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The Basic k-Sample Problem
Here we generalize the 2-sample problem to the k-sample problem.

Because of increased complexity we also make certain simplifying assumptions.

We have k independent random samples of respective sizes n1, . . . ,nk from

populations with distributions P1, . . . ,Pk.

It is convenient to express this in double index notation

X11, . . . ,X1n1 ∼ P1
X21, . . . ,X2n2 ∼ P2

. . . ... . . .

Xk1, . . . ,Xknk ∼ Pk

Succinctly we express this as Xi j ∼ Pi.

This situation occurs when comparing several different treatments or methods,

or when trying to assess whether samples can be pooled or not.
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Basic Assumptions
We assume the following:

1. The Xi j ∼ Pi are all independent continuous random variables.

2. Pi has location parameter θi, e.g., θi = µi = EXi j or θi = q2(Xi j).

3. We observe random samples~xi = (xi1, . . . ,xini), i = 1, . . . ,k, from which

we want to draw inferences about θ1, . . . ,θk.

4. Pi = N (µi,σ
2), i = 1, . . . ,k

Note the normality and the common variance assumption.

Both can be overcome, with more complications than we wish to face in this course.
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The Fundamental Null Hypothesis
We test the null hypothesis

H0 : µ1 = . . . = µk against the alternative H1 : not all µi are the same.

Let N =
k

∑
i=1

ni =
k

∑
i=1

ni

∑
j=1

1 and µ̄·=
k

∑
i=1

ni
N

µi =
1
N

k

∑
i=1

ni

∑
j=1

µi

where µ̄· is called the population grand mean or simply the grand mean.

It is the weighted average (weights ni/N) of the individual means.

k

∑
i=1

ni
N

=
1
N

k

∑
i=1

ni =
N
N

= 1

When all the means are the same, say = µ, then

µ̄· =
k

∑
i=1

(ni/N)µ = µ
k

∑
i=1

(ni/N) = µ
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Discrepancy Between the Means µ1, . . . ,µk

The discrepancy between the means µ1, . . . ,µk is most commonly expressed as

γ =
k

∑
i=1

ni

∑
j=1

(µi− µ̄·)2 =
k

∑
i=1

ni (µi− µ̄·)2 with γ = 0 ⇐⇒ µ1 = . . . = µk

Thus our previous testing problem becomes: H ′0 : γ = 0 versus H ′1 : γ > 0

Note that H0 or H ′0 mean that all k sampled distribution are the same

normal distribution, since a common σ and normality was assumed a priori.
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Using the Plug-In Principle to Estimate γ

The plug-in principle suggests to estimate the individual µi by

X̄i· =
1
ni

ni

∑
j=1

Xi j the ith sample mean

and the grand mean µ̄· by using the sample grand mean

X̄·· =
k

∑
i=1

ni
N

X̄i· =
k

∑
i=1

ni
N

(
1
ni

ni

∑
j=1

Xi j

)
=

1
N

k

∑
i=1

ni

∑
j=1

Xi j

X̄i· and X̄·· are unbiased estimators of µi and µ̄·, respectively.

The natural (plug-in) estimator of γ is

SSB =
k

∑
i=1

ni (X̄i·− X̄··)
2 =

k

∑
i=1

ni

∑
j=1

(X̄i·− X̄··)
2 = Between groups Sum of Squares

On intuitive grounds we should reject H0 when SSB is sufficiently large.

We will distinguish two cases: σ2 known and σ2 unknown.

5



Testing H0 when σ2 is Known
Theorem: Under H0 and the assumption of normality and common variance σ2

we have
SSB
σ2 ∼ χ

2(k−1)

This theorem motivates the use of SSB instead of other discrepancy metrics, such
as

k

∑
i=1

(X̄i·− X̄··)
2 or max

i=1,...,k
{|X̄i·− X̄··|}

This distributional result provides a reference or null distribution under H0

against which to compare values of SSB that are possibly too large.

We can use qchisq(...,k−1) or 1−pchisq(...,k−1) to obtain appropriate

critical values or significance probabilities.
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Example when σ2 is Known
Suppose we have n1 = 20,n2 = 25, and n3 = 30 observations with respective

sample means x̄1 = 1.489, x̄2 = 1.712 and x̄3 = 3.082.

Assume a known variance σ2 = 9 when testing H0 against H1.

As sample grand mean we get (20*1.489+25*1.712+30*3.082)/75=2.200533

and thus for ssB we get

> 20*(1.489-2.200533)ˆ2+25*(1.712-2.200533)ˆ2+30*(3.082-2.200533)ˆ2

[1] 39.40172

The text uses an alternate formula for ssB which is mathematically equivalent,

but can lead to numerical significance loss.

ssB =
k

∑
i=1

ni x̄2
i·−

1
N

(
k

∑
i=1

ni x̄i·

)2

difference of possibly large squares
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Example (continued)

For significance level α = 0.05 we should reject H0 when

39.40172/9 = 4.377969≥ qchisq(0.95,2) = 5.991465

which is not the case, i.e., the result is not significant at level α = 0.05.

