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Partitions of Sample Spaces
So far our inference problems concerned means or medians of populations.

Now we will focus on inference concerning sample space probabilities.

Let E1, . . . ,Ek ⊂ S be mutually exclusive events such that their union is S.

Such a collection of sets, E1, . . . ,Ek, is called a partition of S.

Example 1: A single die is rolled. S = {1,2,3,4,5,6}.
Let k = 6 and Ei = {i}, i = 1,2, . . . ,6.

Example 2: Let X be a discrete random variable with X(S) = {0,1,2,3, . . .}.
Let k = 5 and Ei = {i−1} for i = 1,2,3,4 and E5 = {4,5,6, . . .}.

Example 3: Let X be a continuous random variable with X(S) = (−∞,∞).

Let k = 7 with E1 = (−∞,−5), E2 = [−5,−3), E3 = [−3,−1), E4 = [−1,1),

E5 = [1,3), E6 = [3,5), E7 = [5,∞).
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Testing Hypotheses

Given a partition of S, our interest centers on the cell probabilities

p1 = P(E1), . . . , pk = P(Ek) with ~p = (p1, . . . , pk) ∈Π, where

Π =

{
(π1, . . . ,πk) : πi ≥ 0, i = 1, . . . ,k, and

k

∑
i=1

πi = 1

}
⊂ Rk

The generic testing problem consists of partitioning Π = Π0∪Π1 with Π0∩Π1 = /0

and then testing H0 : ~p ∈Π0 against H1 : ~p ∈Π1.

Example: When rolling a die we can test the fairness of the die by specifying k = 6

Π0 =
{(

1
6
,
1
6
, . . . ,

1
6

)}
⊂Π⊂ R6 and Π1 = {~π ∈Π :~π /∈Π0}
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Example

In 1882, R.Wolf (with time on his hands) tossed a die n = 20000 times, observing

j 1 2 3 4 5 6
o j 3407 3631 3176 2916 3448 3422

One way to become “famous.” Was Wolf tossing a fair die?

For each cell the expected count is e j = np j = 20000/6 = 33331
3.

Are the discrepancies explainable by pure chance, even with a fair die?

There are many ways to measure discrepancies between the o j and e j, j = 1, . . . ,6.

best known is Pearson’s chi-squared statistic X2 =
k

∑
j=1

(o j− e j)2

e j
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Maximum Likelihood Estimates (MLEs)
Given the cell probabilities p1, . . . , pk we can ask:

What is the probability or likelihood of the observed counts o1, . . . ,ok. It is

L(p1, . . . , pk) = P(O1 = o1, . . . ,Ok = ok) = Cpo1
1 · · · p

ok
k

where C counts the number of ways of how the cell occurrences in the n trials can

result in counts of o1, . . . ,ok. C = n!/(o1! · · ·ok!), similar to binomial case.

The maximum likelihood estimates (MLEs) of p1, . . . , pk are those values p1, . . . , pk

that maximize L(p1, . . . , pk) for the given observed counts o1, . . . ,ok.

These estimates are those values of p1, . . . , pk that would make most probable

what we observed. This is a powerful and useful estimation principle.

Without further restrictions beyond pi ≥ 0 and p1 + . . .+ pk = 1

the MLEs of p1, . . . , pk are p̂1 = o1/n, . . . , p̂k = ok/n (the plug-in estimates).
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Likelihood Ratio Discrepancy Measure
The maximum value of the likelihood thus is

L(p̂1, . . . , p̂k) = Cp̂o1
1 · · · p̂

ok
k = C

(o1
n

)o1
. . .
(ok

n

)ok

Under our previous null hypothesis we have H0 : p1 = . . . = pk = 1/6.

Under that restriction, the MLEs of p1, . . . , pk are p̌1 = 1/6, . . . , p̌k = 1/6

with likelihood L(p̌1, . . . , p̌k) = C p̌o1
1 · · · p̌

ok
k = C

(
1
6

)o1
. . .

(
1
6

)ok

=⇒ L(p̌1, . . . , p̌k)≤ L(p̂1, . . . , p̂k) or λ =
L(p̌1, . . . , p̌k)
L(p̂1, . . . , p̂k)

∈ [0,1]

since (p̌1, . . . , p̌k) maximizes over the much more restricted set Π0 =
{(

1
6, 1

6, . . . , 1
6

)}
.

