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Inference as Inverse to Probability Calculations

When Y ~ Binomial(n = 100, p = 0.5) we can calculate P(40 <Y < 60) as

P(Y <60)—P(Y <39) =pbinom(60,100,.5) — pbinom(39,100,.5) = 0.9647998

We can do the same for any other specified value p, just change the .5 above.

Inference addresses the reverse question.The parameter p is unknown.

Based on the observed Y = y, what can we say about the unknown p?

In this course we discuss three different modes of inference about p.

Point estimation, hypothesis testing and confidence sets



1-Sample Problem: Inference About u

The previous binomial example is a special case of a more general situation.

We will first address all inference problems in the context of the 1-sample problem
described as follows

1. Xq,...,X, iid. ~F. WeobserveasampleX={xy,...,x,}.

2. Both EX; = uand varX; = o2 exist and are finite.

Draw inferences about the population mean u, which is fixed but unknown.

In the binomial case we have u = p and 6% = p(1 — p).

3. The sample size n is sufficiently large so that we can use the
normal approximation provided by the CLT.

This widens the applicability scope w.r.t. F.



Binomial Example

Suppose someone proposes to make a fair chance decision by spinning a coin.

Being somewhat suspicious about this, we carry out n = 100 spins of the coin

and observe Y =y = 32 Heads.

We can ask the following questions about this coin spinning process.
1. What is a reasonable guess as to the true value of p = P(Heads).
2. |s the position of fairness, i.e., p = 0.5, believable or should we reject it?

3. What kind of values p are plausible in view of the observed y = 327?



Point Estimation

For Bernoulli r.v’s we have EX; =u=pand Y = X| +...+ X, ~ Binomial(n, p).

The law of large numbers = F,(y) N F(y),
combined with the plug-in principle, i.e.,
use X,, as the mean of Fn in parallel to u as the mean of ', with X, L U,

suggests the use of the point estimate

o y 32
—g, =2 =2 032
P=*=""=700

“point” refers to the fact that a single number, a point on the number line, is reported.



Hypothesis Testing

Since coin spinning was claimed to be a fair process,

is this position still defensible in view of x,, = 0.32, i.e., y = 327

Suppose p = 0.5 is true, how likely is it to observe a proportion X, that differs from
0.5 by as much as |0.5—0.32| = 0.18 or more, i.e., to observe a Y that differs from
n-p=100-0.5 =150 by 18 or more?
p = P([Y-50/>18)=P(Y<32UY >68)=P(Y <32)+P(Y >68)
= P(Y <32)+1—-P(Y <67)
= pbinom(32,100,.5)+ 1 —pbinom(67,100,.5) = 0.0004087772

This significance probability or p-value p is so small that the supposition or

hypothesis p = 0.5 and chance alone do not provide a believable explanation.

At what small value p does the hypothesis become unacceptable?

The appropriate choice depends on the circumstances (more later).



Set Estimation or Confidence Sets

Here we relax the requirement of giving a single number as a point estimate.

We ask for a range of values for p that appear to be plausible or acceptable.

The previous calculation of p hypothesized pg = 0.5 as the true value for p.

To make this dependence on py and y more explicit we also write p(y; pg)-

We can test other values pq € |0, 1] as possible hypotheses for the value of p, each

time obtaining a value p(y; pg) (just replace 0.5 by pg in the previous calculation).

When p(y; po) is sufficiently small, say p(y; pg) < 0.1 (or < 0.05 or < 0.01)

we declare such values p( as not acceptable or not plausible.

However, any pg with p(y; pg) > 0.1 would be judged plausible.
The set of such plausible p( is our set estimate of p,

also called a 90% (or 95% or 99%) confidence set for the unknown p.



Calculation of Confidence Sets

Calculate the following for a fine grid of values for pg

Py ([Y —npo| > 132 —npo))

= Ppy({Y —npg > 132 —npo|} U {¥Y —npy < —|32—npol})
= Py, (Y —npy > |32 —npg|) + Ppy (Y —npy < —|32 —npo))
= Py (Y > npo+|32—npg|) + Pp (Y < npg— |32 —npo|)

p(y =32;po)

= 1—pbinom(ceiling(n*p0+abs(32—n*p0))—1,n,p0)
+pbinom(n*p0 — abs(32 —nx*p0),n,p0)

and find the set (interval) of values py where p(y = 32; pg) > 0.1.

