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Data

Data consists of the actual numbers observed in a random experiment.

If such an experiment gives rise to a random variable X , its observed value is

usually indicated by writing it as a lower case x or the specific number, say 1.

If you toss a coin and Heads is observed, our random variable X

(taking on the values 1 and 0 with probabilities p and 1− p)

is distributed as X ∼ Bernoulli(p). In this case the observed value is x = 1.

To learn more about an experiment and the distribution of its associated r.v. X

we replicate the experiment a fixed number of times.

Replication means that the experiment is repeated under the same conditions and

that the repetitions can be considered to be independent.
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Replicated Experiments

The replicated experiment just described is a random experiment in itself.

We observe a random vector (X1, . . . ,Xn) with Xi ∼ P and X1, . . . ,Xn independent.

The probability distribution P and the independence of the Xi allow us to write

P(X1 ∈ A1, . . . ,Xn ∈ An) = PX(X1 ∈ A1) · . . . ·PX(Xn ∈ An)

for all Ai ∈ C .

We express this by writing X1, . . . ,Xn ∼ P or X1, . . . ,Xn i.i.d. ∼ P,

where i.i.d. is short for independent and identically distributed.

The set of observed values of X1, . . . ,Xn is denoted by~x = {x1, . . . ,xn}.

This set is also called a sample.

To emphasize observation order we also use the sample vector x = (x1, . . . ,xn).
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The Basic Problem of Statistics

We can model experiments with the mathematical abstraction of a probability space

and associated random variables or random vectors.

We will never be completely certain about the distributional nature

of the random variables involved.

By observing samples we hope to get some idea about certain aspects of the

underlying probability model.

Is it a reasonable model?

Can we approximately say something about its mean or standard deviation?

This segment introduces descriptive techniques for examining data or samples.
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Simulation

A very powerful technique is to learn how samples and certain derived statistics

behave under simulated sampling from various probability models.

In a class room setting this was not easy or practical until recently.

R provides many useful tools that assist in such simulations, with much ease.

> SampleSpace <- c(1,2,3,4,5,6)

> sample(x=SampleSpace,size=20,replace=T)

[1] 1 6 4 1 5 2 6 4 5 3 4 6 1 4 5 6 6 4 2 3

> sample(x=SampleSpace,size=20,replace=T)

[1] 5 3 2 3 1 1 3 3 4 6 1 5 1 3 5 1 6 6 4 5

Note the different results when repeating the command sample(...).
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rnorm

The previous slide gave an example of sampling from a finite population (1,2,3,4,5,6).

For most distributions in R there is a command that simulates a random sample

from such a distribution, i.e., generates a sample vector (x1, . . . ,xn) as observed

from X1, . . . ,Xn ∼ P.

For example, to generate a sample of size n = 5 from N (2,3) execute

> rnorm(5,mean=2,sd=sqrt(3))

[1] 1.4872959 2.7720840 -0.1097585 0.4419888 2.8753901

Note the correspondence of dnorm, pnorm, qnorm, rnorm.

Similar quadruple functions exist for the other distributions in R, e.g.,

dunif, punif, qunif, runif.
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Random Number Generation

The previous examples of simulating random experiments use a

random number generator (RNG) algorithm.

Being algorithmic such a random number generator is actually deterministic.

It generates a very, very long sequence of numbers in the inteval (0,1)

and then it repeats itself.

However, the sequence of these numbers has the appearance of being

independent uniform random numbers from (0,1).

There are several versions of such generators, but we will take the default version.

All other r.v.’s can be simulated from uniform (0,1) random numbers.
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Setting the Seed of an RNG

While it is desirable to get new samples in each simulation

(unless we have exhausted the RNG, which is unlikely),

sometimes one wants to get the same sample.

When debugging an analysis using random numbers, one may want to make sure

that any changes in analysis results are due to a change in analysis and not due a

change in the random sample used.

Or one wants to make sure that all students use the same sample in their analysis,

without having to type or import the data.

