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Small or Moderate Size Samples?

The 1-sample problem assumes that we observe X1, . . . ,Xn iid ∼ P

We made various types of inferences about the population mean µ = EXi,

point estimates, test of hypotheses, and set estimates.

This was possible since we used the plug-in estimator X̄n

and because the CLT implies that approximate normality holds for X̄n.

This was very potent and effective since we did not need to know P.

However, the sample size n had to be sufficiently large.

What can we do when the sample size is not so large or when we wish to

address another measure of population location, such as the median q2(P)
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Sampling Awareness Questions

1. What are the experimental units, i.e., the objects being measured?

2. From what population(s) are the experimental units drawn?

3. What measurements were taken on each unit?

4. What random variables are relevant to a specific inference question?
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Paper Quality

Recycled printing paper is supposed to have a weight of 24 pounds

for 500 sheets (17” × 22”) and caliper (thickness) of 0.0048” per sheet.

We draw a sample of sheets, its thickness is measured by a micrometer.

1) Experimental unit = sheet of paper.

Note: Experimental unit 6= measurement unit (inch)

2) Population: all sheets produced under this process (conceptual).

3) Measurement: caliper (thickness) of the sheet (experimental unit)

4) Relevant random variable: Xi = caliper of ith sheet.

X1, . . . ,Xn iid ∼ P. We are interested in inference about q2(P),

e.g., test H0 : q2(P) = 0.0048 versus H1 : q2(P) 6= 0.0048.
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Blood Pressure Medication

To test the effect of a drug meant to lower blood pressure, a number of patients

have their blood pressure measured before and after taking the drug for two months.

1) Experimental unit: patient

2) Population: All hypertensive patients,

but is not always clear which part of the population is sampled.

3) Measurements: Blood pressure before, Bi, and after, Ai, for the ith patient.

4) Relevant random variable: Xi = Bi−Ai for the ith patient.

X1, . . . ,Xn iid ∼ P. We are interested in inference about q2(P),

e.g., test H0 : q2(P)≤ 0 versus H1 : q2(P) > 0 (drug is effective).
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Effects of Parkinson’s Disease (PD)

To understand the effect of PD on speech breathing, 14 PD patients were recruited

into a study, together with 14 normal control (NC) subjects.

PD patients were carefully matched with NC patients (using a variety of criteria).

1) Experimental unit: each matched (PD,NC) pair.

2) Population: All possible (PD,NC) pairs satisfying matching criteria.

3) Measurements: Two measurements, PD lung volume (D) and

NC lung volume (C) for each unit.

4) Relevant random variable: Xi = log(Di/Ci) for the ith unit.

The log-transform tends to symmetrize right-skewed volume measurements.

X1, . . . ,Xn iid ∼ P. We are interested in inference about q2(P),

e.g., test H0 : q2(P)≥ 0 versus H1 : q2(P) < 0 (PD restricts volume).
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Three Basic Analysis Scenarios

1. X1, . . . ,Xn iid ∼N (µ,σ2), µ = q2(P) because of normal symmetry.

2. X1, . . . ,Xn iid ∼ F , a continuous cdf, not necessarily normal or symmetric.

q2(P) is the parameter of interest.

3. X1, . . . ,Xn iid ∼ F , some continuous cdf, symmetric around some point,

but not necessarily normal.

q2(P), the point of symmetry, is the parameter of interest.

For each of the above scenarios we give inference solutions

w.r.t. point estimation, testing of hypotheses, and set estimation.
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Point Estimation: Normal Case

Since µ = q2(P), the plug-in principle provides two different point estimators,

the sample mean X̄n and the sample median q2(P̂).

Both estimators are unbiased and consistent.

Both of them have approximate normal distributions

X̄n−µ
σ/
√

n ≈ N (0,1) or X̄n ≈ N (µ,σ2/n)

q2(P̂)−µ
σκ/
√

n ≈ N (0,1) or q2(P̂) ≈ N (µ,σ2κ2/n)

It turns out that the ratio of the asymptotic variances σ2/n and σ2κ2/n is

e(N ) = e(q2(P̂), X̄n;N ) =
σ2/n

σ2κ2/n
=

1
κ2 =

2
π
≈ 0.64

called the asymptotic relative efficiency (ARE) of q2(P̂) relative to X̄n.
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The Meaning of ARE
On the previous slide, note that the ARE ratio involved n in both numerator and

denominator and it canceled out.

If we allow different sample sizes n1 and n2 so that the asymptotic variance match,i.e.,

σ2

n1
=

σ2κ2

n2
then

n1
n2

=
1
κ2 = e(N )≈ 0.64 or n1 ≈ 0.64×n2

i.e., X̄n requires only about 64% of the sample size needed by q2(P̂) to have

the same variability around the common target µ = q2(P).

In that sense X̄n is more efficient than q2(P̂).

It can be shown that for any other estimator µ̂ of µ we have

e(X̄n, µ̂;N )≥ 1 yet, there exists a µ̂R such that e(X̄n, µ̂R;P)≤ 1 for all P

that are symmetric around q2(P).