= is an = when there is no overlap in the union. When there is an overlap,

e.g., when 32 = npy, the value of p(y = 32; pg) is 1.



Code for Confidence Set

pvalBinom.plot<-function (y=32,n=100,alpha=.1) {

p <- seq(.0001,.9999,.0001)

Delta <- abs(y-n*p) # a vector of length 9999
pval <- l-pbinom(ceiling(n*p+Delta)-1,n,p)+pbinom(n*p-Delta,n,p)
pval [pval>1] <- 1

pl <- min(p[pval>alpha]); p2 <- max(p[pval>alphal)
plot (p,pval,ylab="p-value",pch=16, cex=.5)
lines(p,pval)

abline (v=c(pl,p2)); abline(h=alpha)

text (pl1-.01, .5,s1ignif (pl, 3),adj=1)

text (p2+.01, .5,signif (p2,3),adj=0)

text (1,.95,paste("n =",n,", y =",vy),adj=1)

}

# ceiling(x) is the smallest integer >= x (vectorized)

Note the vectorized calculation for all 9999 values of p at once.



Output from pvalBinom.plot
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Coverage Probability

Let C(y) be the set of all acceptable py, i.e., those for which p(y; pg) > 0.1

C(y) = {po:p(y;:po) > 0.1}

When viewing C(y) with y replaced by the corresponding r.v. Y, it becomes a
random set C(Y') for which the following coverage probability statement holds
Py(pocC(Y))>1-0.1=0.9

At least 90% of such random sets will cover the true but unknown target py,

no matter what it is. It is not pg that is random here!

90% or 0.9 indicates the confidence level of such sets.

Changing 0.1 to 0.05 or 0.01 yields higher confidence levels 95% or 99%.

However, for any given confidence set we will not know whether pg € C(Y') or not.

11



The Coverage Argument

Y is sufficiently extreme
for rejecting Hy : p = pg

PPy €)Y =1~ Pulpo £ CVY) = 1Py

> 1-0.1=0.9

since Y is sufficiently extreme when p(Y; pg) < 0.1

n= 100
Po = 0.6
a=0.1

‘ ‘ 0.0398
| I | N

0.0423

45 60 65 70 75

The argument is the same for any other number a € (0, 1) different from 0.1.

The coverage probability or confidence level then becomes 1 —

12



Point Estimation

The goal of point estimation is to make a reasonable guess of the unknown

population parameter or characteristic of interest, e.g., of the population mean .
This quantity to be estimated is also called the estimand.
When estimating u and using the sample mean as estimate we distinguish between
1 & _
Xp=—=) x; and Xp,=-) X;
= L =Y X

Here X, is referred to as an estimate, based on the observed values X = {x1,...,x,}.

X, is a single number, no longer subject to chance variation.

X,, is referred to as an estimator, the procedure to use for all potential samples

X = {X,...,X,}. X, is a random variable, i.e., subject to chance variation.

Any function of X = {X],...,X,} is also called a statistic.

13



Properties of Estimators

Usually, it is not possible to say how close an estimate is to its target.

However, we can say something about the behavior of estimators.

For example, we know EX;, = u. The mean of the X;, population coincides
with the target u, the mean of the sampled population.

We say that X;, is an unbiased estimator of .

X, is also an unbiased estimator of u, since EX4 = .

2
_ 0] _
However var X, = — while varXy =0
n

Thus the scatter of the X, is tighter by a factor of 1/4/n than the scatter of Xj.

2

) P
Xn L,u as n— oo but Xq—+— u
We say that X;, is a consistent estimator of .

Choosing inconsistent estimators makes little sense.



Estimators of 62

Another estimand of intrinsic interest is the population variance o2,

2

The plug-in principle suggested the estimate 6= =Y., (x; —%n)%/n.