Such repeat behavior of an RNG can be obtained in R

by using the function set.seed.
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Examples of Setting the Seed

Note and understand the differences or identical behavior in the following

> rnorm(5)

[1] 0.5219445 2.1372648 1.6340132 0.4252533 -0.1603633

> rnorm(5)

[1] -0.45036275 -0.01862231 0.83056581 1.29583131 -0.84968317

> set.seed(321)

> rnorm(5)

[1] 1.7049032 -0.7120386 -0.2779849 -0.1196490 -0.1239606

> set.seed(321)

> rnorm(5)

[1] 1.7049032 -0.7120386 -0.2779849 -0.1196490 -0.1239606

> rnorm(5)

[1] 0.2681838 0.7268415 0.2331354 0.3391139 -0.5519147

8



Another Example

> set.seed(321)

> rnorm(5)

[1] 1.7049032 -0.7120386 -0.2779849 -0.1196490 -0.1239606

> rnorm(5)

[1] 0.2681838 0.7268415 0.2331354 0.3391139 -0.5519147

> set.seed(321)

> rnorm(5)

[1] 1.7049032 -0.7120386 -0.2779849 -0.1196490 -0.1239606

> rnorm(5)

[1] 0.2681838 0.7268415 0.2331354 0.3391139 -0.5519147
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The Plug-In Principle

Previously we introduced a structure for describing random experiments,

using probability spaces, random variables, their distributions, and some of

their characteristics (mean, median, standard deviation, iqr, etc.).

Now we will capitalize on this structure by viewing any given sample

as a sample space with an empirical probability measure defined on it.

In doing so, we construct random variables, their distributions and characteristics

in complete parallel with the original experiment giving rise to~x = {x1, . . . ,xn}.

This action is very useful and is sometimes referred to as the plug-in principle.

Aside from the parallelism this principle is supported by the

Fundamental Theorem of Statistics, to be discussed later.
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The Empirical Probability Distibution
Definition: Let~x = {x1, . . . ,xn} be a sample. The empirical probability measure,

associated with~x and denoted by P̂n, is the discrete probability distribution which

assigns probability 1/n to xi, i = 1, . . . ,n, i.e., P̂n({xi}) = 1/n.

The corresponding empirical sample space is Sn =~x, which may contain duplicates.

Suppose a fair die is rolled n = 20 times, resulting in

~x = {1,6,3,2,2,3,5,3,6,4,3,2,5,3,2,2,3,2,4,2}

xi #{xi} P̂20({xi})
1 1 0.05
2 7 0.35
3 6 0.30
4 2 0.10
5 2 0.10
6 2 0.10

The Table shows the empirical probability distribution.

The fact that it differs from P is an expression of

sampling variation.
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Using table

> x <- c(1,6,3,2,2,3,5,3,6,4,3,2,5,3,2,2,3,2,4,2)

> x

[1] 1 6 3 2 2 3 5 3 6 4 3 2 5 3 2 2 3 2 4 2

> xtab <- table(x)

> xtab

x

1 2 3 4 5 6

1 7 6 2 2 2

> names(xtab)

[1] "1" "2" "3" "4" "5" "6"

> as.numeric(xtab)

[1] 1 7 6 2 2 2

> as.numeric(names(xtab))

[1] 1 2 3 4 5 6
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P̂n is a Probability Distribution
Let Cn be the collection of all subsets of Sn. For any set A ∈ Cn we define

P̂n(A) =
#{xi ∈ A}

n
and it satisfies all our axioms for a probability measure.

Here A, like Sn, may contain duplicate values, and they are counted as such.

We can define a random variable X : Sn −→ R by X(xi) = xi.

The cdf of this X (w.r.t. P̂n) is

F̂n(y) = P̂n(X ≤ y) =
#{xi ≤ y}

n
It is called the empirical cdf of the sample.

Note: the above X is different from the X w.r.t. P, which has cdf F(y) = P(X ≤ y).

The context should make clear which X is meant. Sometimes X∗ : Sn −→ R

is used in place of the above X . F̂n(y) = P̂n(X∗ ≤ y) = #{xi ≤ y}/n, the same.

13



Empirical CDF (ECDF) Plot
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Using our previous x <- c(1,6,3,2,2,3,5,3,6,4,3,2,5,3,2,2,3,2,4,2)

and the command plot.ecdf(x,main="") produced the above plot. Note that

the vertical axis is labeled Fn(x), rather than F̂n(x), a common alternative notation.
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Plug-In Estimate of the Mean

Definition: The plug-in estimate of µ = EX , denoted by µ̂n,

is the mean of the ECDF:

µ̂n =
n

∑
i=1

xi ·
1
n

=
1
n

n

∑
i=1

xi = x̄n

This quantity is also called the sample mean or sample average.