As significance probability we get

p(ssB/σ
2) = PH0(SSB/σ

2 ≥ ssB/σ
2)

= 1−pchisq(4.377969,2) = 0.1120305

confirming the previous conclusion since 0.1120305 > 0.05.
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Unknown Population Variance σ2

As in the 2-sample case we make use of the following facts:

(ni−1)S2
i

σ2 =
∑

ni
j=1(Xi j− X̄i·)2

σ2 ∼ χ
2(ni−1) independently for i = 1, . . . ,k

From our results concerning the sum of independent χ2 random variables we get

(n1−1)S2
1

σ2 + . . .+
(nk−1)S2

k
σ2 =

(n1−1)S2
1 + . . .+(nk−1)S2

k
σ2

∼ χ
2((n1−1)+ . . .+(nk−1)) = χ

2(N− k) with expectation N− k

S2
P = σ

2 (n1−1)S2
1 + . . .+(nk−1)S2

k
σ2(N− k)

=
1

N− k

k

∑
i=1

(ni−1)S2
i

=
1

N− k

k

∑
i=1

ni

∑
j=1

(Xi j− X̄i·)2 with expectation σ2

=⇒ S2
P is an unbiased estimator of σ2 and

(N− k)S2
P

σ2 ∼ χ
2(N− k)
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Sum of Squares Decomposition
We call

SSW = (N− k) S2
P =

k

∑
i=1

(ni−1)S2
i =

k

∑
i=1

ni

∑
j=1

(Xi j− X̄i·)2

the within group or error sum of squares. We also introduce

SST =
k

∑
i=1

ni

∑
j=1

(Xi j− X̄··)2

as the total sum of squares.

We have the following sum of squares decomposition

SST = SSW +SSB

or
k

∑
i=1

ni

∑
j=1

(Xi j− X̄··)2 =
k

∑
i=1

ni

∑
j=1

(Xi j− X̄i·)2 +
k

∑
i=1

ni

∑
j=1

(X̄i·− X̄··)2

which is a form of the Pythagorean Theorem c2 = a2 +b2 in a right triangle.
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Orthogonality and Pythagorean Theorem
Think of the

Xi j− X̄·· = (Xi j− X̄i·)+(X̄i·− X̄··) j = 1, . . . ,ni, i = 1, . . . ,k

on the left side of = as one long vector with N components, expressed as the

sum of two orthogonal vectors (on the right side) of same length N.

Orthogonality of the latter comes from

ni

∑
j=1

(Xi j−X̄i·)= 0 =⇒
k

∑
i=1

ni

∑
j=1

(Xi j−X̄i·)(X̄i·−X̄··)=
k

∑
i=1

(X̄i·−X̄··)
ni

∑
j=1

(Xi j−X̄i·)= 0

k

∑
i=1

ni

∑
j=1

(Xi j− X̄··)2 =
k

∑
i=1

ni

∑
j=1

(Xi j− X̄i·)2 +
k

∑
i=1

ni

∑
j=1

(X̄i·− X̄··)2

since (a+b)2 = a2 +b2 +2ab with a = Xi j− X̄i· and b = X̄i·− X̄··

(Xi j− X̄··)2 = (Xi j− X̄i·)2 +(X̄i·− X̄··)2 +2(Xi j− X̄i·)(X̄i·− X̄··)

and the double summation of the terms 2(Xi j− X̄i·)(X̄i·− X̄··) is zero.
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Sum of Squares Decomposition and ANOVA

The previous sum of square decomposition breaks down the variability of the data

around the sample grand mean into the variability within each group (summed over

all k groups) and into variability of the group centers (sample means).

This differentiated view of the variability (expressed via sums of squares)

is the essence of the Analysis of Variance (ANOVA).
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Graphical Illustration of ANOVA
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Distributional Facts

Theorem: Assuming k independent normal random samples of respective sizes

n1, . . . ,nk, with same variance σ2 but possibly different means µ1, . . . ,µk, we have

(N− k)S2
P/σ

2 = SSW/σ
2 ∼ χ

2(N− k) (claimed previously)

and SSW and SSB are independent.

If in addition H0 : µ1 = . . . = µk holds, then

SST/σ
2 ∼ χ

2(N−1) and SSB/σ
2 ∼ χ

2(k−1) (claimed previously)

Comment: The independence of SSW and SSB follows from the independence of

X̄i· and S2
i for i = 1, . . . ,k and the independence of the samples.

Note that SSW is an aggregate of the S2
i and SSB is computed solely from the X̄i·.
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The F-Test
Since our previous test statistic (for known variance σ2) was SSB/σ2, it would seem

natural to use, in the case of unknown variance, the statistic SSB/S2
P, i.e., replace

the unknown σ2 by its unbiased estimator S2
P.

