
Stat 311: HW 6, Chapter 8, Solutions

Fritz Scholz

Ch. 8, Problem 2. The law of large numbers states that the empirical distribution P̂n converges to the true (sampled)
distribution P. Since the latter is apparently not normal, P̂n will certainly not look normal for very large samples.
The CLT only comes into play with respect to the approximate distribution of random variable P̂n(A), namely

P̂n(A)≈N (P(A),P(A)(1−P(A))/n)

but this statement examines how P̂n(A) varies around its expected value P(A) and that variation is indeed normal.
However, the kernel density estimate based on a large sample X1, . . . ,Xn will estimate the sampled distribution which
was not normal (bimodal).

Ch. 8, Problem 4. Let Xi denote the usage time delivered by the ith pair of batteries. EXi = 5 h and σ(Xi) = 0.5 h.
If Y = X1 + . . .+X20 we are interested in P(Y ≥ 105). EY = 20×5 = 100 h and σ(Y ) = 0.5×

√
20 =

√
5 = 2.236068.

P(Y ≥ 105) = P
(

Y −100√
5
≥ 105−100√

5

)
≈ P(Z ≥ 5/

√
5) = P(Z ≥

√
5)

= P(Z ≥ 2.236068) = 1−pnorm(2.236068) = 0.01267366

i.e., his chances are quite slim (.0123) that he can get at least 105 hours out of his 20 2-packs.

Ch. 8, Problem 5. Let Xi denote the number on the ith drawn ticket. Using x <- c(1,1,1,1,2,5,5,10,10,10)
and n <- length(x) we find n = 10, EXi = mean(x) = 4.6 and varXi = σ2(Xi) = var(x)∗ (n−1)/n = 14.64.
For Y = X1 + . . .+X40 we get EY = 40 ·4.6 = 184 and varY = 40 ·14.64 = 585.6 and thus σ(Y ) = se = sqrt(585.6)
= 24.19917.

(a)
> x <- c(1,1,1,1,2,5,5,10,10,10)

urn.model <- function (pop=x,n=40)
{
y.vec <- sample(pop,n,replace=T)
sum(y.vec)
}

urn.model.sim <- function (Nsim=1000,n=40)
{
out <- numeric(Nsim)
for(i in 1:Nsim){
out[i] <- urn.model(x,n)
}
mean(out > 170.5 & out < 199.5)
}

> urn.model.sim(100000)
[1] 0.44573
> urn.model.sim(100000)
[1] 0.44609
> urn.model.sim(100000)
[1] 0.44767



> urn.model.sim(100000)
[1] 0.44626
> urn.model.sim(100000)
[1] 0.44478

> mean(c(0.44573,0.44609,0.44767,0.44626,0.44478))
[1] 0.446106

Her reasoning is justified by the law of large numbers because the proportion of values falling within (170.5,199.5)
is an average of i.i.d. Bernoulli random variables with success probability p = P(170.5 < Y < 199.5). By taking a
large number of simulated Bernoulli trials we should get very close to the true p. The above simulations appear to
show values that closely scatter around 0.445.

(b)
> se <- sqrt(585.6)
> pnorm(199.5,mean=184,sd=se)-pnorm(170.5,mean=184,sd=se)
[1] 0.4506155

The approximation is based on the CLT for Y = X1 + . . .+ X40 with mean and variance given previously, i.e., Y ≈
N (µ = 184,σ2 = 585.6).

P(170.5 < Y < 199.5) = pnorm(199.5,mean = 184,sd = se)−pnorm(170.5,mean = 184,sd = se)

(c) The approximation is not too far off from our simulated results, but it is well outside the scatter of the various
simulations. The normal approximation cannot be improved for this sample size n = 40, while we can get a better
simulated answer by increasing the number of simulations.

Ch. 8, Problem 6. (a) We want to evaluate (approximate) P(V > 0) where V = X1 + . . .+X400. EV = 400 ·0.01 = 4
and varV = 400 ·0.01 = 4. Thus

P(V > 0) = 1−P(V ≤ 0)≈ 1−pnorm(0,4,2) = 0.9772499

(b) We want to evaluate (approximate) P(W > 0) where W = Y1 + . . .+Y400. EW = 400 ·0 = 0 and
varV = 400 ·0.25 = 100. Thus

P(W > 0) = 1−P(W ≤ 0)≈ 1−pnorm(0,0,10) = 0.5

(c) We want to evaluate (approximate) P(V ≥ 20). Thus

P(V ≥ 20) = 1−P(V < 20)≈ 1−pnorm(20,4,2) = 6.661338e−16

(d) We want to evaluate (approximate) P(W ≥ 20). Thus

P(W ≥ 20) = 1−P(W < 20)≈ 1−pnorm(20,0,10) = 0.02275013

(e) We evaluate P(W −V > 0). Since W ≈N (0,100) and V ≈N (4,4) =⇒W −V ≈N (0−4,100+4) and thus

P(W −V > 0) = 1−P(W −V ≤ 0)≈ 1−pnorm(0,−4,sqrt(104)) = 0.3474433


