
Elements of Statistical Methods

Association (Ch 14)

Fritz Scholz

Spring Quarter 2010

May 28, 2010



Association Between X and Y
In the previous chapter we examined dependence or association between two

partitions of a sample space.

With 2 random variables X and Y , defined on the same sample space S, we could

use each of them to partition the sample space, e.g., Ai = {s∈ S : X(s)∈ (ai,ai+1]}

for nonoverlapping intervals (ai,ai+1] spanning the whole of R, using (−∞,a1) and

(ar−1,∞) to keep the number of partition sets finite. Similarly using Y to get B j.

While the G2 and X2 tests could be used to examine dependence or association

between X and Y , these tests don’t use any order relationships in the values

of X and Y , i.e., the partition sets could be permuted around without changing the

values of G2 and X2.

Also, the choice of partition intervals is somewhat arbitrary.
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Joint Distribution of X and Y
We will deal with continuous r.v.s X and Y defined on the same sample space S.

For any rectangular B region in R2

B = [a,b]× [c,d] = {(x,y) : a≤ x≤ b, c≤ y≤ d} ⊂ R2

we need to assign a probability

P((X ,Y ) ∈ B) = P(X ∈ [a,b],Y ∈ [c,d])

In analogy with the case of a univariate continuous r.v. we use a joint probability

density function f (x,y) defined over (x,y) ∈ R2 and define P((X ,Y ) ∈ B) as

the volume under the function f over the region B,

P((X ,Y ) ∈ B) = VolumeB( f ) =
Z b

a

Z d

c
f (x,y)dxdy =

Z Z
B

f (x,y)dxdy

The right most expression holds for any Borel set B, not just for rectangles.

f (x,y) is a joint density whenever f (x,y)≥ 0 for all (x,y) ∈ R2

and VolumeR2( f ) =
R

∞
−∞

R
∞
−∞ f (x,y)dxdy = P((X ,Y ) ∈ R2) = 1
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Marginal Distributions and Independence

From the joint density f (x,y) we get the marginal densities of X alone and Y alone,

respectively as

fx(x) =
Z

∞

−∞

f (x,y)dy = area over y-axis under f (x,y) for fixed x

and fy(y) =
Z

∞

−∞

f (x,y)dx = area over x-axis under f (x,y) for fixed y

because (interpreting volumes under f (x,y) as the accumulation of areas

along x- or y-axis)

FX(a) = P(X ≤ a) = P((X ,Y ) ∈ (−∞,a]×R) =
Z a

−∞

Z
∞

−∞

f (x,y)dydx =
Z a

−∞

fx(x)dx

FY (b) = P(Y ≤ b) = P((X ,Y ) ∈ R× (−∞,b]) =
Z b

−∞

Z
∞

−∞

f (x,y)dxdy =
Z b

−∞

fy(y)dx

X and Y are independent, if and only if f (x,y)= fx(x)· fy(y) for all (x,y) ∈ R2
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Joint Density Contours

A joint density f (x,y) can be viewed as providing an elevation f (x,y)≥ 0 at each

point in the plane R2.

High (low) density in the vicinity of (x,y) means high (low) probability

in the same vicinity of (x,y)

We can, as in topographic maps, consider equal density contour lines to get

an appreciation of the probability distribution described by f (x,y).{
(x,y) ∈ R2 : f (x,y) = c

}
= contour set for the density f (x,y) at level c
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Bivariate Normal Probability Contours
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Positive and Negative Association

Assume X ∼N (0,1) and Y ∼N (0,1), but not necessarily independent.

To get a sense of the dependence between X and Y consider E(XY ).

There is positive association between X and Y when positive (negative) values

of X tend to be associated with positive (negative) values of Y .

In either case XY will tend to be mostly positive and thus E(XY ) > 0.

(+) · (+) > 0 and (−) · (−) > 0.

There is negative association between X and Y when positive (negative) values

of X tend to be associated with negative (positive) values of Y .

In either case XY will tend to be mostly negative and thus E(XY ) < 0.