The corresponding plug-in estimator is biased since

n

ZX —X,)?

However, the alternate estimator, called the sample variance,

n 1 &
§2 = [ Y (Xi —Xn)?

i

n

l:
IS unbiased, since

2 n I’l—l 9) 2)
ES: = - c°=0
-1 n

Both estimators are reasonable and consistent.

The square root of either estimator is a biased estimator of G.
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Testing Hypotheses

Section 9.3 gives a lengthy and interesting discussion of various aspects of testing

hypotheses. There is a very strong parallel with criminal trials. (READ!)

Based on a random sample (or more generally data) from some population,
say Xi,...,X; ~ Bernoulli(p), decide whether the data arose from one subset

of these populations or its complement, e.g., decide p € A C [0, 1] or p € A“.
In our binomial example we had A = {0.5} and A = {p: p #0.5}.

Usually these subsets are associated with hypotheses, the null hypothesis Hjy and
the alternative hypothesis Hj.

In our binomial example these would be describedas Hy: p=0.5and Hy : p #0.5.

16



Decision Theoretic Model

In @ more generic setting we would have a family of possible probability models
P ={Py:0 € O}, where each Py could have given rise to the random sample

(data) Xy, ...,X},. 0 can be a single real valued parameter or can be more complex.

Each particular probability model Py, or simply its indexing parameter 0,

represents a state of nature. ® represents all such states under consideration.

Viewing ©® as the disjoint union of ®p and O, i.e., OgNBO; =0 and OnUBO| = B,

we make one of two possible decisions about08: 6 € ®y or 0 € 0;.

Any such decision based on X ..., X}, constitutes a test of the

hypothesis Hj : 8 € 0 against the alternative H; : 6 € 0.

Since we don’t know the true state of nature giving rise to Xi,...,Xj

we can’t be certain about having made the correct decision.
17



Type | and Type Il Error

Hypothesis testing can be viewed as a game the statistician plays against nature.

Nature chooses a9 € ® = QgU 0.
Based on a sample Xj, ..., X}, from the unknown Py the statistician chooses

between Hy: 0 € ®gand H; : 0 € O;.
True State of Nature

Hy:0€ 0 H;:0€ 0,

Decision Maker's Hj | correct decision Type Il Error

Choice Hy Type | Error correct decision

There are 4 possible outcomes to this game.

For 6 € ®g: Py(decide H;) = type | error probability.

For 6 € ®1: Py(decide H) = type Il error probability.
18



Error Probability Trade-off

View this decision problem as designating a portion & _in the space of all (X1, ...,X,)

values for which we reject H, while for any (X1,...,X,) € R° we accept H.

Py(type lerror) = Py((Xq,...,Xn) €R) = Py(R) for 8 € O
Py(type llerror) = Po((X1,....Xn) € RE) = Py(RE) forBe O

We can reduce Py(type | error) = Pg(R ) by making the rejection region &R _smaller.
However, this increases R ¢ and thus increases Py(type Il error) = Pg(R°).
Similarly, decreasing Py(type Il error) increases Py(type | error).

The only way to drive down both probabilities is to increase the sample size n.

19



Neyman-Pearson Formulation of Hypothesis Testing

This trade-off problem in the two types of error probabilities was resolved by
Neyman and Pearson by treating the Py(type | error) as special, namely by placing

a limit a € (0,1) on it, and among all level « tests, i.e., rejection regions R with

Py(type | error) = Pg(R) < o for B € O
they suggested to find a region R_for which the Pg(type Il error) = Py(R°)

is a small as possible for 6 € @;.

This amounts to the same thing as finding a level o rejection region R _ for which

Pg(R) =1—Py(RF°) is as large as possible when 6 € O.
This bound o is also referred to as significance level (not always achievable).

This formulation turned out to be very fruitful and led to tests that often were

intuitively appealing and were already widely used.

20



The Choice of o

o controls or limits the probability of type | error, i.e., the probability of

wrongfully rejecting Hy when is is true. We test at significance level o.
Usually, we want that limit to be small, depending on the importance of the error.

Customary values are oo = 0.10, 0.05, 0.02, 0.01, 0.001 or smaller.