For the fair die we have

µ = EX = 1 · 1
6

+2 · 1
6

+ . . .+6 · 1
6

=
1+2+ . . .+6

6
= 3.5

For our previous sample x we get

µ̂20 = x̄20 = 1 · 1
20

+2 · 7
20

+3 · 6
20

+4 · 2
20

+5 · 2
20

+6 · 2
20

= mean(x) = 3.15

Note: µ̂20 6= µ an example of sampling variation.
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Plug-In Estimate of the Variance
Definition: The plug-in estimate of σ2, denoted σ̂2

n, is the variance of the ecdf

σ̂
2
n =

n

∑
i=1

(xi− µ̂n)2 · 1
n

=
1
n

n

∑
i=1

(xi− µ̂n)2 =
1
n

n

∑
i=1

x2
i −

(
1
n

n

∑
i=1

xi

)2

=
1
n

n

∑
i=1

x2
i − µ̂2

n

We do not call σ̂2
n the sample variance. That term is reserved for

s2 =
1

n−1

n

∑
i=1

(xi− µ̂n)2 = var(x) note that σ̂
2
n = s2 · n−1

n

For a fair die we have

σ
2 = EX2− (EX)2 =

6

∑
i=1

i2 · 1
6
−3.52 =

91
6
−
(

7
2

)2
=

35
12

= 2.916667

For our example of 20 rolls of a die we get

σ̂
2
20 =

(
11 ·0.05+22 ·0.35+32 ·0.30+ . . .+62 ·0.10

)
−3.152

= var(x)∗19/20 = 1.9275 = mean((x−mean(x))2)
again σ̂2

20 6= σ2, again an example of sampling variation!
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Plug-In Estimates of Quantiles
Definition: The plug-in estimate of the population α-quantile is the α-quantile of

the ecdf, also called the sample α-quantile. In particular, the sample median is the

median of the ecdf. The sample interquartile range= interquartile range of the ecdf.

Simulate a sample of size n = 20 from the Uniform(1,5) distribution, with median 3.

> set.seed(27) # sets the seed so that you get the same results
> x<-sort(runif(20,min=1,max=5)) # sorts the simulated sample
> options(width=60) # controls the display width
> x # displays the sorted sample
[1] 1.009801 1.184266 1.289994 1.335030 1.362751 1.548376
[7] 1.767636 1.889102 2.316925 2.606593 3.010988 3.375997

[13] 3.464381 3.953290 4.145181 4.398470 4.495480 4.505791
[19] 4.887001 4.934419

As sample median we should take the average of the middle two values

2.606593, 3.010988, i.e., (x[10]+x[11])/2 = 2.808791 = median(x).
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Plug-In Estimate of the IQR

Here we have to determine the 0.25- and 0.75-sample quantiles.

We run into the ambiguity that any value in the interval [x[5],x[6]]

= [1.362751,1.548376] qualifies as 0.25-sample quantile and any number

in [x[15],x[16]] = [4.145181,4.398470] qualifies as 0.75-sample quantile.

One could take the respective interval midpoints (x[5]+x[6])/2 = 1.455564 and

(x[15]+x[16])/2 = 4.271825, and their difference as our sample iqr:

îqr20 = 4.271825−1.455564 = 2.81626 6= iqr(X) = 4−2 = 2

Again an example of sampling variability.

No consensus in the statistical community on how best to resolve the ambiguity.
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The Quantile Function quantile
The R function quantile exemplifies the multitude of possibilities.

> quantile(x,prob=c(.25,.75))
25% 75%

1.501970 4.208503 # iqr = 4.208503-1.501970 = 2.706533
# same as quantile(x,prob=c(.25,.75),type=7) default
quantile(x,prob=c(.25,.75),type=2)

25% 75%
1.455564 4.271825

that latter, using type=2, yields our average ambiguity resolution.

R offers 9 different options 1,2, . . . ,9 for the type input variable to quantile.

My suggestion is not to worry, go with the default. Differences in large samples

will be small and in small samples the sampling variability is so large that larger

differences don’t matter.
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quantile Function for n = 21
When n = 21 the 0.25- and 0.75-quantiles should be uniquely defined as the 6th

and 16th ordered sample values, since 5
21 < 0.25 < 6

21 and 15
21 < 0.75 < 16

21.

type=1, type=2, type=7 give the expected answer, the others don’t. (Try it.)