If L(p̌1, . . . , p̌k)≈L(p̂1, . . . , p̂k) or λ≈ 1, then H0 would be plausible, because

(p̌1, . . . , p̌k) = (1/6, . . . ,1/6) is almost as good as (p̂1, . . . , p̂k) in giving highest

probability to o1, . . . ,ok. A small λ is evidence against H0.
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A Second Null Hypothesis

Consider the hypothesis that opposing faces on the die have same probability,

then p1 = p6, p2 = p5, p3 = p4 and our null hypothesis takes the form

H0 : ~p ∈Π0 = {(p1, p2, p3, p3, p2, p1) : 2p1 +2p2 +2p3 = 2(p1 + p2 + p3) = 1}

Using calculus, the maximum likelihood estimates restricted to this H0 are

p̌1 = p̌6 =
(o1 +o6)/2

n
, p̌2 = p̌5 =

(o2 +o5)/2
n

, p̌3 = p̌4 =
(o3 +o4)/2

n
i.e., under H0 the estimates of 2p1 = p1 + p6, 2p2 = p2 + p5 and 2p3 = p3 + p4

are again just the plug-in estimates

2 p̌1 =
o1 +o6

n
, 2 p̌2 =

o2 +o5
n

, 2 p̌3 =
o3 +o4

n
λ = L(p̌1, . . . , p̌k)/L(p̂1, . . . , p̂k)≈ 1 again supports the current hypothesis H0

(equal opposing face probabilities), for the same reason as before.

Small λ would present evidence against that null hypothesis.
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A Third Null Hypothesis
To round out the possible hypotheses we also consider

H0 : p1 + p6 = p2 + p5 = p3 + p4 = 1/3,

i.e., the combined probabilities of the three opposing face pairs are the same.

Under H0 we can view p1 and p6 as two-stage probabilities, namely

p1 = PH0({1}) = PH0({1}∩ ({1}∪{6})) = PH0({1}|{1}∪{6}) ·PH0({1}∪{6})

= P({1}|{1}∪{6}) ·PH0({1}∪{6}) =
P({1}∩ ({1}∪{6}))

P({1}∪{6})
· 1
3

=
p1

p1 + p6
· 1
3

p6 =
p6

p1 + p6
· 1
3

=
1
3
− p1, p2 =

p2
p2 + p5

· 1
3
, p5 =

p5
p2 + p5

· 1
3

p3 =
p3

p3 + p4
· 1
3
, p4 =

p4
p3 + p4

· 1
3

Within each pair (p1, p6) (p2, p5) and (p3, p4) only one can be freely chosen under

H0, since within each pair they have to add to 1/3.
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MLEs Under Third Null Hypothesis

With calculus one can again find ~p = (p1, . . . , p6) that maximizes L(p1, . . . , p6)

subject to ~p∈Π0 = {(p1, . . . , p6) : p1 + p6 = p2 + p5 = p3 + p4 = 1/3}

That maximizing ~̌p = (p̌1, . . . , p̌6) is given by

p̌1 =
p̂1

p̂1 + p̂6
· 1
3

=
o1/n

o1/n+o6/n
· 1
3

=
o1

o1 +o6
· 1
3
, p̌6 =

o6
o1 +o6

· 1
3

p̌2 =
o2

o2 +o5
· 1
3
, p̌5 =

o5
o2 +o5

· 1
3
, p̌3 =

o3
o3 +o4

· 1
3
, p̌4 =

o4
o3 +o4

· 1
3

basically using the plug-in estimates p̂i in the H0 representation of pi.

λ = L(p̌1, . . . , p̌k)/L(p̂1, . . . , p̂k)≈ 1 again supports the current hypothesis H0

(equal opposing face probabilities), for the same reason as before.

Small λ would present evidence against that null hypothesis.
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The Likelihood Ratio Chi-Squared Statistic

Let ě j = np̌ j be the expected cell count when p j = p̌ j, as estimated under H0.

λ =
L(p̌1, . . . , p̌k)
L(p̂1, . . . , p̂k)

=
C p̌o1

1 · · · p̌
ok
k

C
(o1

n
)o1 . . .

(ok
n
)ok

=
C
(

ě1
n

)o1 · · ·
(

ěk
n

)ok

C
(o1

n
)o1 . . .

(ok
n
)ok

=
(

ě1
o1

)o1
· · ·
(

ěk
ok

)ok

G2 =−2logλ = 2
k

∑
j=1

o j log(o j/ě j)

Since λ ∈ [0,1], we have G2 ≥ 0. Large values of G2 are evidence against H0.

The null distribution of G2 can usually be well approximated by a

chi-squared distribution with appropriate degrees of freedom.