In that case we of course must have e(X̄n, µ̂R;N ) = 1,

i.e., equally efficient in the normal case, but µ̂R is superior otherwise.
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Testing Hypotheses: Normal Case (σ2 Known)

Suppose we wish to test H0 : µ = µ0 against H1 : µ 6= µ0, with known σ2.

Because of the ARE results we use X̄n and would naturally again

regard large values of |X̄n−µ0| as evidence against H0.

To decide whether H0 should be rejected, we calculate the significance probability

p(zn;µ0) = Pµ0(|X̄n−µ0| ≥ |x̄n−µ0|) = Pµ0

(
|X̄n−µ0|

σ/
√

n
≥ |x̄n−µ0|

σ/
√

n

)
= Pµ0(|Zn| ≥ |zn|)

∗=2 ·Φ(−|zn|) with zn = (x̄n−µ0)/(σ/
√

n)

If this looks the same as before, it is, except that at
∗= we invoke exact normality

instead of approximate normality via the CLT. Reject at level α when p(zn;µ0)≤ α.

For X1, . . . ,Xn iid ∼N (µ,σ2) we have X1 + . . .+Xn ∼N (nµ,nσ2) and thus

X̄n ∼N (µ,σ2/n) or Zn = (X̄n−µ)/(σ/
√

n)∼N (0,1), i.e., exact normality.
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Further Motivation of the Point Estimate x̄n

Given that a small value of p(zn;µ0) is strong evidence against H0 : µ = µ0,

we can ask: what is the weakest evidence against H0 : µ = µ0 or

what would make µ0 most plausible?

Since p(zn;µ0)≤ 1, clearly p(zn;µ0) = 1 would present the weakest evidence

against H0 : µ = µ0 and we get that exactly when x̄n = µ0 because

p(zn;µ0) = Pµ0(|X̄n−µ0| ≥ |x̄n−µ0|) = 1 ⇐⇒ x̄n = µ0

Thus µ0 = x̄n would present the most plausible value for µ,

i.e., the most plausible hypothesis H0 : µ = µ0.

This type of reasoning later becomes useful when we have a natural test,

but don’t have a natural estimate to start with.
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Test Statistic: Normal Case (σ2 Unknown)

Again we replace the unknown σ2 by the estimator S2
n and use as test statistic

Tn(µ0) =
X̄n−µ0
Sn/
√

n
Rather than invoking approximate normality via the CLT, we take advantage of the

normality of the sampled distribution and some distributional facts stated below.

Theorem: X1, . . . ,Xn iid ∼N (µ,σ2), then

Y =
(n−1)S2

n
σ2 =

n

∑
i=1

(Xi− X̄n)2

σ2 ∼ χ
2(n−1)

and X̄n and S2
n (and thus Y ) are statistically independent.

Corollary: X1, . . . ,Xn iid ∼N (µ,σ2), then

Tn(µ) =
(X̄n−µ)/(σ/

√
n)

Sn/σ
=

Z√
Y/(n−1)

∼ t(n−1)
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Testing Hypotheses: Normal Case (σ2 Unknown)

Sampling from a normal distribution we have under Hµ0 : µ = µ0 the exact

distribution of Tn = Tn(µ0)∼ t(n−1).

We can compute the exact significance probability as

p(tn;µ0) = Pµ0(|Tn| ≥ |tn|) = 2FTn(−|tn|) = 2∗pt(−abs(t.n))

where t.n = tn = (x̄n−µ0)/(sn/
√

n).

Here we exploit the symmetry of the t(n−1) distribution around zero.

The basic difference to our approximate approach is that we use the exact

t-distribution rather than the approximating N (0,1) distribution for large n.

Of course, for n large we have t(n−1)≈N (0,1).
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Set Estimation: Normal Case (σ2 Known)

Let qz be the (1−α/2)-quantile of the N (0,1) distribution, i.e., P(|Z| ≥ qz) = α.

Then the hypothesis H0 : µ = µ0 is rejected at level α whenever

p(x̄n;µ0) = Pµ0(|X̄n−µ0| ≥ |x̄n−µ0|) = Pµ0

(
|X̄n−µ0|

σ/
√

n
≥ |x̄n−µ0|

σ/
√

n

)
≤ α

i.e., when
|x̄n−µ0|

σ/
√

n
≥ qz or when |x̄n−µ0| ≥ qzσ/

√
n

Conversely, µ0 is acceptable or plausible whenever |x̄n−µ0|< qzσ/
√

n or when

µ0 ∈ (x̄n−qzσ/
√

n , x̄n +qzσ/
√

n)

Thus (x̄n−qzσ/
√

n , x̄n +qzσ/
√

n) is our (1−α)-level confidence interval for µ.