> set.seed(627)
> xx <- sort(runif(21))
> c(xx[6],xx[16])
[1] 0.1611664 0.8112966
> quantile(xx,prob=c(.25,.75),type=1)

25% 75%
0.1611664 0.8112966
> quantile(xx,prob=c(.25,.75),type=2)

25% 75%
0.1611664 0.8112966
> quantile(xx,prob=c(.25,.75),type=7) # the default

25% 75%
0.1611664 0.8112966
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The summary Function

> summary.out <- summary(x) # stores the result in summary.out

> summary.out

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.010 1.502 2.809 2.874 4.209 4.934

> q1q3 <- as.vector(c(summary.out[2],summary.out[5]))

> q1q3[2]-q1q3[1] # sample iqr

2.707

Note that summary uses the type=7 default in quantile.

The as.vector construct strips away distracting labels. Try it without.
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An iqr Function

Often it is useful to turn several lines of commands into a function

> iqr <- function(x,type=7){

+ q <- as.vector(quantile(x,probs=c(.25,.75),type=type))

+ return(q[2]-q[1])

+ }

> iqr(x)

[1] 2.706533

> iqr(x,2)

[1] 2.816262
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Creating iqr Function in Text Editor

You can also edit a text file, say iqr.txt, with the following content

iqr <- function(x,type=7){

q <- as.vector(quantile(x,probs=c(.25,.75),type=type))

return(q[2]-q[1])

}

and then import it into your R session, started from the same directory that contains

iqr.txt, via

> iqr0 <- dget("iqr.txt")

> iqr0(x)

[1] 2.706533

> iqr0(x,2)

[1] 2.816262
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Graphical Procedures

While sample mean, median, and other plug-in estimates have their place,

a powerful supplement or alternative is to examine samples graphically.

R provides a wide array of graphical procedures which produce high quality plots.

These can be customized and annotated in many ways.

Such plots can be saved in various formats:

Postscript, pdf, png, jpeg, bmp, tiff and others.

In Windows you can save plots to the clipboard to be used for inclusion in

Word or other documents.

All my illustrations are done in R.

24



χ2(3) Density
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We obtain a sample: set.seed(267); y <- rchisq(100,3); boxplot(y).
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Box Plots
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The box plot gives a quick visual impression of the essential sample features.
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Box Plots Explained
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The sampled distribution appears not to be symmetric.
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Box Plots for Normal Samples

iqr = qnorm(.75)−qnorm(.25) = 1.348980,

=⇒ qnorm(.75)+1.5∗1.348980 = 2.69796

for the upper standard normal population whisker.

P(|Z|> 2.69796) = 2∗pnorm(−2.69796) = 0.006976582

We would expect 7 out 1000 observations to fall beyond the whiskers,

i.e., to have 7 outliers in a sample of size n = 1000.

This holds for the standard normal population

but also for any other N (µ,σ2) population.

In the latter case the whiskers are at µ±2.69796σ and

P(|X−µ|> 2.69796σ) = P(|Z|> 2.69796) = 0.006976582
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Comparative Box Plots of Several Samples

Aside from judging whether samples come from symmetric distributions

or have an inordinate number of outliers,

box plots are even more useful in comparing several samples.

The samples don’t have to be of equal size.

Let us create three normal random samples and compare them via box plots

> set.seed(345)

> z1 <- rnorm(100)

> z2 <- rnorm(100,mean=2,sd=1)

> z3 <- rnorm(100,mean=1,sd=2)

> boxplot(z1,z2,z3)
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Comparative Box Plots
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The box plots clearly point out the differences w.r.t. the sampled populations.
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Normal Probability Plots

The normal distribution is often used to model many experimental observations.

We will give an explanation for this later.

It is thus important to have a diagnostic normal model check.

qqnorm(x), applied to a sample vector x, gives an informal graphical diagnostic.

For normal samples we expect a roughly linear pattern.

To judge such resulting plots appropriately requires some experience.

Such experience is very easy to get in R.
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Normal Probability Plot for χ2(3) Sample
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The point pattern shows a strong curved behavior (not normal!).
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Normal Probability Plot for N (100,102) Sample
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The point pattern looks fairly linear (i.e., normal!). The deviations from the line

appear to be sampling variation. The line was added by qqline(x).
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Several Normal Probability Plots for N (100,102) Samples
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Code for Previous Slide

The previous slide should give some appreciation of what deviations from linearity
to expect from truly normal samples of size n = 100.

par(mfrow=c(2,2)) # sets up a 2 by 2 set of plots on one page

set.seed(267) # not needed, but gives results as shown

for(i in 1:4){ # start of a loop for making 4 plots

x <- rnorm(100,100,10) # generating a normal sample of size 100

qqnorm(x,cex=1,cex.axis=1.4,cex.lab=1.4)

# makes normal probability plot for x

qqline(x) # adds a fitted line to the plot, to judge linearity

}

The label Normal Q-Q Plot on top of the plots stands for quantile-quantile plot.

