
Stat 311: HW on Regression, not due, solutions to be posted before final
Fritz Scholz

The data in tensile.csv comes from Problem 10 in Section 15.7 in the text. Read the text there for background
information. Download this file (from our class HW site) and load its data into R via
tensile <- read.csv("tensile.csv",header=T)
Make sure the file tensile.csv resides in the directory from which you start R.

1. Plot the tensile strength against the curing time, labeling the axes appropriately, i.e.,
plot(tensile[,1],tensile[,2],xlab="days",ylab="tensile strength")

Do the points appear to follow a simple linear regression model?
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The plot shows a strongly curved pattern, first a steep increase and then a leveling out.

2. What is n, the number of plotted points?
n = 21 <−length(tensile[,1])

3. Make a similar plot of log(tensile strength) against 1/days, labeling the axes correspondingly. Does this plot
suggest a simple linear regression model of y = log(tensile strength) in relation to x =1/days? For the following
let x <- 1/tensile[,1] and y <- log(tensile[,2]). You can add a fitted regression line to this plot via
abline(lsfit(x,y))
The commands

> plot(x,y,xlab="1/days",ylab="log(tensile strength)")
> abline(lsfit(x,y))



produce
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The plot looks very linear, i.e., a linear regression model should be adequate.

4. Looking at this last plot, does it suggest that there would be much improvement in tensile strength when using
more than 28 days curing time?

5. Find ∑(xi− x̄)(yi− ȳ) simply by using sum((x-mean(x))*(y-mean(y)))
and similarly find ∑(xi− x̄)2, where the summations are over i = 1, . . . ,n.

> sum((x-mean(x))*(y-mean(y)))
[1] -2.337782
> sum((x-mean(x))ˆ2)
[1] 2.040789

6. Find the least squares estimates beta1.hat =β̂1 and beta0.hat =β̂0.
Compare the results with lsfit(x,y)$coef.

> beta1.hat <- sum((x-mean(x))*(y-mean(y)))/sum((x-mean(x))ˆ2)
> beta0.hat <- mean(y)-beta1.hat*mean(x)
> beta1.hat
[1] -1.145528
> beta0.hat
[1] 3.687818
> lsfit(x,y)$coef
Intercept X
3.687818 -1.145528

lsfit(x,y)$coef gives us the same results as are obtained by direct calculation using the provided formulas.



7. Find the vector y.hat = beta0.hat+beta1.hat∗x = (ŷ(x1), . . . , ŷ(xn)) of fitted or predicted values for
x1, . . . ,xn, get the vector of residuals ri = yi− ŷ(xi), i = 1, . . . ,n.
Compare these with lsfit(x,y)$resid. Calculate SSE and MSE from these residuals.

> y.hat <- beta0.hat+beta1.hat*x
> residuals <- y-y.hat
> y.hat
[1] 2.542290 2.542290 2.542290 3.115054 3.115054 3.115054 3.305976 3.305976
[9] 3.305976 3.305976 3.305976 3.524172 3.524172 3.524172 3.524172 3.524172
[17] 3.646907 3.646907 3.646907 3.646907 3.646907
> residuals
[1] 0.02265927 0.04547395 -0.07419055 -0.02856765 0.08361883 0.09174896
[7] 0.08853271 0.02622883 -0.12376384 -0.11962305 -0.04021627 -0.04601314
[13] -0.10972896 0.01678776 -0.02463829 0.05097912 0.08598959 0.10494750
[19] 0.04944472 -0.07175606 -0.02791343
> lsfit(x,y)$resid
[1] 0.02265927 0.04547395 -0.07419055 -0.02856765 0.08361883 0.09174896
[7] 0.08853271 0.02622883 -0.12376384 -0.11962305 -0.04021627 -0.04601314
[13] -0.10972896 0.01678776 -0.02463829 0.05097912 0.08598959 0.10494750
[19] 0.04944472 -0.07175606 -0.02791343
# with exactly the same residuals
> SS.E <- sum(residualsˆ2)
> MS.E <- SS.E/(21-2)
> SS.E
[1] 0.1085086
> MS.E
[1] 0.00571098

8. Get a 95% confidence interval for the slope parameter β1 in this transformed variables regression situation.
Should the hypothesis H0 : β1 = 0 be rejected at level α = 0.05?

> qt(0.975,21-2)
[1] 2.093024
> t.xx <- sum((x-mean(x))ˆ2)
> beta1.hat-qt(0.975,21-2)*sqrt(MS.E/t.xx)
[1] -1.256250
> beta1.hat+qt(0.975,21-2)*sqrt(MS.E/t.xx)
[1] -1.034807
# with 95% confidence interval (-1.256250, -1.034807).
# It does not contain beta.1 = 0, thus reject that hypothesis at alpha=0.05.

9. Get a 95% confidence interval for the mean µy(x = 1/28).

> y.hat.28 <- beta0.hat+beta1.hat*(1/28)
> y.hat.28
[1] 3.646907
> y.hat.28-qt(0.975,21-2)*sqrt(MS.E*(1/21+(1/28-mean(x))ˆ2/t.xx))
[1] 3.598969



> y.hat.28+qt(0.975,21-2)*sqrt(MS.E*(1/21+(1/28-mean(x))ˆ2/t.xx))
[1] 3.694844
# with confidence interval (3.598969, 3.694844) for the mean log(tensile strength)
# after 28 days of curing.

10. Transform back the last interval into a corresponding one for tensile strength at 28 days.

> exp(3.598969)
[1] 36.56052
> exp(3.694844)
[1] 40.23929
# giving us as interval (36.56052, 40.23929) for what?

We should not interpret exp(µy(x)) as the mean of the tensile strength since exp(E(log(T ))) 6= E(T ) or
E(log(T )) 6= log(E(T )) where T represents the tensile strength at x.
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However, the normal probability plot of the residuals suggests that the normality assumption for the error term
in the simple linear regression model is justified. Thus the mean of the log-tensile strength at each x can also
be viewed as the median at each x. Transforming such log-tensile strengths back does not affect the median
character, since 50% will be above and below the median at any x, before or after back-transformation via
exp(). Thus the above interval can be viewed as a 95% confidence interval for the median tensile strength
after 28 days.