Pµ

(
µ ∈

(
X̄n−qz

σ√
n

, X̄n +qz
σ√
n

))
= Pµ

(
|X̄n−µ|
σ/
√

n
< qz

)
= P(|Z|< qz)= 1−α
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Set Estimation: Normal Case (σ2 Unknown)

The previous derivation is repeated with σ replaced by sn and qz replaced by qt ,

the (1−α/2)-quantile of the t(n−1)-distribution, resulting in

(x̄n−qtsn/
√

n , x̄n +qtsn/
√

n)

as our (1−α)-level confidence interval for µ.

Pµ

(
µ ∈

(
X̄n−qt

Sn√
n

, X̄n +qt
Sn√

n

))
= Pµ

(
|X̄n−µ|
Sn/
√

n
< qt

)
= P(|Tn|< qt)= 1−α

Thus our random interval has the exact claimed coverage probability.

Of course, this exactness depends on the normality of the sampled population.

Simple numerical examples are given in the text (for σ known or unknown).
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General 1-Sample Location Problem

Previously we assumed normality to get exact inference procedures for µ.

Now assume X1, . . . ,Xn iid ∼ P, with a continuous cdf F .

No symmetry of F is assumed.

We focus on the population median q2(P) (denoted by θ for simplicity).

θ always exists and is insensitive to the tail behavior of P.

More importantly, it allows for simple exact inference procedures.
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General 1-Sample Location Problem: Testing Hypotheses

Test H0 : θ = θ0 against H1 : θ 6= θ0. Distribution continuity implies Pθ(X = θ) = 0.

Thus Pθ0(X ≥ θ0) = Pθ0(X > θ0) = Pθ0(X ≤ θ0) = Pθ0(X < θ0) = 1/2.

By observing which Xi < θ0 and which Xi > θ0, we turn this into a Bernoulli trials

problem, with known success probability p0 = 0.5 under H0 : θ = θ0.

Consider the sign test statistic Y = #{Xi > θ0}= #{Xi−θ0 > 0}.

Values of Y far away from n/2 would provide strong evidence against H0 : θ = θ0

or H̃0 : Pθ0(X > θ0) = 0.5 in favor of H1 : θ 6= θ0 or H̃1 : Pθ0(X > θ0) 6= 0.5.

Thus we should reject H0 at level α whenever the significance probability

for the observed count y is

p(y;0.5) = P0.5(|Y −n/2| ≥ |y−n/2|)≤ α
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Calculating p(y;0.5) for the Sign Test

Large values of |y−n/2| ⇐⇒ to values y too close to 0 or n (n/2 = (0+n)/2)

With c = min(y,n− y) we can express (check this with c = y and c = n− y)∣∣∣Y − n
2

∣∣∣≥ ∣∣∣y− n
2

∣∣∣ ⇐⇒ {
Y ≤ n

2
−
∣∣∣y− n

2

∣∣∣} ∪ {Y ≥ n
2

+
∣∣∣y− n

2

∣∣∣}
⇐⇒ {Y ≤ c} ∪ {Y ≥ n− c}

Since the null distribution of Y is symmetric around n/2 we have

p(y;0.5) = P0.5(Y ≤ c)+P0.5(Y ≥ n−c) = 2P0.5(Y ≤ c) = 2∗pbinom(c,n,0.5)

Thus we reject H0 at level α whenever

p(y;0.5) = 2∗pbinom(min(y,n−y),n,0.5)≤ α
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Sign Test Example

With an observed sample of n = 10

~x = {98.73, 97.17, 100.17, 101.26, 94.47, 96.39, 99.67, 97.77, 97.46, 97.41}

should we reject H0 : θ = 100 at level α = 0.05?

p(y = 2;0.5) = 2∗pbinom(min(2,10−2),10,0.5) = 0.109375 > 0.05

we should not reject H0.

Should we reject H0 : θ≤ 97 in favor of H1 : θ > 97 at level α = 0.05?

Of course, here we should reject H0 when Y = #{Xi−97 > 0} is too large.

For the observed y = 8 we get a significance probability

p(y = 8;0.5) = P0.5(Y ≥ 8) = 1−pbinom(7,10,0.5) = 0.0546875 > 0.05

and we should not reject H0 at α = 0.05.
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The Problem of Zeros

Based on the continuity assumption we had Pθ(X = θ) = 0.

However, rounding of data often creates zeros for Xi−θ0. How to treat these?

The previous data, when rounded to the nearest integer, become

~x = {99, 97, 100, 101, 94, 96, 100, 98, 97, 97}

W.r.t. H0 : θ = θ0 = 100 versus H1 : θ 6= θ0 we have two Xi−θ0 = 0

1) Average all possible significance probabilities when splitting any Xi−θ0 = 0

into + or −, respectively. There are 2k such splits, where k = #{Xi−θ0 = 0}.

2) Compute p0(y;0.5) for the split most favorable to H0 and p1(y;0.5) for the split

most favorable to H1. If p0(y;0.5)≤ α, reject H0.

If p1(y;0.5) > α, don’t reject H0. If p0(y;0.5) > α≥ p1(y;0.5), suspend judgment.