(+) · (−) > 0 and (−) · (+) < 0.
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Product-Moment Correlation Coefficient

When X ∼N (µx,σ
2
x) and Y ∼N (µy,σ

2
y) we measure dependence in terms of

standard units X ′ =
X−µx

σx
and Y ′ =

Y −µy

σy

via ρ = ρ(X ,Y ) = E(X ′Y ′) = E
[(

X−µx
σx

)(
Y −µy

σy

)]
ρ is called the product-moment correlation coefficient.

This definition holds generally, whether the marginal distributions are normal or not.

All that is needed is that means and variances exist and are finite.

For constants a > 0,b,c > 0,d we have ρ(aX +b,cY +d) = ρ(X ,Y ),

i.e., scaling and shifting the random variables does not affect their correlation.
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Properties Concerning ρ = ρ(X ,Y )
Assume that X and Y have finite variance σ2

x and σ2
y

1. −1≤ ρ≤ 1

2. ρ =±1⇐⇒ (Y −µy)/σy =±(X−µx)/σx

Y is a linear function of X with positive/negative slope.

3. If X and Y are independent, then ρ = 0.

The converse is not necessarily true, but ↓

4. If X and Y are bivariate normal (elliptical density contours) and ρ = 0,

then X and Y are independent.

The parameters (µx,µy,σ
2
x,σ

2
y,ρ) determine a unique bivariate normal pdf.

Closeness of |ρ| to 1 drives the narrowness of the contour ellipses.
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Bivariate Normal Concentration Ellipse
The contour level ellipse passing through the points

(µx±
√

1−ρ
2 ·σx, µy) and (µx, µy±

√
1−ρ

2 ·σy)

is called the concentration ellipse.
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Bivariate Normal Samples

Such bivariate samples of paired observations (x1,y1),(x2,y2), . . . ,(xn,yn),

drawn independently from a bivariate population, are usually displayed

in a two column format.

This facilitates easier comparison within each pair and across pairs.

The table below shows the two midterm scores for a class of 20 students

x y x y x y x y
87 87 82 66 84 75 94 69
25 57 94 86 99 92 99 98
76 91 89 74 92 55 63 81
84 67 92 92 74 74 82 80
91 67 76 85 84 74 91 85

While it is easy to contemplate the two scores for any given student,

it becomes harder to grasp the meaning for the totality of scores.

=⇒ scatter plot or scatter diagram.

10



Scatter Plot Code

Getting the data: Download midterms351.dat

from http://mypage.iu.edu/~mtrosset/StatInfeR.html

Getting the data into R, assuming the file is in the directory from which R started

midterms <- read.table("midterms351.dat")

The function for the scatter plot:

midterms.plot <- function (dat = midterms, PDF = F) {

if (PDF == T) pdf(file = "scatterplot.pdf", width = 6)

par(pty = "s")

plot(dat[, 1], dat[, 2], xlim = c(20, 100), ylim = c(20, 100),

xlab = "x = score on Test 1", ylab = "y = score on Test 2",

pch = 16)

if (PDF == T) dev.off() }
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Scatter Plot
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Comments on Scatter

We seem to have a clear outlier.

About 5 students had consistent scores on both midterms.

4 students improved on the second midterm,

while 11 dropped in their performance.

The point pattern does not appear to be elliptical

(even without the outlier).

However, the sample size is small to make any hard pronouncements

against bivariate normality.

The next slide shows a random sample of size n = 20 from a

bivariate normal distribution with superimposed concentration ellipse.

binorm.scatter(binorm.sample(pop=c(10,20,4,16,.5),20))
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Scatter Plot for Bivariate Normal Data
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Bivariate Normal Samples via binorm.sample

> pop <- c(10,20,4,16,.5) # setting bivariate normal parameters

> binorm.sample(pop,5) # getting a sample of size n = 5

[,1] [,2]

[1,] 12.94626 23.29288

[2,] 11.22774 18.59080

[3,] 13.54964 26.17255

[4,] 11.03156 17.25417

[5,] 10.85842 25.18908

The output is given in the form of a 2 column data matrix.