But since each α-quantile is associated with a probability α ∈ (0,1),

such plots are also called normal probability plots.
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The Idea of the Normal Probability Plot

When discussing quantiles of X ∼N (µ,σ2) we pointed out their simple

relationship to quantiles of Z ∼N (0,1), namely

q(X ;α) = µ+σq(Z;α) for any α ∈ (0,1)

i.e., q(X ;α) is a linear function of q(Z;α), with intercept µ and slope σ.

If q̃(X ;α) is the α-quantile of any distribution, we can examine the normality

of that distribution by plotting q̃(X ;α) against q(Z;α) for a lot of α values.

We could check it for the n equally spaced α values αi = i/(n+1), i = 1,2, . . . ,n.

The next slide does this in a comparison of χ2(3) quantiles with the standard

normal quantiles q(Z;α), i.e., we issue the command

plot(qnorm((1:100)/101),qchisq((1:100)/101,3)) and get
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Normal Probability Plot for χ2(3) Distribution
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The point pattern does not look linear, i.e., χ2(3) 6= N .

In fact, it looks similar to the normal probability plot for our χ2(3) sample.

37



The Idea of the Normal Probability Plot

The previous slide suggests how to examine samples for normality.

Rather than using quantiles of the unknown sampled population

we use the quantiles for the ecdf of the sample of size n.

Which α-quantiles should we use?

Popular choices, both leading to the ordered sample values x(1) < x(2) < .. . < x(n)

as the sample αi-quantiles, i = 1, . . . ,n, are

αi =
i

n+1
, i = 1, . . . ,n or αi =

i− .5
n

, i = 1, . . . ,n

since in both cases

P̂n(X < x(i)) =
i−1

n
≤ αi and P̂n(X ≤ x(i)) =

i
n
≥ αi for i = 1, . . . ,n

verifying x(1) < x(2) < .. . < x(n) as the αi-quantiles.

Thus plot these x(i) against q(Z;αi) = qnorm(i/(n+1)) or = qnorm((i− .5)/n),

for i = 1, . . . ,n. =⇒ qqnorm(x).
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Histograms
Another popular method for examining sample features is the histogram.

It is obtained for our previous χ2(3) sample by hist(x).
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Comments on Histograms

The previous slide showed a histogram where the abscissa was divided into equal

size adjacent intervals (also called buckets).

The height of the bar over each interval represents the frequency count of sample

values within that interval.

Using hist(x,probability=T) makes the bar area proportional to the count,

with total areas adding to one. Next slide shows superimposed sampled population.

The number and positioning of the intervals can change the histogram appearance.

See the documentation on hist for all its capabilities.
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Histogram & Population Comparison
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Code for Previous Slide

set.seed(267) # not necessary, but makes the plot exactly as shown

x <- rchisq(100,3) # generates sample of size n=100

# from chi-square(3) distribution

hist(x,prob=T,cex=1.4,cex.axis=1.4,cex.lab=1.4) # plots histogram

z <- seq(0,13,.01) # vector from 0 to 13 in increments of .01

fz <- dchisq(z,3) # vector of corresponding density values

lines(z,fz,col="blue",lwd=2) # adds a curve with (z,fz) coordinates

Note that above we used prob=T instead of probability=T.

Functions in R typically interpret shortened input arguments correctly

when no ambiguity can arise.

42



Kernel Density Estimates
For samples from a continuous distribution with density f (x),

is it possible to get an estimate f̂n(x)?

This could serve as a counterpart to the ecdf, which places probability 1/n at each
of the sample values xi, i = 1, . . . ,n?

After all, F̂n(x) is a discrete distribution and does not capture the fact that a

continuous distribution puts zero probability on any countable set of points.

Kernel density estimates replace the point probability 1/n at xi with a density

centered at xi multiplied by 1/n, i.e.,

f̂n(x)=
n

∑
i=1

1
n

1
h

K
(

x− xi
h

)
where

1
h

K
(

x− xi
h

)
is a density, with area 1 under it

f̂n(x)≥ 0 & it has total area 1 under it, since each summand contributes area 1/n.