3) Remove cases with Xi−θ0 = 0 and work with the reduced sample as before.
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~x = {99, 97, 100, 101, 94, 96, 100, 98, 97, 97}

zero splits y = #{xi > 100} c = min(y,10− y) p(y;0.5)
x3 < 100, x7 < 100 1 1 0.021484
x3 < 100, x7 > 100 2 2 0.109375
x3 > 100, x7 < 100 2 2 0.109375
x3 > 100, x7 > 100 3 3 0.343750

We have p1(y;0.5) = 0.021 < 0.05 < p0(y;0.5) = 0.34, suspend judgment.

Only one of the four p(y;0.5) is < 0.05.

The average of all four p(y;0.5) is 0.146, don’t reject H0 (conservative).

For the reduced analysis of n = 8 cases we get

2∗pbinom(1,8, .5) = 0.0703125

again not significant at α = 0.05.
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General 1-Sample Location Problem: Point Estimation

The plug-in estimate, i.e., the median of the empirical distribution P̂ or

sample median would be the natural estimator of the population median θ.

Again we can motivate this sample median as the value θ0 for which we are

least inclined to reject H0 : θ = θ0, namely for which (in the case of even n)

p(y;0.5) = Pθ0(|Y −n/2| ≥ |y−n/2|) = Pθ0(|Y −n/2| ≥ 0) = 1

since y−n/2 = 0 can be achieved for any θ0 that has n/2 of the xi to its left

and n/2 to its right, which defines all possible choices for the sample median,

the midpoint of that interval being the preferred choice.

For odd n a similar argument can be made for θ0 = the middle sample value

The efficiency results comparing sample mean with sample median in the case of

normal samples carry over to the testing situation, comparing t-test with sign test.

The t-test is “as effective” as the sign test, but for 36% less data.
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General 1-Sample Location Problem: Set Estimation

We use the sign test for H0 : θ = θ0 versus H1 : θ 6= θ0 to identify all values θ0

for which the sign test cannot reject the hypothesis at level α.

This set of θ0’s again serves as our confidence set for θ based of~x.

Recall that we reject H0 when y(θ0) = #{xi > θ0} is too large or too small,

i.e., when y(θ0)≥ n− c or y(θ0)≤ c where c is an appropriate critical value, with

Pθ0(Y (θ0)≤ c)+Pθ0(Y (θ0)≥ n−c)= 2Pθ0(Y (θ0)≤ c)= 2∗pbinom(c,n,0.5)= α

For c = 0,1,2, . . . < n/2 only a certain, discrete set of α values can be achieved.

If the desired α is not among the achievable α values, we have two options:

1) take the next lower achievable α value (the conservative option).

2) Take the achievable α value closest to the target α (make the best of it).

Whatever option is chosen, the corresponding critical value is denoted by cα.
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Finding the Right Critical Value
Given a target level α = alphawe can find with c0 = c.0 = qbinom(alpha/2,n,0.5)

the smallest c, such that

Pθ0(Y (θ0)≤ c) = pbinom(c,n,0.5)≥ α/2

By evaluating

pbinom(c.0,n,0.5) and pbinom(c.0−1,n,0.5)

we can decide to take cα = c0−1 or cα = c0 depending on option 1) or 2).

For duality conversion of test to confidence interval the following definition is useful.

Definition: The order statistics of~x = {x1, . . . ,xn} are any permutation of the xi

that leaves them in non-decreasing order, denoted by x(1) ≤ x(2) ≤ . . .≤ x(n).

For convenience we assume: x(1) < x(2) < .. . < x(n)

occurring with probability 1 for continuous random variables.
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Sign Test to Confidence Interval Conversion

Note that θ0 < x(cα+1) means that at least n− cα of the xi exceed θ0,

i.e. y(θ0)≥ n−cα. Then we would have to reject H0 at level α (the achieved level).

● ● ● ●● ● ● ● ● ● ● ●

n = 12
cα = 3

θ0

θ0

x(cα+1) x(n−cα)

Similarly, θ0 > x(n−cα) means that at most cα of the xi exceed θ0,

i.e. y(θ0)≤ cα, in which case we also would have to reject H0 at level α.

Thus our set of acceptable θ0 is characterized by [x(cα+1), x(n−cα)],

our (1−α)-level confidence interval for θ:

Pθ0(θ0 ∈ [X(cα+1), X(n−cα)]) = 1−α

α is the achieved level of the sign test, according to option 1) or 2).
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The Case of Ties
When there are ties among the xi due to rounding, and if rounded values are

on a grid 0,±ε,±2ε, . . ., then we know that each rounded value is at most

ε/2 away from its unrounded continuous random variable source, denoted by X∗i .