Very entrenched are 0.05 and 0.01, but that is more a matter of habit (Tables).

Choose o small to be fairly sure to have made the right decision when rejecting Hy,

because then the chance of having made a wrong rejection of Hy is very small.

Choose a not so small when the type | error is not so serious and when you are

willing to be more open to alternative hypothesis explanations of the data.

21



The Choice of Very Small o

In DNA microarray data situations a very large number, say N,

of signifcance tests is very common.

If each test is performed at significance level o and if in all these tests H) is true,

then one could expect about No false rejections of H.
This might lead to a large number of wild goose chases when no effect is present.

To guard against this, use oo = a* /N as the individual test significance level,

when aiming for an overall false alarm rate of . — No = a*.

22



The Choice of ®p and ®

Since ®( plays a special role in the Neyman-Pearson formulation, the question

arises which subset of ® to designate as 0.

Let us revert back to the coin spinning example. With 8 = p and ® = [0, 1] we had

@0 = {0.5} and @1 — {p . p 7& 0.5}.

“Conventional wisdom” suggested p = 0.5, until “proven” otherwise by sufficient

evidence in the form of Xy,...,X,.

Since we had doubts we hope to overturn conventional wisdom.

We set up ®p = {0.5} as null hypothesis, which we hope to reject.

By our asymmetric treatment of ®g and ®; we control the chance of wrongfully

rejecting Hy (overturn wisdom) by o.

23



The Asymmetry

Another view: This asymmetric treatment of Hy and Hy is of conservative nature.
We will stick with a simple chance explanation (under H() of any perceived effects,

unless those effects (the data evidence) are strong enough.

The criminal trials parallel: The accused is innocent until proven guilty.
In dubio pro reo (Lex Romana).

The jury will have to decide what is guilt beyond reasonable doubt. (o =?)

By not rejecting Hy (innocence) we don’t necessarily accept H as the truth.

Some prefer: We find the accused “not guilty” (not the same as “innocent”).
When such nuances are understood, it is easier to say: accept Hy or accept H;.

Probability calculations under Hy need to be easier, because of the o requirement.

This may influence the choice of H. It may also provide an easier explanation.

If p # 0.5, but p = 0.500001, who would want to distinguish that from 0.5?

24



Test Statistic

Usually the rejection region R _in the set of all possible (X, ...,X)) values

is defined in terms of a test statistic, say W = W(Xq,...,Xy), e.9.,

R = {(Xq,....X,) :W(Xq,...,X,) >w}
(X1, %) W >wh={W W >w} = [w,o)

Sometimes it is more appropriate to reject Hy when W < w,

l.e., for whatever are unexpected values of W under Hj,.

However, any test of one type can be transformed into one of the other type,

simply by transitioning from W to W = —W as test statistic.
W:W<w={-W:-W<w}={W:W>-w}={W:W>w}

with w = —w
25



Test Statistic: Binomial Example

Here X1,...,X},, the Bernoulli r.v.s, could be our basic data, or

Y = X1+ ...+ X, could be the data. The order of successes does not matter.
When testing Hy : p = pg = 0.5 against Hy : p # pg for n = 100, we use

W =|Y —50| = |Y —npy| as test statistic, rejecting Hy when W is too large,

say when W > c.

For a level o test we need to satisfy the condition P, (W > c¢) < a.

Subject to this condition, make the rejection region & as large as possible,

i.e., R as small as possible, to minimize P, (type Il error) = P,(R°) for p # py.
Thus let cq be the smallest value of ¢ for which Py, (W > ¢) < a.

Then we have Pp,(W > cq) < . cq is called the critical value of the test.

26



Connection to Significance Probability

In our previous treatment of this example we calculated the significance probability
Ppo(W >w) = Pp,(|Y —npo| > [y—npo|) = p(y; po)

for the observed value w = |y —npg| = |32 = 50| of W = |Y —npg| = |Y —50|.

A very small value of p(y; pg) was interpreted as very strong evidence against Hy,

l.e., would give us a strong reason to reject H.