Under H0 both Pearson’s X2 and the G2 statistic are fairly close to each other

and the approximate null distribution applies to X2 as well.
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Appropriate Degrees of Freedom

The appropriate degrees of freedom for the approximating chi-squared distribution

is obtained as the difference of the full dimension of Π, i.e., k−1, and the dimension

of the space in which Π0 is embedded.

In our first example, where Π0 =
{(

1
6, 1

6, . . . , 1
6

)}
, that dimension is zero, so the

degrees of freedom for the approximating chi-squared distribution are (6−1)−0 =
5.

In the second example the dimension of Π0 is 2. Of the parameters p1, p2, p3

only 2 can vary freely, since p1 + p2 + p3 = 1/2. The degrees of freedom for the

approximating chi-squared distribution are (6−1)−2 = 3.

In the third example the dimension of Π0 is 3, as alluded to previuosly. The degrees

of freedom for the approximating chi-squared distribution are (6−1)−3 = 2.
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Analysis of the Wolf Dice Data

Testing H0 : p1 = . . . = p6 = 1/6 we find ě j = 20000 p̌ j = 20000/6

G2 = 2
6

∑
j=1

o j log(o j/ě j) = 95.8023 and X2 =
6

∑
j=1

(o j− ě j)2/ě j = 94.189

1-pchisq(95.8023,df=5)=0 and 1-pchisq(94.189,df=5)=0,

the evidence against H0 (the die is fair) is overwhelming.

Testing H0 : p1 = p6, p2 = p5, p3 = p4 we find with ě j = np̌ j

ě1 = ě6 = (3407+3422)/2 = 3414.5

ě2 = ě5 = (3631+3448)/2 = 3539.5

ě3 = ě4 = (3176+2916)/2 = 3046.0

and obtain G2 = 15.8641 and X2 = 15.1971 with respective p-values

1-pchisq(15.8641,df=3)=.00121 and 1-pchisq(15.1971,df=3)=.00166.
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Analysis of the Wolf Dice Data (continued)

Testing H0 : p1 + p6 = p2 + p5 = p3 + p4 we find with ě j = np̌ j

ě1 = 20000[3407/(3407+3422)]/3 = 3326.012

ě6 = 20000[3422/(3407+3422)]/3 = 3340.655

ě2 = 20000[3631/(3631+3448)]/3 = 3419.504

ě5 = 20000[3448/(3631+3448)]/3 = 3247.163

ě3 = 20000[3176/(3176+2916)]/3 = 3475.596

ě4 = 20000[2916/(3176+2916)]/3 = 3191.070

and obtain G2 = 79.9382 and X2 = 79.0992 with respective p-values

1-pchisq(79.9382,df=2)=0 and 1-pchisq(79.0992,df=2)=0.
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Testing H0 : p1 = . . . = p6 = 1/6 Using G2

G2 for H0 : p1 = ... = p6 = 1 6
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with aproximating χ2 density
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Testing H0 : p1 = p6, p2 = p5, p3 = p4 Using G2

G2 for H0 : p1 = p6, p2 = p5, p3 = p4
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Testing H0 : p1 + p6 = p2 + p5 = p3 + p4 = 1/3 Using G2

G2 for H0 : p1 + p6 = p2 + p5 = p3 + p4 = 1 3
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Testing H0 : p1 = . . . = p6 = 1/6 Using X2

X2 for H0 : p1 = ... = p6 = 1 6
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Testing H0 : p1 = p6, p2 = p5, p3 = p4 Using X2

X2 for H0 : p1 = p6, p2 = p5, p3 = p4
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Testing H0 : p1 + p6 = p2 + p5 = p3 + p4 = 1/3 Using X2

X2 for H0 : p1 + p6 = p2 + p5 = p3 + p4 = 1 3
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Some Comments

The 10000 simulated cell counts in 20000 rolls of a die with cell probabilities ~p = p

were generated via rmultinom(10000,20000,p) for ~p = (1/6, . . . ,1/6)

and for the estimated value of ~p under the other two hypotheses.

The simulated distributions of G2 and X2 are well approximated

by the respective chi-squared distributions.

At conventional significance levels all three null hypotheses should be rejected.

Compared with the other two, the null hypothesis H0 : p1 = p6, p2 = p5, p3 = p4

seems to fall within the realm of possibilities.