The previous confidence interval in terms of the continuous (distinct) order

statistics X∗(1) < .. . < X∗(n) is

[X∗(cα+1), X∗(n−cα)]⊂ [X(cα+1)− ε/2 , X(n−cα) + ε/2]

=⇒ 1−α = Pθ0

(
θ0 ∈ [X∗(cα+1), X∗(n−cα)]

)
≤ Pθ0

(
θ0 ∈ [X(cα+1)− ε/2 , X(n−cα) + ε/2]

)
conservatively
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Example
From our previous sample of size n = 10 we get the following order statistics

> ex10<-c(98.73, 97.17, 100.17, 101.26, 94.47,

96.39, 99.67, 97.77, 97.46, 97.41)

> sort(ex10)

[1] 94.47 96.39 97.17 97.41 97.46 97.77

98.73 99.67 100.17 101.26

We desire a 90% confidence interval for the median. qbinom(.05,10,.5)=2

pbinom(2,10,.5)=0.0546875 and pbinom(1,10,.5)=0.01074219.

Since 0.0546875 comes a lot closer to α/2 = .05 than 0.01074219 it appears that

cα = 2 is the more natural choice, corresponding to an achieved significance level

α = 2∗0.0546875 = 0.109375, i.e., achieved confidence level 1−α = 0.890625.

The resulting confidence interval is [x(2+1),x(10−2)] = [x(3),x(8)] = [97.17,99.67].
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Symmetric 1-Sample Location Problem

Assume: X1, . . . ,Xn iid ∼P with a continuous distribution that is symmetric around

some value θ, which of course coincides with the median = mean (if it exists).

A symmetric distribution around θ means Xi−θ
D= θ−Xi

Pθ(Xi≤ θ−x)= Pθ(x≤ θ−Xi)= Pθ(Xi−θ≥ x)= Pθ(Xi≥ θ+x) for any x∈R

This sample model is between our two previous assumptions: a normal sample

(continuous and symmetric) and simply a sample from a continuous distribution.

Dropping the normality assumption we have a much broader application range.

First we develop an exact test for H0 : θ = θ0 against H1 : θ 6= θ0 and, as before,

use it to obtain the corresponding point estimates and confidence sets.
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Consequences of Symmetry

In considering the hypothesis H0 : θ = θ0 let Di = Xi−θ0 which has a

continuous distribution, symmetric around zero under H0.

Theorem: Under H0 the signs of the Di are independent of the |Di|, i = 1, . . . ,n.

Proof: Since the Di are independent, this just needs to be proved for any i.

Let D = Di, then

Pθ0(D > 0, |D| ≤ d)= Pθ0(0 < D≤ d)=
1
2
·Pθ0(|D| ≤ d)= Pθ0(D > 0)·Pθ0(|D| ≤ d)

We made use of the fact that Pθ0(D = 0) = 0, Pθ0(D > 0) = Pθ0(D < 0) = 1/2

and

Pθ0(|D| ≤ d) = Pθ0(−d ≤ D < 0)+Pθ0(0 < D≤ d) = 2 ·Pθ0(0 < D≤ d)

q.e.d.
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Wilcoxon Signed Rank Test Statistic
Because of the continuous distribution assumption we have Pθ0(Di = 0) and

Pθ0(|Di|= |D j|) = 0 for i 6= j.

Thus there is a unique ordering of the absolute differences |Di|, i.e., we have

the |Di| order statistics, denoted by |D|(1) < .. . < |D|(n), with

Pθ0(|D|(1) < .. . < |D|(n)) = 1

Denote the ranks of |D1|, . . . , |Dn| by R1, . . . ,Rn and consider the following

Wilcoxon signed rank test statistics

T+(θ0) = T+ = ∑
Di>0

Ri and T−(θ0) = T− = ∑
Di<0

Ri

Clearly,

T++T−=
n

∑
i=1

Ri =
n

∑
i=1

i =
n
1

(n+1)
+

(n−1)
2

(n+1)
+. . .+

2
(n−1)
(n+1)

+
1
n

(n+1)
=

n(n+1)
2

Thus it suffices to focus on T+.
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Mean and Variance of T+
Using Bernoulli random variables IDi>0 = 1 for Di > 0 and IDi>0 = 0 for Di ≤ 0

we can rewrite

T+ =
n

∑
i=1

Ri · IDi>0

Since the ranks R1, . . . ,Rn (a permutation of 1,2, . . . ,n) are based on the absolute

values |D1|, . . . , |Dn| and since the latter are independent of the Bernoulli random

variables ID1>0, . . . , IDn>0, we can view T+ as having the same distribution as

T̃+ =
n

∑
i=1

i ·Bi with independent Bi ∼ Bernoulli(0.5), i = 1, . . . ,n

Eθ0T+ = Eθ0T̃+ =
n

∑
i=1

i ·Eθ0Bi =
1
2
·

n

∑
i=1

i =
1
2
· n(n+1)

2
=

n(n+1)
4

varθ0 T+ = varθ0 T̃+ =
n

∑
i=1

i2 ·varθ0 Bi =
1
4
· n(n+1)(2n+1)

6
=

n(n+1)(2n+1)
24
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Wilcoxon Signed Rank and Sign Test Statistics

Comparing the Wilcoxon signed rank test statistic

T+ =
n

∑
i=1

Ri · IDi>0 Eθ0T+ = n(n+1)/4 under H0

with the sign test statistic

Y =
n

∑
i=1

IDi>0 Eθ0Y = n/2 under H0

recall that we rejected H0 : θ = θ0 in favor of H1 : θ 6= θ0 whenever Y was too high

or too low, i.e., when |Y −n/2| was too large. Similarly, we should reject H0 when

|T+−n(n+1)/4| is too large.