Note the following equivalence in relation to the critical value cg

Poo(W >w) =p(yipg) S < w>cq

By definition, cq is the smallest w satisfying the inequality on the left side.

Thus p(y; po) < o is equivalent to rejecting Hy at significance level a.

27
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A Priori Choice of &

The significance level a should be chosen prior to observing any data.

This prevents after the fact manipulation of the decision outcome, i.e.,

tipping the scale.

The a priori choice of o defines a class of test procedures (all level o tests)

among which the best is chosen according to the Neyman-Pearson theory.

On the other hand, if we reject H) at level o, we don’t really know how strong or

marginal the rejection was. Would we still have rejected Hy at a much smaller o?

The significance probability or p-value p(y; pg) captures this aspect much better.
It is the preferred mode of reporting test results.

It gives anybody the option to decide with their a priori choice of . (slippery!)

29



Testing Hypotheses about a Population Mean

Suppose we have a sample X1, ..., X, from some population with mean u.
Some scientific theory may suggest a specific value ug for u.
Thus we might want to test the hypothesis Hj : u = up based on Xy, ..., Xj.

We have X,, as an estimator of the unknown u, whatever it is.

For large n (assumed for now) we also know that it is close to u (consistency).

X, — ug| should give us some indication about |u — wg

,l.e.,

is it sufficiently different from zero to conclude |u—pug| >0 or u+# ug?

Can we evaluate the significance probability for an observed value &, of Xy, i.e.,

P (Xn; o) = P,uo(|Xn —uo| > [%n — o) =?
P, indicates that the probability is to be evaluated under Hy : u = uy.
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Case 1: n Large and ¢ Known

When n is large and ¢ is known the CLT gives us

X, —
Zy=—"2 ‘UO%ZNQ\[(O,I)

- o/yn

and thus with z,, = (X, — ug)/(6/+/n) = z.n we have

X — po - PFn—wol

PH0(|Xn_HO|Z|Xn_;UO|) — P/Jo( o/\n = G/\/ﬁ)
= P(Zn| 2 [znl) = P(IZ] 2 |2n]) = 2®(—|zn])

= 2xpnorm(—abs(z.n))

00 02 04
I R B
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A Situation with Known Variance

A natural example with known variance occurs in the binomial testing situation

when using a normal approximation.

2

Xi,...,Xn ~ Bernoulli(p),then u=EX;=p and o-=varX;=p(l—p).

2

Under the hypothesis Hy : u = ug = pg the variance - = (5(2) = po(1 — pg) is known

and we can use for X;, = (X; +... +X;)/n = Y;;/n the normal approximation

Xn — U Xn — Po Y, —npo

T Vo —m)/n /po—po)/n v/apo(l— po)

Zy ~7Z~ N(0,1)
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An Example

Example: Test Hy: u=0.5 against H; : u = 0.5 using n = 2500 trials with observed
proportion of successes x,;, = 1200/2500 = 0.48.

Is this significant at level oo = 0.03, i.e., should we reject H at this level?

X — o > % — wo
Vio(1—po)/n — Juo(1—ug) /n

P(in;uo) = Puo(|Xn—llO| > |fn_.U0|) :P.uo (

0.48 — 0.5
— ‘Zn| l
v/0.5-0.5/2500

~ P(|Z| >2)=2®(-2) =2*pnorm(—2) = 0.04550026 < 0.5

The exact value via binomial calculationis 0.04768187.

This is significant at level oo = 0.03, thus we reject Hy (barely).
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Case 2: Population Variance Unknown

For unknown population variance o2 (even under Hy : u = ug) we estimate G2 using

n

1 _
SI%: 1 Z(Xi_Xn)z
n—1,3

and invoke the approximate normality of the test statistic

Xn — Ho

As before, we calculate the significance probability of experiencing a value of |7;|

i

as extreme or more extreme than the observed one, i.e.,

|Xn - .UO| |x_n _/JO|)
tns = P, >
p<n O) ‘UO< Sn/\/?l B Sn/\/ﬁ

= Py (|Tn| = |tn]) = P(IZ| = |ta]) = 2@ (— 1))
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Process Control Example

An engineering drawing calls out a nominal part dimension as 2.5 meters.
To test whether the part supplier can, on average, produce this dimension,
a sample of n = 50 produced parts is measured, with resulting values

Xp = 2.499m (off by 0.1cm) and s, = 0.002m = 0.2cm.