The three G2 discrepancy criteria add up 95.8023 = 15.8641+79.9382,

i.e., we have a decomposition of 95.8023. This suggests that the main reason

for rejecting the fair die hypothesis is the rejection of the third hypothesis.
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Testing Independence

Suppose the sample space S is partitioned two ways:

S = A1∪ . . .∪Ar , with Ai∩A j = /0 for i 6= j

S = B1∪ . . .∪Bc , with Bi∩B j = /0 for i 6= j

We can construct a third partition made of all intersections Ei j = Ai∩B j = AiB j.

S =
r[

i=1

c[
j=1

Ei j with AiB j∩Ai′B j′ = /0 for (i, j) 6= (i′, j′)

With respect to the A and B partitions it is often of interest

whether they are independent of each other, i.e., do we have

pi j = P(Ei j) = P(AiB j) = P(Ai∩B j) = P(Ai) ·P(B j) for all (i, j)?
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Karl Pearson’s Crime Example

Karl Pearson studied the relationship between the type of crime

and the drinking habits of the involved criminal.

Are these two categorizations or partitions independent of each other?

B1 = drink B2 = abstain
A1 = arson 50 43
A2 = rape 88 62
A3 = violence 155 110
A4 = stealing 379 300
A5 = coining 18 14
A6 = fraud 63 144

Of course, one might argue that some of these classifications overlap and we

assume that such cases are resolved in a consistent manner, e.g.,

violence = violence without rape.
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Some Notation and Estimation
With pi j = P(Ei j) we have

pi+ = pi1 + pi2 + . . .+ pic = P(AiB1∪AiB2∪ . . .∪AiBc) = P(AiS) = P(Ai)
p+ j = p1 j + p2 j + . . .+ pr j = P(A1B j∪A2B j∪ . . .∪ArB j) = P(SB j) = P(B j)

The hypothesis of interest is H0 : pi j = pi+ · p+ j for i = 1, . . . ,r, j = 1, . . . ,c.

Let oi j = the count of observing Ei j, oi+ = the count of observing Ai = AiB1∪
. . .∪AiBc, and o+ j = the count of observing Bi = A1B j∪ . . .∪ArB j.

Then the unrestricted MLEs of pi j, pi+ and p+ j are

p̂i j =
oi j

n
, p̂i+ =

c

∑
j=1

p̂i j =
oi+
n

, and p̂+ j =
r

∑
i=1

p̂i j =
o+ j

n

which are basically the plug-in estimates. Under H0: mutual independence,

the restricted MLEs are

p̌i+ = p̂i+ =
oi+
n

, p̌+ j = p̂+ j =
o+ j

n
, and p̌i j = p̌i+ · p̌+ j

22



Test Statistics G2 and X2

Under H0 the estimated expected counts are

ěi j = np̌i j = n
oi+
n
·
o+ j

n
=

oi+ ·o+ j

n
=

oi+ ·o+ j

o++
since n = o++

and as our G2 and X2 test statistics we get

G2 = 2
r

∑
i=1

c

∑
j=1

oi j log
(

oi j

ěi j

)
and X2 =

r

∑
i=1

c

∑
j=1

(oi j− ěi j)2

ěi j

The null distribution of either statistic is well approximated by a chi-squared

distribution with (r−1)(c−1) degrees of freedom. Here

(r−1)(c−1) = rc− r− c+1 = (rc−1)− (r−1)− (c−1)

rc−1 of the pi j are free to vary in the unrestricted model, since ∑i j pi j = 1,

and under H0 the pi j = pi+ · p+ j are restricted to r−1+ c−1 free parameters

p1+, . . . , pr+ and p+1, . . . , p+c since ∑i pi+ = 1 and ∑ j p+ j = 1.
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Analysis of Crime Data
PearsonCrime <- function(){
tab <- cbind(c(50,88,155,379,18,63),c(43,62,110,300,14,144))
rows <- apply(tab,1,sum); cols <- apply(tab,2,sum)
r <- length(rows); c <- length(cols); n <- sum(rows)
e0 <- outer(rows,cols,"*")/n
G2 <- 2*sum(tab*log(tab/e0)); X2 <- sum((tab-e0)ˆ2/e0)
t.st <- c(G2,X2);names(t.st) <- c("G2","X2")
pG2=1-pchisq(G2,(r-1)*(c-1)); pX2=1-pchisq(X2,(r-1)*(c-1))
p.tst <- c(pG2,pX2)
list(test.statistics=t.st,p.values=p.tst)
}
> PearsonCrime()
$test.statistics

G2 X2
50.51729 49.73061

$p.values
[1] 1.085962e-09 1.573317e-09 # highly significant
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