We see that T+ does more than count the number Y of observations with

Di = Xi−θ0 > 0. It weights each such count by the rank Ri of |Di|.

The higher this weight Ri, the more Xi differs from θ0, and the stronger is the

evidence against H0. Y employs no such weighting (less effective).
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Symmetry of the T+ Null Distribution

We consider the null distribution of T+, i.e., its distribution under H0.

From the representation

T+
D= T̃+ =

n

∑
i=1

i ·Bi and the fact that

(
Bi−

1
2

)
D=
(

1
2
−Bi

)
we see that

T̃+−
n(n+1)

4
=

n

∑
i=1

i ·
(

Bi−
1
2

)
D=

n

∑
i=1

i ·
(

1
2
−Bi

)
=

n(n+1)
4

− T̃+

=⇒ the distribution of T̃+ (and also that of T+) is symmetric around n(n+1)/4.
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The Null Distribution of T+
The null distribution of T̃+ (and thus of T+) is easy to obtain for small n, say n = 4.

There are 24 = 16 sign patterns of length 4, all equally likely with probability 1/16.

i i
1 2 3 4 T̃+ 1 2 3 4 T̃+
+ + + + 10 − + + + 9
+ + + − 6 − + + − 5
+ + − + 7 − + − + 6
+ + − − 3 − + − − 2
+ − + + 8 − − + + 7
+ − + − 4 − − + − 3
+ − − + 5 − − − + 4
+ − − − 1 − − − − 0

k 0 1 2 3 4 5 6 7 8 9 10
16 ·Pθ0(T+ = k) 1 1 1 2 2 2 2 2 1 1 1

Note the symmetry!
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The Null Distribution of T+ for Larger n
For n = 20 we already have 220 = 1,048,576 such sign patterns of length n = 20.

Tabulate and organize their sums T̃+ by frequency to get the null distribution.

R has a function psignrank(k,n) that calculates Pθ0(T+ ≤ k) quite effectively,

even for large n. For example for n = 200

> psignrank(8000,200)

[1] 0.006089115

> 2ˆ200

[1] 1.606938e+60

> qsignrank(.006,200)

[1] 7996

qsignrank(.006,200) returns the smallest k such that Pθ0(T+ ≤ k)≥ 0.006

psignrank(7995,200)=0.00598 & psignrank(7996,200)=0.0060045.
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Large Sample Approximation

Since T̃+ = ∑
n
i=1 i ·Bi with Bi iid ∼ Bernoulli(0.5)

the following theorem should not surprise in view of the broader CLT.

Theorem: Under H0 : θ = θ0 the distribution of T+ is approximately normal with

mean Eθ0T+ = n(n+1)/4 and variance varθ0 T+ = n(n+1)(2n+1)/24, i.e.,

Pθ0

(
T+−n(n+1)/4√

n(n+1)(2n+1)/24
≤ z

)
−→Φ(z) as n−→ ∞

T+ ≈ N (n(n+1)/4,n(n+1)(2n+1)/24)

Pθ0(T+ ≤ t)≈Φ

(
t−n(n+1)/4√

n(n+1)(2n+1)/24

)
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Simulated Null Distribution of T+
It is an easy matter to simulate the null distribution of T+.

Simply generate an n-vector of independent Bernoulli(0.5) r.v.s Bi via

B <- rbinom(n,1,.5) and compute T.plus <- sum((1:n)*B).

In a loop repeat this a large number of times, say Nsim=10000.

T.plus <- numeric(Nsim)

for(i in 1:Nsim){

B <- rbinom(n,1,.5); T.plus[i] <- sum((1:n)*B)

}

By the LLN the vector T.plus of simulated T+ values provides a good

approximation to the T+ null distribution, i.e.,

Pθ0(T+ ≤ t)≈ mean(T.plus <= t) = proportion of T.plus values ≤ t
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Functions Provided by M. Trosset

The text’s web site http://mypage.iu.edu/˜mtrosset/StatInfeR.html

provides two functions (in symmetric.R) W1.p.norm and W1.p.sim that calculate

p(t+;θ0) = Pθ0(|T+−n(n+1)/4| ≥ |t+−n(n+1)/4|)

either by normal approximation or by simulation approximation. Study the code.

Note that the approximation in the first case only becomes better as n gets large,

while in the second case it becomes better as the number of simulations increases.