Should we reject the hypothesis Hy : u=2.5m?

> abs(2.499-2.5)/(.002/sqrt (50))
[1] 3.535534

> 2*pnorm(-3.535534)

[1] 0.0004069519

a highly significant result. Reject H.

The value of s, could be caused by the manufacturing and/or the measurement
process. Had we gotten a smaller s, (everything else the same) what might be

our conclusion?
35



One-Sided Hypotheses and Alternatives

In our coin spinning example we simply tested whether the process was fair.

The real issue is whether whoever suggested coin spinning derived an advantage

from some prior knowledge that it would favor Tails.

Thus it would be more appropriate to test
Hy: p = P(Heads) > 0.5 against H{:p<0.5

Under H; we have P(Tails) > 0.5, in favor of the suggester.

This is an example of a one-sided hypothesis and alternative.
We don’t care if the evidence comes out in favor of p > 0.5 when

want to prove that the suggester had an advantage, p < 0.5.

36



One-Sided Hypotheses and Alternatives

More generally, in terms of the population mean u we have the following

two canonical one-sided testing situations

Hy:u<pyg against Hy:u>pu
and

Hy:u = u against Hy:u<uyg

where ug is a known value of separation belonging to H in both cases.

The reason for this is that it is more practical for the calculation

of significance probabilities.

37



One- and Two-Sided Hypotheses

We discuss the following three situations in the case of an unknown variance.

The known variance case is analogous: s, «— ¢ and 1, <—— Z,.

(@) Ho:p=po versus Hj:u#pg
(b) Hop:u<ug versus Hy:u>puy
(c) Hp:u=>ug versus Hy:u<ug

> means “very much larger than”

< means “very much smaller than,”

both without being specific about “very much.”

X, — po| > 0 speaks against H,
Xn — uop > 0 speaks against H
Xn — up < 0 speaks against H)
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Tests in the One- and Two-Sided Cases

X0 — | > 0 <= |ty| = |X —1o|/(sn/+/n) >0  with significance probability

P(a) (tns10) = Puo(|Tn| = |tn]) ~ 2P(—|tn) for large n

Xp— o >0 <= t, = (X, —ug)/(sn/+/n) >0  with significance probability

P(p)(tnsto) = Puo(Tn 2> 1) =~ 1 —P(tn)  forlarge n

Xn—Hy <K 0 <=t = (X, —uo)/(sn/+/n) <0 with significance probability

P(c) (tns o) = Pu(Tn < ty) = ®(t,)  forlargen
Small p(,) (tns o), P(p) (tws 1o), P() (tn; 1p) are reason to reject the respective Hy.

39



lllustration of One- and Two-Sided Testing

Suppose up = 20 in our previous one- and two-sided testing problems

and that with n = 400 we observe x;, = 21.82935 and s, = 24.70037.

Then
Xn—Ho 21.82935 —20

" su/Vn 24.70037//400

with respective significance probabilities

= 1.481233

In

Pa) (th;p9) = 2xpnorm(—1.481233) = 0.1385445
P (tw;p0) = 1—pnorm(1.481233) = 0.06927225
P() (ty;p9) = pnorm(1.481233) — 0.9307278

Note (and see Figure on next slide)

P(p) (tnsk0) = P(a)(tn3p0) /2 and  P(p)(ns o) +P(c) (fns o) = 1
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Significance Probabilities

41



Which Hypotheses?

Often it is debatable which of two one-sided hypotheses is appropriate.
Why was an experiment performed?
Who needs to be convinced of what?

Which error is more important than the other?
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Speed Humps

A group of parents wants the city to protect a school zone with speed humps.
Itis @ 15 mph zone and it is agreed (by city & citizens) that an average speed

> 15 mph should warrant speed humps, and < 15 mph should not.

