zn < 1.2)

≈ P(−1.2 < Z < 1.2) = Φ(1.2)−Φ(−1.2)

= pnorm(1.2)−pnorm(−1.2) = 0.7698607
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Measurement Example ( continued)

CLT =⇒
n

∑
i=1

Xi ≈N (nµ,nσ
2) and X̄n ≈N (µ,σ2/n)

X ∼D(µ,σ2) means that X has some distribution with mean µ and variance σ2.

If someone else independently replicates the previous experiment 64 times,

what is the chance that the two averages are within 0.1 angstroms of each other?

X1, . . . ,X36 ∼D(µ,σ2) =⇒ X̄36 ≈N (µ,σ2/36)

Y1, . . . ,Y64 ∼D(µ,σ2) =⇒ Ȳ64 ≈N (µ,σ2/64)

=⇒ X̄36− Ȳ64 = X̄36 +(−Ȳ64)∼N (µ+(−µ),σ2/36+σ
2/64)

= N (0,σ2/36+σ
2/64) = N (0,0.25 · (64+36)/(62 ·82)) = N (0,52/482)

P(−0.1 < X̄36− Ȳ64 < 0.1) = P
(
−0.1
5/48

<
X̄36− Ȳ64

5/48
<

0.1
5/48

)
= Φ(0.96)−Φ(−0.96) = pnorm(.96)−pnorm(−.96) = 0.6629448
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More General CLT

In our previous CLT we required the summands Xi to be identically distributed.

Theorem: Let Xi be independent random variables with respective finite means µi

and variances σ2
i , i = 1, . . . ,n.

Under additional (technical) assumptions of which the following is most relevant

max(σ2
1, . . . ,σ

2
n)

σ2
1 + . . .+σ2

n
−→ 0 as n−→ ∞ (1)

we get that the standardized sum

Zn =
X1 + . . .+Xn− (µ1 + . . .+µn)√

σ2
1 + . . .+σ2

n

has cdf Fn such that

P(Zn ≤ z) = Fn(z)−→Φ(z) as n−→ ∞
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Sampled Densities
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CLT in Non-IID Case, n = 5

X1 + … + X5
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Comments

The variance condition (1) makes sure that none of the variances dominate.

All the variances contribute relatively small amounts to the total variability.

For example, if X1 ∼ Uniform(0,1000) with a very large variance and all the other

random variables Xi ∼N (0,1), i = 2, . . . ,n, then for n not so large the sum

X1 + . . .+Xn will not be well approximated by a normal distribution,

but will inherit mainly the uniform distribution character of X1 (see next slide).
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X1 ∼ Uniform(0,1000) & Xi ∼N (0,1), i = 2, . . . ,10
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Further Comments on the CLT

The initial version of the CLT in the iid case is useful in many situations when an

experiment is repeated independently many times and we consider the average X̄n

as or main focus of interest.

The broader non-iid version of the CLT is very useful it rationalizing or modeling

a normal distribution for random variables Xi observed in experiments.

This rationalization consists in probing to what extent Xi can be viewed as the sum

of many random effects that act more or less independently.

For example, the time to complete a task can be viewed as the sum of the random

times to complete many subtasks into which the main task can be decomposed.

Any measurement can be affected by many different sources of small errors.
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A Slight Extension of the CLT

Theorem: Let X1,X2 . . . be a sequence of iid random variables with finite mean µ

and finite variance σ2. Suppose that D1,D2, . . . is a sequence of random variables

such that D2
n

P−→ σ2 as n−→ ∞ and let

Tn =
X̄n−µ
Dn/
√

n
=

X̄n−µ
σ/
√

n
· σ

Dn

Then for any t ∈ R we have

Fn(t) = P(Tn ≤ t)−→Φ(t) as n−→ ∞

Note that Dn/σ and its reciprocal basically behave like the constant 1 as n−→ ∞.

In our previous measurement example we assumed a known σ = 0.5 angstrom.

Typically σ is not known, but one can get an estimate of σ2,

say the plug-in sample estimate σ̂2
n.
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σ̂2
n

P−→ σ2

Recall

σ̂
2
n =

1
n

n

∑
i=1

(Xi− X̄n)2 =
1
n

n

∑
i=1

X2
i − X̄2

n

By the WLLN applied to the averages of the Xi and X2
i

X̄n
P−→ µ =⇒ X̄2

n
P−→ µ2 and

1
n

n

∑
i=1

X2
i

P−→ E(X2
i )

=⇒ 1
n

n

∑
i=1

X2
i − X̄2

n
P−→ E(X2

i )−µ2 = σ
2

While the above sequence of conclusions still require some technical details,

our understanding of
P−→ should make them quite evident.
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