Given K and h and a sample~x = {x1, . . . ,xn}, it is very easy to calculate f̂n(x).
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Choices for the Kernel K()
Typically one chooses as K a density symmetric around the origin,

for example, the density of N (0,1) or Uniform(−0.5,0.5).

The quantity h > 0 in

1
h

K
(

x− xi
h

)
e.g. =

1
h
√

2π
exp

(
−1

2

[
x− xi

h

]2
)

provides a scaling of the density, expressing spread.

Small h means the density is highly concentrated near x− xi = 0, i.e., near x = xi.

Large values of h indicate that the density is widely spread but still centered on xi.

How to choose the correct h depends very much on the sample size.

Large n allow small h (more detail) and small n require larger h (broader brush).

The choice is not trivial and we leave that to the default method used by R.
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For Our Previous χ2(3)-Sample of n = 100
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Bimodal Distribution
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Let us see what happens when sampling n = 100 from the above population.
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Sample (n = 100) from Bimodal Distribution
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Comments on Previous Plots

The normal probability plot suggests a nonnormal sampled population (correctly).

qqline(x) fits a line to the middle portion (50%) of the sample.

The box plot suggests some skew toward higher values (misses bimodality)

The histogram suggests a bimodal sampled population.

The kernel density estimate also suggests a bimodal sampled population.

Note the vertical gap in the normal probability plot.

It indicates sparseness of data there, i.e., a data density dip and thus bimodality.

To recognize this takes some experience or reasoning.

Bimodality is more obvious in histogram and kernel density plot.
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Case Study: Lengths of Forearms
This data set is a typical example of what occupied biometric statistics around 1900.

It was studied by K. Pearson and A. Lee (1903): On the laws of inheritance of man.

I. Inheritance of physical characters. Biometrika, 2: 357-462.

Download the data set forearms.dat from Trosset’s web site:

http://mypage.iu.edu/˜mtrosset/StatInfeR.html

and place it into the directory C:\Users\yourname\Stat311\DATA,

provided this directory path exists in Windows w.r.t. your class work.

Suppose you launched your R session from C:\Users\yourname\Stat311\R-Ch7

> forearms <- scan("../DATA/forearms.dat") gets data −→ session.

In Linux the import is the same but your directory setup may be

/home/yourname/Stat311/DATA and /home/yourname/Stat311/R-Ch7

The .. in ../DATA refers to the parent directory C:\Users\yourname\Stat311
of the launch directory C:\Users\yourname\Stat311\R-Ch7 of your R session.
"../DATA/forearms.dat"= "C:/Users/yourname/Stat311/DATA/forearms.dat"
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Continuous Distribution?

> table(forearms)

forearms

16.1 16.3 16.4 16.6 16.8 16.9 17.1 17.2 17.3 17.4 17.5 17.6

1 2 1 1 1 1 4 2 4 2 3 1

17.7 17.8 17.9 18 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8

3 1 3 3 4 2 8 4 9 4 4 5

18.9 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20

3 6 5 3 4 5 4 5 3 3 4 3

20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21 21.4

2 1 1 3 4 2 1 1 2 1 1

We see many observations multiple times (rounding to one decimal).

For samples from continuous distributions we have P(Xi = X j) = 0 for i 6= j.

Length measurements should be continuous, not inherently discrete.

We will treat them as continuous and ignore the ties.
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Normality of Forearms?

A basic question is whether the data are normally distributed.

Normality allows simpler analyses and more effectice use of the data.

par(mfrow=c(2,2)) # sets up 2 by 2 plot page

qqnorm(forearms,axes=F); qqline(forearms)

axis(1); axis(2)

# adds abscissa and ordinate, since we suppressed axes/box

boxplot(forearms,axes=F,main="Box Plot")

axis(2)

hist(forearms)

plot(density(forearms),main="Kernel Density Plot",axes=F)

axis(1); axis(2)

abline(h=0) # adds horizontal baseline to plot.
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Lengths of Forearms
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Discussion of Plots
Both histogram and kernel density plot indicate a mound shaped distribution.

The box plot indicates good symmetry of quartiles and whiskers w.r.t. median.

The normal probability plot seems like the best indication of normality.

Should we worry about the wiggles at the high and low end?