The traffic was monitored and the average speed of n = 150 motorists was

Xn = 15.3 mph with s, = 2.5 mph. How to set up the hypotheses?

Parents’ perspective: (risk of injury or life)
They want speed humps unless convinced otherwise, i.e., Hy : u > 15 mph

They can live with a 1% chance of type | error, falsely say u < 15 mph.

City’s perspective: (financial risk)
Avoid speed humps (cost) unless convinced otherwise, i.e., Hy : u < 15 mph

They allow for a 10% chance of type | error, falsely say u > 15 mph.
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Speed Humps Resolved

The observed test statistic is
. _ Xn—Ho 15.3—15
" ose/Vn T 2.5/v/150

Under the parents’ perspective there is no case against their hypothesis

= 1.469694

Hp : u > 15 mph. Any convincing evidence would require t, < 0, but 1, = 1.47.

Under the city’s perspective t, = 1.469694 speaks against Hy : u < 15 mph.
How strongly?  p;)(taspp) = 1 — pnorm(1.469694) = 0.07082232 < 0.10

Since this falls below the city’s requirement (significance level oo = 0.10),

the city has to follow through with installing the humps.

If the significance probability had exceeded o = 0.10 we would have an impasse.
|s average speed relevant, given that 15 mph is a speed limit?

Maybe one should limit the 0.9-quantile of speed by 15 mph. (Binomial test)
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Material or Practical Significance

An advertising campaign can claim increased mileage for a gasoline additive if
it can be shown that the mileage increase X (mileage with — without additive)
on average exceeds 1 mpg. Test Hy:u=EX <1 mpg against Hy : u > 1 mpg

at significance leve a0 = 0.05, since we wish to “prove” H;.

A corporation (with u = 1.01) tests n = 900 vehicles. It gets x,, = 1.01 with s,;, =0.1.

1.01 -1
Ih = — 3 with tn; ~ 1 —pnorm(3) = 0.001349898 < 0.05

An amateur mechanic (with uy = 1.21) tests n =9 cars, with x, = 1.21 & s, = 0.4.
L 1.21—-1
" 0.4//9

In case 1 we have statistical significance with little practical increase over 1 mpg.

=1.575 with  p()(tn;t0) = 1 — pnorm(1.575) = 0.05762822 > 0.05

In case 2 we have a 20% increase over 1 mpg, but no statistical significance,

because of the small sample size and the higher s;. (x;, = u is just illustrative)
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The Message

Statistical significance is not the same as material or practical significance.

They don’t preclude each other. Sometimes they occur together.

The first is based on probability calculations rooted in the statistical variability

of experiments in conjunction with actual effects.

The second is an assessment of the actual effects in relation to some standard.

This involves no randomness.
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Set Estimation

Recall that in the binomial case we motivated set estimates as consisting of all
those parameter values p( for which the hypothesis Hy : p = pg is acceptable or

plausible, i.e., not rejected at level .

In the context of the mean u as our parameter of interest we view as set estimate
of u all those values ug for which the hypothesis Hy : u = ug is acceptable. i.e.,

not rejected at level .

The construction of such set estimates can be implemented in the case of known

o and unknown ¢ (with S, in its place), using the respective test statistics

_AnTH o An T HO
G/\/n " Su//n

In each case n is assumed to be sufficiently large for the CLT to be effective.

Zn
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Set Estimation: Unkown ©

Let g = g1 _q 2 be the (1 — a./2)-quantile of AL(0,1), i.e.,

d(g)=1—-0/2 o P(—q)=a/2

U is acceptable whenever

X — o o P —/Jo\)

P ik} = P”O( YNNG

~ 20(—|ty]) >a <= —|ty|>—q <= |t <gq
- S]/l _ Sn _ Sn
th| <qg <= |xn—,u0|<q% < Mo E (xn—q%axrﬂrq%)

the righthand side interval serving as our set estimate, or plausibility interval,
or confidence interval for the unknown u. (replace s, by 6 when ¢ is known)

Different o give us different confidence intervals because of the g factor.