We would reject H0 when SSB/S2
P is too large.

However, to link up to a known and standard distribution we use

F =
SSB/(k−1)
SSW/(N− k)

=
1

k−1
SSB

S2
P

and reject H0 when F is too large

Corollary: Under the normality assumption with same variance σ2 and

H0 : µ1 = . . . = µk we have

F =
SSB/(k−1)
SSW/(N− k)

=
(SSB/σ2)/(k−1)
(SSW/σ2)/(N− k)

∼ F(k−1,N− k)

which is the F-distribution with k−1 and N− k degrees of freedom, respectively.

Immediate consequence of the previous theorem and the F distribution definition.
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Rationale for the F-Test

When H0 : µ1 = . . . = µk is not true, it will result in the sample averages X̄1·, . . . , X̄k·

being more dispersed.

Thus SSB tends to be larger under H1 than under H0 : µ1 = . . . = µk.

The behavior of the denominator is not affected by H0 true or false.

It always is an unbiased estimator of σ2.

Thus we will expect to see larger values of F under H1 than under H0.

Unusually large values of F should be compared with the null distribution of F .

Do this by using critical values for given α or via significance probabilities.
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An Example
i = 1 i = 2 i = 3

ni 25 20 20
x̄i· 9.783685 10.908170 15.002820
s2
i 29.89214 18.75800 51.41654

ANOVA Table
Source of Sum of Degrees of Mean Test Significance
Variation Squares Freedom Squares Statistic Probability

Between SSB k−1 MSB = SSB
k−1 F = MSB

MSW
p( f )

Within SSW N− k MSW = SSW
N−k = S2

P
Total SST N−1

Source SS df MS F p
Between 322.4366 2 161.21832 4.87414117 0.01081398
Within 2050.7276 62 33.07625
Total 2373.1643 64

R2 = SSB/SST = 0.136 proportion of SST “explained” by the x̄i· variation.
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Code for Previous Example

anova12.2 <- function(alpha=.05){

n <- c(25, 20, 20)

xbar <- c(9.783685, 10.908170, 15.002820)

s2 <- c(29.89214, 18.75800, 51.41654)

N <- sum(n); k <- length(n)

ssW <- sum((n-1)*s2); xbar.grand <- sum(n*xbar/N)

ssB <- sum(n*(xbar-xbar.grand)ˆ2)

F.stat <- (ssB/(k-1))/(ssW/(N-k)); F.crit <- qf(1-alpha,k-1,N-k)

pval <- 1-pf(F.stat,k-1,N-k)

ssT <- ssW+ssB; ss <- c(ssB,ssW,ssT); ms <- c(ssB/(k-1),ssW/(N-k))

stats <- c(F.stat,F.crit,pval)

names(ss) <- c("ssB","ssW","ssT")

names(ms) <- c("msB","msW")

names(stats) <- c("F.observed","F.crit","p-value")

list(ss=ss,ms=ms,stats=stats)}
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Output from anova12.2

> anova12.2(alpha=0.05)

$ss

ssB ssW ssT

322.4366 2050.7276 2373.1643

$ms

msB msW

161.21832 33.07625

$stats

F.observed F.crit p-value

4.87414117 3.14525838 0.01081398
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Surface Insulation Resistance (SIR)
Circuit boards in aircraft experience intermittant failures due to insulation problems
caused by residual solder flux. Different fluxes, X,Y,Z, are investigated.
http://en.wikipedia.org/wiki/Flux_(metallurgy)

SIR FLUX
9.9 X
9.6 X
9.6 X
9.7 X
9.5 X

10.0 X
10.7 Y
10.4 Y
9.5 Y
9.6 Y
9.8 Y
9.9 Y

10.9 Z
11.0 Z
9.5 Z

10.0 Z
11.7 Z
10.2 Z

SIRFLUX.csv file available under lectures.

> SIRFLUX <- read.csv("SIRFLUX.csv",header=T)

> names(SIRFLUX)

[1] "SIR" "FLUX"

> anova(lm(SIR~FLUX,data=SIRFLUX))

Analysis of Variance Table

Response: SIR

Df Sum Sq Mean Sq F value Pr(>F)

FLUX 2 2.1733 1.08667 3.6452 0.05126 .

Residuals 15 4.4717 0.29811

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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anova(lm(SIR~FLUX,data=SIRFLUX))

SIRFLUX <- read.csv("SIRFLUX.csv",header=T) reads the csv file into a data

frame called SIRFLUX.

lm(SIR~FLUX,data=SIRFLUX) does the ANOVA calculations,

differentiating the responses SIR by the FLUX variable (factor).

It knows the meaning of SIR and FLUX via the data=SIRFLUX specification.

The command anova(lm(...)) just creates the nicely formatted ANOVA table

output from the analysis performed by lm(SIR~FLUX,data=SIRFLUX)
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