> W1.p.norm(n=4,tplus=10)

[1] 0.1003482

> W1.p.sim(n=20,tplus=50,draws=10000) # draws = Nsim

[1] 0.0408

> W1.p.norm(n=20,tplus=50)

[1] 0.04188807 # the text 0.0412 is a typo
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The Case of Zeros and Ties

When some of Di = Xi−θ0 are zero or when some of the absolute values |Di|

are tied among each other we have sign (±0?) and ranking problems.

There are several ways of dealing with this. The following, suggested by the text,

seems easiest: Randomly perturb the Xi slightly so that this situation is avoided.

Analyze the “fixed” data by the previous process and get a significance probability.

You can even figure out the worst and best case significance probabilities.

Repeat this data fixing process a few times and make a decision based on

the obtained significance probabilities. Trosset provides W1.p.ties.

See the Example 10.11 discussion.
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Using W1.p.ties

> x0 <- c(1.5,9.7,3.9,7.6,8.0,7.3,5.0,9.7,2.3,2.3,

+ 6.6,9.4,8.6,7.7,8.4,2.7,9.1,5.3,3.1,9.4)

> W1.p.ties(x=x0,theta0=5,draws=1000)

[1] 0.047

> W1.p.ties(x=x0,theta0=5,draws=1000)

[1] 0.045

> W1.p.ties(x=x0,theta0=5,draws=1000)

[1] 0.033

> W1.p.ties(x=x0,theta0=5,draws=1000)

[1] 0.032

> W1.p.ties(x=x0,theta0=5,draws=1000)

[1] 0.023

> W1.p.ties(x=x0,theta0=5,draws=1000)

[1] 0.028

It seems that we should reject H0 : θ = 5 at level α = 0.05.
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Alternative Representation of T+
Let Di = Xi−θ0 in the context of testing H0 : θ = θ0

Consider the
(n

2
)
+n = n(n+1)/2 Walsh averages (Di +D j)/2 with i≤ j. Then

T+(θ0) = T+ = number of positive averages (Di +D j)/2 with i≤ j

Proof: Assume that the Di are indexed such that 0 < |D1|< |D2|< .. . < |DN|

Note that T+ does not depend on the indexing scheme for the Di.

∑
i≤ j

I[(Di+D j)/2>0] = ∑
i≤ j

I[Di+D j>0] =
n

∑
j=1

j

∑
i=1

I[Di+D j>0]
∗=

n

∑
j=1

j× I[D j>0] = T+

where the indicator function IB is 1 when B is true and 0 otherwise.

For
∗= in the above equation sequence note that

D j > 0 =⇒ ±Di < D j = |D j| for i < j , i.e., Di +D j > 0 for all i≤ j

D j < 0 =⇒ ±Di > D j =−|D j| for i < j , i.e., Di +D j < 0 for all i≤ j �
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Point Estimate of θ

With respect to the observed value t+ of T+ we just showed

t+(θ0) = t+ = #
{

(i, j) : i≤ j,
(xi−θ0)+(x j−θ0)

2
> 0
}

= #
{

(i, j) : i≤ j,
xi + x j

2
> θ0

}

Since the distribution of T+ is symmetric around ET+ = n(n+1)/4 we would have

least reason to reject H0 : θ = θ0 when t+(θ0) = t+ = ET+ = n(n+1)/4,

i.e., when about half (i.e., n(n+1)/4) of the n(n+1)/2 Walsh averages are > θ0.

This will happen when we take

θ0 = θ̂ = mediani≤ j

(
xi + x j

2

)
as point estimate for the center θ of our continuous and symmetric distribution.
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Some Comments on θ̂

The median of the Walsh averages is an interesting compromise between

the mean X̄n (suggested when sampling from a normal population) and

median(X1, . . . ,Xn), when sampling from any continuous distribution.

For large n the estimator θ̂ has an approximate normal distribution.

Its ARE relative to X̄n is 3/π≈ .955, when sampling from a normal population.

For any other other sampled distribution that ARE is ≥ 108/125 = .864

and can be substantially higher than 1 (even ∞) in some situations.

Trosset provides W1.walsh in symmetric.R for calculating θ̂, e.g.,

for our previous sample x0 we get W1.walsh(x0) = 6.3.
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Theorem about Ordered Walsh Averages

Recall our alternative representation

T+(θ0) = #
{

(i, j) : i≤ j,
Xi +X j

2
> θ0

}
With probability 1 the Walsh averages (Xi +X j)/2 are distinct.

Denote their M = n(n+1)/2 values by A(1) < .. . < A(M).

Theorem:

A(k) ≤ θ0 ⇐⇒ T+(θ0)≤M− k

and thus A(k) > θ0 ⇐⇒ T+(θ0)≥M− k +1

Proof:

A(k)−θ0 ≤ 0 ⇐⇒ at most M− k of the differences (Xi +X j)/2−θ0 are > 0

⇐⇒ T+(θ0)≤M− k q.e.d.
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Confidence Intervals for θ

Again we motivate the confidence set as consisting of all θ0 for which H0 : θ = θ0

is not rejectable at level α when testing against the alternative H1 : θ 6= θ0.