binorm.sample can be obtained from

http://mypage.iu.edu/~mtrosset/StatInfeR.html

via the link binorm.R.
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Pearson’s Product-Moment Correlation Coefficient

We discussed how to estimate the population means µx, µy using the sample

means x̄ and ȳ and the population variances σ2
x and σ2

y using the sample variances

s2
x and s2

y. The plug-in estimate of the population correlation coefficient is

ρ̂ =
1
n

n

∑
i=1

[(
xi− µ̂x

σ̂x

)(
yi− µ̂y

σ̂y

)]

=
1
n

n

∑
i=1


 xi− x̄√

(n−1)s2
x/n


 yi− ȳ√

(n−1)s2
y/n




=
1

n−1

n

∑
i=1

[(
xi− x̄

sx

)(
yi− ȳ

sy

)]
called Pearson’s product-moment correlation coefficient, usually denoted by r.

ρ̂
P−→ ρ as n→ ∞, i.e., ρ̂ is a consistent estimator of ρ.

The next slide shows how to estimate all 5 parameters using binorm.estimate.
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binorm.estimate and binorm.scatter

The featured functions binorm.estimate and binorm.scatter can be

obtained from http://mypage.iu.edu/~mtrosset/StatInfeR.html

via the link binorm.R.

> Data <- binorm.sample(pop,100) # generating sample, n = 100

> binorm.estimate(Data) # estimating parameters

[1] 10.0596963 20.4624716 3.2477105 13.1775460 0.4419401

> binorm.scatter(Data) # making the scatter plot, see next slide

To get the fatter plotting dots I changed pch=".", cex=2 to pch=16

inside binorm.scatter
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Scatter Plot for Bivariate Normal Data
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Testing H0 : ρ = 0
Let (X1,Y1), . . . ,(Xn,Yn) be a random sample from a bivariate normal distribution,

i.e., the pairs are independent with common bivariate normal distribution.

When Xi and Yi are uncorrelated, i.e., independent, then ρ̂ as a function of

(X1,Y1), . . . ,(Xn,Yn) is a random variable and we have

T =
ρ̂
√

n−2√
1− ρ̂2

∼ t(n−2)

Clearly, large values of |ρ̂|, or equivalently large values of |T |, are significant.

We can assess the significance probability for any oberved value r of ρ̂ via

p(r) = Pρ=0 (|ρ̂| ≥ |r|) = Pρ=0

(
|T | ≥ |r|

√
n−2√

1− r2

)
= Pρ=0 (|T | ≥ |t|)

= 2*pt(-abs(t),n-2)=2*pt(-abs(r)*sqrt((n-2)/(1-rˆ2)),n-2)

Reject H0 at level α whenever p(r)≤ α.
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Using Critical Values

With qt = qt(1−alpha/2,n−2) we reject H0 at level α = alpha, whenever

|r|
√

n−2√
1− r2

≥ qt ⇐⇒ r2(n−2)
1− r2 ≥ q2

t ⇐⇒ r2(n−2)≥ (1− r2)q2
t = q2

t − r2q2
t

⇐⇒ r2(n−2+q2
t )≥ q2

t ⇐⇒ r2 ≥ q2
t

n−2+q2
t
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Strong Association Evidence
??= Strong Association

Strong evidence that association is present does not necessarily mean that

there is evidence of a strong association.

The attribute “strong” modifies two different words: evidence and association.

Strong association means that X and Y are highly correlated, i.e., knowing X

will give us a good idea about the value of Y . This occurs when |ρ| is close to 1.

Strong evidence means that we have sufficient data to reject the hypothesis

H0 : ρ = 0. However, |ρ| may still be quite small (⇒ weak association).