Create comparison normal probability plots for samples of size n = 140

from a known normal population, say N (19,1).

par(mfrow=c(2,2))
for(i in 1:4){

x <- rnorm(140,19,1)
qqnorm(x,axes=F); qqline(x)
axis(1); axis(2)

}
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Normal Comparison Plots
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Normal Comparison Plots
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Normal Comparison Plots
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By comparison our forearm normal probability plot looks very good!
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îqr/σ̂n for Forearms in Normal Sampling Perspective

1000 simulated ratios of  iqr^ σ̂n for normal samples (n=140)
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Comments on îqr/σ̂n Perspective
For normal populations we saw that iqr/σ = 1.34898≈ 1.35.

The corresponding sample estimate îqr/σ̂n will differ from 1.35 due to

sampling variation, even when the samples come from a normal population.

There are other populations for which we have iqr/σ = 1.35.

Thus an observed îqr/σ̂n reasonably close to 1.35 does not prove normality,

but it also does not disprove it.

If the observed îqr/σ̂n is sufficiently far from 1.35 compared to normal

sampling variation, then we can make a cases against normality.

For our forearms data there is no case against normality based on îqr/σ̂n.
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Transformations

Whether experimental measurements are normally distributed or not

often depends on what is being measured.

For example, we may measure with what speed a car makes it from A to B.

This depends strongly on traffic conditions, driven by random effects.

If the distance is D, the time is T , then velocity V = D/T .

Clearly D is more or less constant, but T can vary quite a bit

depending on traffic lights, conditions, etc.

We will see later that a random variable, that can be viewed as a sum

of many independent random components, T = T1 + . . .+Tk,

can often be viewed as approximately normally distributed, i.e., T ≈N (µ,σ2)

But, as a consequence V = D/T 6≈N (ν,τ2) (reciprocal transformation)
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Normality of Speed?
Histogram of V
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Choice of Scale?

A psychologist tests a drug for cognitive function in Alzheimer’s patients.

n = 5 patients are tested before and after the drug study period.

Ai is the test score after and Bi is the prior baseline score, i = 1, . . . ,5.

How should one compare Ai and Bi? Ai/Bi or Ai−Bi?

Should b1 = 2 and a1 = 4 be considered a doubling of cognitive function,

equivalent to b2 = 20 and a2 = 40?

Or should we interpret the 2 point increase from b1 = 2 to a1 = 4

as equivalent to b3 = 20 and a3 = 22?
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Fictitious Scores
i Bi Ai Xi = Ai/Bi
1 16 32 2.00
2 16 24 1.50
3 16 16 1.00
4 16 12 0.75
5 16 8 0.50

Xi = 1 means no effect, Xi > 1 means positive effect, Xi < 1 means adverse effect.

The average the above Xi scores is mean(c(2,1.5,1,.75,.5)) =1.15,

i.e., we have an average positive effect.

If instead we took Yi = Bi/Ai = 1/Xi as our score, then Yi > 1 is an adverse effect.

The average Yi score is mean(1/c(2,1.5,1,.75,.5)) =1.1 (typo in text)

i.e., we have an average adverse effect, using the same data. What is wrong?
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The Problem Source and Resolution

Adverse scores correspond to Xi ∈ (0,1), the positive scores to Xi ∈ (1,∞).

The neutral score is Xi = 1. The scales are asymmetric around 1.

Also, (0,1) is bounded and (1,∞) is unbounded.

Viewing these scores on a log-scale

log(Xi) and log(1/Xi) =− log(Xi) are now symmetric around log(1) = 0

> mean(log(c(2,1.5,1,.75,.5)))

[1] 0.02355661

> mean(log(1/c(2,1.5,1,.75,.5)))

[1] -0.02355661

The log-transformed scores now convey the same message.
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Other Transformations
Transformations can be usefully applied when dealing with skewed distributions.

Some popular candidates are: y =
√

x, y = log(x), y = 3√x, y = 1/x, etc.

Finding the right transformation is still somewhat of an art form.

Sometimes the correct transformation is simply the inverse (or undoing)

of a hidden transformation that crept into the data reporting process.

The log transform not only equalized (0,1) and (1,∞) scales, but also is useful for

random variables arising by a multiplicative process, i.e.,

X = Y1 ·Y2 · . . . ·Yk =⇒ log(X) = log(Y1)+ . . .+ log(Yk)

More on the benefit of that later.

Be mindful of how to report results of a transformed data analysis and also the why.
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