We reject H0 whenever |T+(θ0)−n(n+1)/4| is too large, i.e.,

when T+(θ0)≤ k or T+(θ0)≥M− k

⇐⇒ when A(M−k) ≤ θ0 or A(k+1) > θ0

Thus we reject H0 whenever θ0 /∈ [A(k+1),A(M−k)) with achieved significance level

α = αk = Pθ0(T+(θ0)≤ k)+Pθ0(T+(θ0)≥M− k) = 2Pθ0(T+(θ0)≤ k)

The confidence interval for θ is [A(k+1),A(M−k)) with achieved confidence level

Pθ0( θ0 ∈ [A(k+1),A(M−k)) ) = 1−αk

Only a finite set of α values is achievable, corresponding to k = 0,1, . . . < M/2.
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Finding (k,αk) for Given Target α

For the given target α/2 = alpha/2 find kα = k.alpha = qsignrank(alpha/2,n)

= the smallest k such that Pθ0(T+(θ0)≤ k)≥ α/2.

Find α0/2 = psignrank(k.alpha−1,n) and α1/2 = psignrank(k.alpha,n).

From α0 and α1 choose either the one closest to α or the one that is ≤ α.

Denote this choice by αa, our achievable level choice.

The corresponding k = k.alpha−1 or k = k.alpha denote by ka.

Then [A(ka+1),A(M−ka)) is the desired (1−αa)-level confidence interval for θ.

Since Pθ0(A(i) = x) = 0 for any x, we can close the confidence interval.

45



Using the Normal Approximation

Let Z ∼N (0,1) and qz = qnorm(1−α/2) and solve

α

2
= Pθ0(T+(θ0)≤ k) = Pθ0(T+(θ0)≤ k+ .5)≈ P

(
Z ≤ k + .5−n(n+1)/4√

n(n+1)(2n+1)/24

)

=⇒ −qz =
k + .5−n(n+1)/4√
n(n+1)(2n+1)/24

or k =
n(n+1)

4
−qz

√
n(n+1)(2n+1)

24
−.5

Since k is typically not an integer, bracket it by the nearest integers k0 and k1.

Use the normal approximation to obtain the approximate levels associated with

them and make your choice among them or some other integer k nearby.

Denote your final choice by ka and the corresponding α by αa.

[A(ka+1),A(M−ka)] is the desired confidence interval for θ

with approximate confidence level (1−αa).
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Using Simulation

Instead of the previous two procedures we can also simulate a vector T.vec

of T+(θ0) values as an approximation of the exact T+(θ0) null distribution.

Use the normal approximation to get us a ballpark k (previous slide).

For a range of values around that k use the simulated distribution of T+(θ0)

to get estimates for Pθ0(T+(θ0)≤ k) via mean(T.vec <= k).

Then choose that k (denoted ka) for which this estimate comes closest to α/2,

possibly with the restriction ≤ α/2, if one wants to be conservative.

With that ka and corresponding αa (estimated from the simulation)

use [A(ka+1),A(M−ka)] as the desired confidence interval for θ,

with approximate confidence level (1−αa)

This is implemented in the provided function W1.ci.
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Calculating Sorted Walsh Averages

WalshAves <- function(x){

Sums <- outer(x,x,"+") #creates n * n matrix of x[i]+x[j]

w.aves <- sort(Sums[lower.tri(Sums,diag=TRUE)]/2)

# lower.tri(A,diag=TRUE) for a matrix A creates a correponding

# matrix with T in the lower triangle, including the diagonal,

# and F elsewhere

w.aves

}

The vector w.aves contains the ordered Walsh averages A(i), i = 1, . . . ,M

and we can use [w.aves[ka+1],w.aves[M−ka]] as our confidence interval.
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Illustration for n = 20 & 1−α = 0.90

> qsignrank(.05,20)

[1] 61

> psignrank(61,20)

[1] 0.05269909

> psignrank(60,20)

[1] 0.0486536

> 1-2*0.0486536

[1] 0.9026928

> A=WalshAves(x0)

> A[61]

[1] 5.3

> A[150]

[1] 7.85

Thus ka = 60 is the appropriate choice with achieved

confidence level 0.9026928 for the interval

[A(61), A(210−60)] = [A(61), A(150)]

same as best choice in text, Example 10.11.

However, the coverage probability 0.9083 is slightly

different since simulation was used in place

of the exact calculation via psignrank.

For our previous sample x0 we get

[A(61), A(150)] = [5.3,7.85].
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Using W1.ci

> W1.ci(x=x0,alpha=.1,draws=10000)

k Lower Upper Coverage

[1,] 59 5.25 8.00 0.9182

[2,] 60 5.30 7.95 0.9117

[3,] 61 5.30 7.85 0.9041

[4,] 62 5.35 7.85 0.8945

[5,] 63 5.35 7.85 0.8858

with the middle k = 61 being the best choice.

Note: My ka +1 = 61 corresponds to Trosset’s k = 61.
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