(Xn —qsn//n,%,+qsn/+/n) is called a (1 — a)-level confidence interval for u.
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Coverage Probabillity

Treating the confidence intervals as random using the (X, S,) notation

_ \Y Sn _ c o
I = Xn—q%,Xn—i—qﬁ and Iy = Xn—q%,Xn—i—q%

we get (for example) in the case of the I;-interval (unknown o)
_ Sn — Sn Sn = Sl’l
Puo(po € 1) = Py, (Xn—QW < Ho <Xn+q%) = Puy <—Clﬁ < pp —Xn < A

% Sn |Xn — o)
= P, —Xp|l<g—=)| = Py | —F—F———<
= Pu(ITnl <q) = P(|Z] <q) =1-«
Since this coverage statement holds for any ugp we have in /1 a random interval
that covers the unknown u with probability ~ 1 — o (the confidence level).

Higher confidence level <= highergq <= wider interval.

The parameter u is unknown but not random in this representation.
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Testing the Coverage Behavior

We obtain samples of size n = 30 (n = 120) from the Uniform(0,1) population.

Without knowing from which population the sample originated, we compute a

90% (95%) confidence interval (X, — gsn/\/n, Xn+ qsn//n)
We repeat this 100 times and vertically plot the resulting intervals in sequence.

We mark the true mean u = 0.5 as a horizontal line

and indicate the percentage of interval misses.
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Coverage Behavior of Confidence Intervals 1
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Coverage Behavior of Confidence Intervals 2
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Coverage Behavior of Confidence Intervals 3
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Coverage Behavior of Confidence Intervals 4
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Coverage Behavior of Confidence Intervals 5
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Comments

Since the confidence set consists of all acceptable p, they can be used to test the
hypothesis Hy : u = up. Tests and confidence sets are equivalent (duality).

Reject Hy at level o whenever the (1 — o)-level interval does not cover uy.
The nature of confidence intervals has to be understood operationally.

For any given interval you never know whether you captured your target or not.

You just know that you would have, for about 100(1 — o) % of the samples.

“Statistics means never having to say you're certain.” (Myles Hollander)
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Sample Size Planning

Assume that o is known.

For given confidence level 1 — o and corresponding confidence factor g = q1—q,)2

the width W of the interval

0} 200
xniq—ﬁ S W:%

This allows us to achieve a specified width W for proper choice of n, namely

2
2g0 2g0
vn=— o n= (7)

where we take the next higher integer for n.

When G is not known we need to take a guess at it or estimate it

using s, as obtained from a prior sample. This is an approximate procedure.
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One-Sided Confidence Intervals

You can invoke the testing and confidence set duality also for one-sided tests.

Then you get intervals of the form (L, o) or (—eo,U),

l.e., you get lower or upper confidence bounds.

For example, you reject Hy : u < up when the lower bound interval (L, o)

does not overlap (—oo, up], i.e., whenever L > uy.

To be specific, consider testing Hy : u < ug against Hy : u > up.
At level o we reject Hy whenever T, = (X, — uo)/ (Sn/\/1) > 21—

where ®(z;_o) = 1 — a. Conversely, H is acceptable whenever T;; < z{_q. i-€.,

Xn — Ho Z1—o Sn > Z1—o Sn
— L=X,—
Sn/\/n Vn oV
with coverage probability Py, (L < tg) = Puy(Xn — o)/ (Sn/v/1) <z1—q) = 1 —a.
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Gasoline Additives Revisited

For a 95% lower bound we need 7 95 = qnorm(0.95) = 1.644854 ~ 1.645.

For the corporation we get as observed lower bound ¢,

_ Zl—oSn 0.1
0, =%, — —1.01 —1.645  —— ~ 1.0045
n v/900

i.e., a confidence interval of (1.0045, ), which does not overlap the interval (—oo, 1]

stated in the hypothesis Hy : u < 1. Thus we reject Hy at level a = 0.05.

For the amateur mechanic the lower bound is

B 0.4
=0 91 1.645. 22 A~ 0.9907

Vi V9

with confidence interval (0.9907, <) which has a bit of overlap with (—eo, 1],

gn:.fn_

i.e., we cannot reject Hy at level o = 0.05.
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