The multiplier
√

n−2 in the denominator of T will lead to rejection of H0,

even for relatively small ρ̂.
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Demonstration Code

StrongEvidence <- function(n=300,rho=.1,iseed=13){

set.seed(iseed)

pop <- c(0,0,1,1,rho)

data <- binorm.sample(pop,n)

est <- binorm.estimate(data)

binorm.scatter(data)

r <- est[5]

pval.r <- 2*pt(-abs(r)*sqrt((n-2)/(1-rˆ2)),n-2)

list(pval.r=pval.r,estimates = est)

}
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Illustrations

> StrongEvidence(n=300,rho=.1,iseed=13)

$pval.r

[1] 0.006001744 # strong evidence, but weak association.

$estimates

[1] -0.09926213 -0.00642963 1.12713397 0.98752296 0.15829714

> StrongEvidence(n=10,rho=.8,iseed=42)

$pval.r

[1] 0.2132450 # strong association, but weak evidence.

$estimates

[1] 0.5709009 0.4675217 1.2005104 0.5876052 0.4313588
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Strong Evidence of Weak Association
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Weak Evidence of Strong Association

−1 0 1 2

−
1

0
1

2

x

y

Scatter Diagram

25



Confidence Intervals for ρ

Confidence intervals for ρ consist of all those values ρ0 for which the hypothesis

H0 : ρ = ρ0 is not rejected at level α when testing H0 against H1 : ρ 6= ρ0.

The exact distribution of ρ̂ for ρ 6= 0 is rather complicated and exact confidence

intervals based on it appear not yet to have been implemented in R.

Instead we resort to a large sample approximation based on Fisher’s z-transform.

Sir Ronald Fisher was one of the founding fathers of statistics and is also famous

(some say: more famous) for his work in genetics.
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Fisher’s Z-Transform of ρ and ρ̂

Fisher showed that the following z-transform f , when applied to ρ and ρ̂,

ζ = f (ρ) =
1
2

log
(

1+ρ

1−ρ

)
and ζ̂ = f (ρ̂) =

1
2

log
(

1+ ρ̂

1− ρ̂

)
provides the following approximate distributional results for sufficiently large n

ζ̂≈N
(

ζ,
1

n−3

)
or

ζ̂−ζ

1/
√

n−3
=
√

n−3
(

ζ̂−ζ

)
≈ Z ∼N (0,1)

Note that the range of the z-transform f (ρ) is (−∞,∞) as ρ varies over (−1,1),

giving the normal approximation the unlimited range it needs.

With qz = qnorm(1−alpha/2) = qnorm(1−α/2) we thus get the following

approximate (1−α)-level confidence interval for ζ

ζ̂ ± qz√
n−3
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Approximate Confidence Intervals for ρ

Since ζ = f (ρ) is a strictly increasing function of ρ, one can convert confidence

intervals for ζ into corresponding confidence intervals for ρ.

We just need to invert the z-transformation f (ρ).

ρ = f−1(ζ) =
e2ζ−1
e2ζ +1

since e2ζ =
1+ρ

1−ρ
=⇒ e2ζ−1

e2ζ +1
=

1+ρ

1−ρ
−1

1+ρ

1−ρ
+1

=
1+ρ− (1−ρ)
1+ρ+(1−ρ)

= ρ

If [ζL,ζU ] is an approximate (1−α)-level confidence interval for ζ we get in[
f−1(ζL), f−1(ζU)

]
=

[
e2ζL−1
e2ζL +1

,
e2ζU −1
e2ζU +1

]
an approximate (1−α)-level confidence interval for ρ.
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Illustration or a Sample of Size n = 10

ρ
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Confidence Intervals for ρ

The R function cor.test carries out this procedure.

> pop <- c(10,20,4,16,.85) # setting the population parameters
> set.seed(37) # setting the RNG seed
> out <- binorm.sample(pop,10) # getting the bivariate sample
> cor.test(out[,1],out[,2],conf.level=.9)

Pearson’s product-moment correlation

data: out[, 1] and out[, 2]
t = 1.8994, df = 8, p-value = 0.09406
alternative hypothesis: true correlation is not equal to 0
90 percent confidence interval:
0.00748991 0.84853093

sample estimates:
cor

0.5574917
30


